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COUNTING IN STRUCTURAL COMPLEXITY THEORY

Lane Adrian Hemachandra, Ph.D.
Cornell University 1987

Structural complexity theory is the study of the form and meaning of compu-
tational complexity classes. Complexity classes—P, NP, ProbabilisticP, PSPACE,
etc.—are formalizations of computational powers—deterministic, nondeterminis-
tic, probabilistic, etc. By examining the structure of and the relationships between
these classes, we seek to understand the relative strengths of their underlying com-
putational paradigms.

This thesis studies counting in structural complexity theory. We are interested
in complexity classes defined by counting and in the use of counting to explore the
structure of these and other classes.

We consider the structure of the strong exponential hierarchy, an exponen-
tial time analogue of the polynomial time hierarchy. A careful investigation of
the census functions of nondeterministic computation trees shows that the strong
exponential hierarchy collapses.

Next, we move from computing census functions of computation trees to com-
puting census functions of sets. The ranking problem for a fixed set is to deter-
mine the position of elements within the set. We give strong structural evidence
that ranking of any type—uniform, nonuniform, strong, weak, or enumeratively
approximate—is computationally complex. Indeed, we can believe that most types
of ranking are computationally hard with at least the certainty with which we be-
lieve that P # NP.

Returning to the combinatorics of computation trees and their accepting paths,
we study robust machines. A robust machine is a nondeterministic Turing ma-
chine that maintains certain computational properties in every relativized world.
We show that, due to the limited combinatorial control of NP machines, robust

machines accept only simple languages. A robust machine will accept, for every



oracle A, a language that can be accepted by a polynomial time Turing machine
with oracles for NP and A.

Finally, we turn to the count “one,” and its effect on computation trees, ac-
cepting paths, and the structure of the satisfiability problem. We prove a UP
(unique polynomial time) converse to the Borodin-Demers Theorem, and, under a
complexity-theoretic assumption related to uniqueness, we show that there is an
algorithm that quickly finds satisfying assignments for satisfiable formulas with
few satisfying assignments.

Throughout this thesis, our goal is to use counting as a tool in understanding

the structure of feasible computations.
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Chapter 1
Introduction

The form is the meaning, and indeed the classic Greek mind, with an
integrity of perception lost by later cultures which separated the two,
firmly identified them.

—Vincent Scully, The Earth, the Temple, and the Gods [Scu62].

To the computer scientist, structure is meaning. Seeking to understand na-
ture’s diverse problems with man’s pathetic resources, we simplify our task by
grouping similarly structured problems.

The resulting complexity classes, such as P, NP, and PSPACE, are simply
families of problems that can be solved with a certain underlying computational
power. The range of interesting computational powers is broad—deterministic,
nondeterministic, probabilistic, unique, table lookup, etc.—and an equally rich
spectrum of classes symbolize the powers—P, NP, PP, UP, P/poly, etc. These
structurally motivated classes can themselves be studied in terms of their internal
structure and behavior. For example, we might seek to understand the nature of
the class NP by asking if NP contains any hard sparse sets (HIS85] or by asking
if there is only one NP-complete set, which appears in many p-isomorphic guises
[BH77].

This thesis studies the interaction between counting and structural complexity
theory. We study the structure of classes defined by counting and how combina-

torics and counting give us insight into the structure of complexity classes.



Chapter 2 briefly reviews the definitions of, meanings of, and previous research
on the complexity classes we study. Summary sheets are collected in the appen-
dices.

Chapter 3 studies the strong exponential hierarchy, an exponential time ana-
logue of the polynomial time hierarchy. We study the structure of the computa-
tions at the second level (NPNE) of the strong exponential hierarchy. This work
is related to the quantitative relativizations of the polynomial hierarchy of Book;
Léﬁg, and Selman [BLS84,Lon85|. By carefully building up a profile of the number
of “yes” answers the base NP machine receives (the “census profile”) we see that
PNE_NPNE. [t follows that the strong exponential hierarchy collapses to PNE,

Chapter 3 shows how to compute census functions of computation trees. Chap-
ter 4 discusses the complexity of computing census functions of sets. For a fixed
set, the ranking problem is to determine the position (rank) of input strings within
the set. As an example, the ranking problem is easy for the set of odd numbers.
We can quickly tell that 1001 is the 501st odd number. Ranking was first studied
by Blum, Goldberg, and Sipser [GS85], who showed that if a certain P set can be
ranked in polynomial time, then the counting functions of NP machines (which
are the functions counting the number of accepting paths of NP machines) can be
computed in polynomial time.

Do all easy (P) sets have easily computable ranking functions? Do all NP
sets have easily computable ranking functions? The latter might seem less likely.
However, we show that all sets in P have easy ranking functions if and only if
all sets in NP have easy ranking functions. Thus, though it is likely that the
membership problems for P and NP are of different complexities, their ranking
problems stand or fall together.

We also ask if there are small circuits for the ranking problem and if we can
enumeratively approximate ranking functions. We can not, if standard assump-
tions about complexity classes hold.

A machine that maintains a property for every oracle! is said to have the
property robustly [Sch84]. For example, if two nondeterministic Turing machines

accept complementary languages for every oracle we say they are robustly com-

1QOracles and relativized computations are defined and discussed in Section 2.3.



plementary. Maintaining a property robustly strains a machine’s combinatorial
control; it is hard for a machine to be flexible enough to show a certain behavior
with all oracles and also to accept complex languages.

Chapter 5 studies robustness and shows that machines with robustness prop-
erties accept only simple languages. For example, if two machines are robustly
complementary then for every oracle 4 each of the machines accepts a language in
PNPO®4  where @ represents disjoint union. In particular, if P =NP then for each
oracle A all robustly complementary machines accept languages in polynomial
time relative to A.

Chapter 6 studies properties of a unique count—one. Borodin and Demers
[BD76] show that if P#NPNcoNP then there exists a polynomial time set § of
satisfiable boolean formulas such that no polynomial time machine computes satis-
fying assignments for all formulasin §—that is, for no polynomial time computable
function g do we have (VF € §)[g(F) is a satisfying assignment of F|. Intuitively,
we have a set of formulas that we can easily recognize as satisfiable, but we cannot
easily determine why they are satisfiable.

It is not known if the converse of the Borodin-Demers Theorem holds. The first
part of Chapter 6 proves a “uniqueness” version of the theorem and its converse:
P #UPNcoUP if and only if there is a polynomial time set § so that each element
of § is a formula with exactly one solution but no polynomial time machine com-
putes satisfying assignments for all formulas in §—that is, for no polynomial time
computable function g do we have (VF € §)[g(F) is the unique satisfying assign-
ment of F]. Intuitively, we have a set of formulas that we can quickly recognize as
each having exactly one solution, but we cannot get our hands on these solutions
quickly.

The second part of Chapter 6 shows, if a complexity-theoretic assumption
holds, that fast algorithms exist to find satisfying assignments for satisfiable boolean
formulas that have few satisfying assignments. Our complexity-theoretic assump-
tion is that we can distinguish zero from one. Call (*x) the assumption that there

is a polynomial time Turing machine that

e given any unsatisfiable formula prints “unsatisfiable,” and



e given any formula with exactly one solution prints “satisfiable.”

Note that given a formula with many solutions we don’t know what this machine
will say; it may lie.

Valiant and Vazirani [VV85] show that (%) implies P=UP and NP equals R,
random polynomial time. Assumption (**) does not appear to imply P=NP. We
show that (xx) implies that we can find a satisfying assignment to a satisfiable
formula-f in-time-O(|f[*-||f||- (mmaogﬁf”ﬁ,'gv)ar(f) /z)))’ where ||f|| is the number
of satisfying assignments of f, |f| is the size of f, and #wvar(f) is the number
of distinct variables in f, and k is a constant. In particular, (%) implies that
for formulas with few solutions we have witness finding algorithms faster than
the known (exponential time) algorithms. We interpret this as strong evidence
that (*x) is false.

All these chapters strive to understand counting and its effects on the struc-
ture of the complexity classes that formalize our view of the world of feasible

computations.



Chapter 2
A Primer of Complexity Classes

This chapter briefly reviews the definitions, meanings, and histories of the com-
plexity classes this thesis studies. Detailed discussions of previous work related to

this thesis are included in each chapter.

2.1 P: Determinism
P={L| Lis accepted by a polynomial time deterministic Turing machine}.

P, deterministic polynomial time, is the class that is widely thought to em-
body the power of reasonable computation (Figure 2.1). In the 1930s, Gédel,
Church, Turing, and Post [God31,Chu36,Tur36,Chu41,Pos46,Dav58] asked what
could be effectively solved by computing machines—that is, what problems are
recursive? Starting in the 1960s, computer scientists have asked which problems
can be efficiently solved by computers. The theory of P and NP, and indeed struc-
tural complexity theory itself, sprang from this desire to understand the limits of
feasible computation.

The notion that polynomial time, g TIME[nk], is the right class to represent
feasible computation is due to Cobham and Edmonds [Cob64,Edm65]. Polynomi-
als grow slowly and are closed under composition (thus allowing subroutine calls).
These features support the claim that P is a reasonable resource bound. The view

that P loosely characterizes “feasibility” is widely accepted.



P - Polynomial Time

Power
Feasible computation.

Definition
P=U; TIME[n"].

Background
P was described as embodying the power of feasible computation by Cob-

ham [Cob64] and Edmonds [Edm65]. The field of design and analysis of

algorithms attempts to place as many problems as possible in P.

Complete Languages
P has well-known complete languages under < fff,’,f’;feme reductions, e.g., the

emptiness for context-free grammars [HU79].

Sample Problem
In a fixed, reasonable proof system, asking if z is a proof of T is a polynomial
time question. In particular, in polynomial time we can check if assignment

z satisfies boolean formula F.

Figure 2.1: P




One might argue that an algorithm that runs for 1010 101 steps on in-
puts of size n is not practical. Problems are known that provably require high
degree polynomial algorithms (artificial problems [HS65][HU79, Theorem 12.9],
cat-and-mouse and pebbling problems [KAI79,AIK81]), and natural problems are
known that may require high degree polynomial algorithms (permutation group
membership from generators [Hof82,FHL80], robotics configuration space prob-
lems [SS83]).!

Nonetheless, there is a widely held feeling that fundamental natural problems
belonging to P will have polynomial time algorithms of low degree. The field of
design and analysis of algorithms attempts to bring problems into P, and then
show that they have algorithms of low time complexity [AHU74,Tar83].

2.2 NP: Nondeterminism
NP =, NTIME[r*].

P contains the problems we can solve. NP symbolizes the problems man needs
to solve to efficiently structure and optimize his world. The P=NP question asks
if the computers built by man’s ingenuity have the power to solve the problems
formed by nature’s complexity.

NP is the class of languages accepted by nondeterministic polynomial time
bounded Turing machines [HU79]. Intuitively, a nondeterministic machine is one
that is allowed to make guesses during its computation, and always guesses cor-
rectly.

In the early 1970s, the work of Cook and Karp [Coo71,Kar72| showed that NP
had natural complete, or “hardest,” languages—languages to which every other
NP problem can be polynomial time many-one reduced. These problems stand or
fall together: if one NP-complete problem is in P then all NP-complete problems

are in P. During the last sixteen years, hundreds of problems from all areas of

!Many problems are known to have high lower bounds. Meyer and Stockmeyer [MS72] and
Fischer and Rabin [FR74] show, respectively, problems that require exponential space and double
exponential nondeterministic time. Our question is, are there natural, fundamental polynomial
time problems that have high degree polynomial lower bounds?



NP - Nondeterministic Polynomial Time

Power Guessing. Nondeterminism.
Definition NP =, NTIME[rF].

Background
‘In the early-1970s; Cook-{Coo71}, Karp-[Kar72], and- Levin [Lev73] initiated
the study of NP and its complete problems. Many NP-complete problems
are now known, and the study of NP’s structure is the unifying theme of

structural complexity theory.

Complete Problems
NP has hundreds of <P, (polynomial time many-one) complete problems
[GJ79]. The most studied NP-complete problem is satisfiability. SAT={f |
boolean formula f is satisfiable} was shown to be Turing-complete for NP by
Cook. Karp showed that SAT and many other problems were <? -complete

for NP.
Theorems
o If (3 sparse §)[NPCP5] then the polynomial hierarchy, PH, equals
NPNP, [KL80]
e NP has sparse complete sets if and only if P=NP. [Mah80]
e NP —P contains sparse sets if and only if E # NE. [HIS85]
o All paddable sets are p-isomorphic to SAT. [BH77,MY85]

If P=NP and § is sparse then [PS =NPS & (3k)[S C K 5[klogn,n*]]],
where K[| represents time bounded Kolmogorov complexity. [HH86b]

P#NP = NP —P contains sets that are not NP-complete. [Lad75]
e (3A)[PA=NP4]. (3B)[PE#NP?. [BGST5]

Figure 2.2: NP




mathematics, computer science, and operations research have been shown NP-
complete. If P=NP then these and many crucial optimization problems can be
solved in polynomial time.

However, the implications of P =NP are even more profound. An NP machine
can answer the question, in a fixed formal system, “Does this theorem have a
proof (of reasonable size)?” Thus NP embodies the power of guessing, or creating,
mathematical proofs. P embodies the mechanical process of verifying if a proof
is correct. Asking if P #NP is another way of asking if the creative process in
mathematics rises above the complexity of mere mechanical verification. Since
men are likely to create mathematical proof structures only of small size, asking
if P=NP is one way of asking if machines can usurp man’s role in mathematical
discovery.

NP is the most extensively studied computational complexity class, and many
insights into NP’s structure have been found during the past decade (Figure 2.2).

Nonetheless, our understanding of NP is fragmented, incomplete, and unsatisfying.

2.3 Oracles and Relativized Worlds

Oracles are defined and discussed in the literature [HU79,BGS75,Tor86]. We may
think of an oracle B as a unit cost subroutine for the set B. For example, P2 (NPB )
is the class of languages computable by deterministic (nondeterministic) polyno-
mial time Turing machines given unit cost subroutines (i.e., subroutines that return
in one time unit) that test membership in B. We may think of such a subroutine
as changing the ground rules of computation that the machines operate under.
We can also define what it means to relativize a complexity class not with a

single set but with another complexity class:

c?P=1ct
AeD
For example, NP = Uaenp NP4 =NPSAT. We may think of C? as the class of
languages recognized by C machines given free access to the power of some member

of D.
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Oracles are a useful tool in certifying structural possibilities for complexity.
classes. If we show that some complexity result T holds in a relativized world
(that is, with some oracle B), we know that relativizable proof techniques cannot
disprove T'. This is because a relativizable disproof of T would disprove T in all
relativized worlds, but we know that T is true in the world relativized by B.

Many crucial results in structural complexity can be relativized in conflicting
ways. For example, there are oracles A and B so that P4 =NP4 yet PZ £NP5
[BGS75]. Since most known mathematical proof techniques seem to relativize
(for a discussion of this and of possible exceptions see (Hartmanis [Har85])), new
techniques or novel uses of old techniques will be needed to resolve such central
questions as P =NP.

Oracles exist to certify unlikely situations—e.g., there is an oracle A for which
P4 =NP4=PSPACEA. We should not think of oracles as telling us what is the
case in the world of computation. We should think of oracles as suggesting the

limitations of our mastery of mathematical proof techniques.

2.4 The Polynomial Hierarchy and Polynomial

Space: The Power of Quantifiers

2.4.1 The Polynomial Hierarchy

The polynomial hierarchy was defined by Stockmeyer [Sto77] as a time bounded
analogue of the Kleene (arithmetic) hierarchy of recursive function theory [Rog67].
The definitions of the polynomial hierarchy appear in Figure 2.3. In particular,
TP =P, P =NP, I’ =coNP, A2 =P P and T2 = NP"P. Figure 2.4 diagrams the
structure of the polynomial hierarchy.

The levels of the polynomial hierarchy have natural descriptions in terms both
of Turing machines and logical formulas. Just as the Kleene hierarchy’s levels
are characterized by quantifier alternation, so also are the levels of the polynomial

hierarchy characterized by alternating polynomial bounded quantifiers [Sto77]. For
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example:

NP = {L|(3k)(3 polynomial predicate P)[z € L= (y)[|y|<|z|*AP(z,y)]]}
5 = {L|(3k)(3 polynomial predicate P)
€L (3y)(V2)lly < 2l* Allz| <|2[* = P(2,5,2)]]]}-

This characterization by alternating quantifiers is handy. When asked the com-
plexity of MINIMAL-FORMULAS={F | F is a boolean formula and no equivalent -
boolean formula is shorter than F}, we can reflect for a moment on the underlying
quantifier structure and quickly note that MINIMAL-FORMULAS€eII}. That is,
MINIMAL-FORMULAS is the set of all F such that for every shorter formula F'
there ezists a variable assignment on which F and F' differ.

The work of Chandra, Kozen, and Stockmeyer [CKS81] develops machines that
accept the languages at each level of the polynomial hierarchy. Known as alternat-
ing Turing machines, the action of these machines alternates between existential
and universal blocks, and mirrors the underlying quantifier structure of the classes.

We say that the polynomial hierarchy collapses if, for some k, £} =II¥ (thus
TP =PH). A crucial open question is, does the polynomial hierarchy collapse?
That is, is some fixed number of quantifiers powerful enough to simulate all fixed
arrangements of quantifiers? Oracles are known for which the hierarchy collapses
[BGS75] and for which the hierarchy does not collapse [Yao85]. An exponential
analogue of the polynomial hierarchy collapses (Chapter 3).

2.4.2 Polynomial Space

PSPACE is the class of languages accepted by polynomial space bounded Turing
machines. PSPACE embodies the power of polynomial bounded quantifiers. A

quantified boolean formula is an expression of the form

(321)(V22)(323) - [f (21, 22, 73, - )],

where f is a quantifier-free boolean formula. QBF, the set of true quantified
boolean formulas, is a well-known PSPACE-complete problem, and shows how
PSPACE embodies the power of alternating quantifiers [Sto77].
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PH, PSPACE, P, NP, coNP, PNP  NPNP . _ The Polynomial Hierar-
chy and Polynomial Space

- Power Alternating polynomial bounded existential and universal quantifiers.

Definition
Zg = I} =

P
AP, = PE >0
P, = NPE >0
If,, = co%f, = {L|Le%?,} >0
PH = |J%?

PSPACE = |JSPACE[n"].
k

Background The polynomial hierarchy was defined in (Stockmeyer [Sto77]).

Complete Languages Canonical complete languages exist for each level of the
hierarchy [Wra77] and for PSPACE [Sto77].

Theorems o (3A)[P4=PH4|. (BGS75]
o (34)[PA#£NPA£NPVP* ... L PSPACEA). [Yao85]
o PH=PSPACE & (V sparse §)[PHS =PSPACES|. [BBL*84]
e X7 =II} = X{ =PH (Downward Separation). [StoT7]
e Prob, (PHA#£PSPACE4)=1. [Cai86]
o PSPACE= NPSPACE = Probabilistic-PSPACE. [Sav70,Sim77]

Open Problems e Does the polynomial hierarchy collapse?
o Proby (PA#NPA£NPNP* .. )=1?
o For which j can we construct oracles so (2;’)‘4 # (Z;’_,_l)A =PHA?

o (3k, A)[(Z8)4=(12)4 # PSPACE4)?

Figure 2.3: The Polynomial Hierarchy and PSPACE
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NPNP

PSPACE

coNPNP

PNP

NP N coNP

Figure 2.4: The Structure of The Polynomial Hierarchy
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There are many PSPACE-complete problems. Adversary (game) problems are
often PSPACE-complete. The generalized versions of checkers [FGJ*78] and go
[LS78] are PSPACE-complete. In a fixed formal system, whether a theorem has a
polynomial proof presentation can be determined in PSPACE [HY84|.

2.5 E, NE, and the Strong Exponential Hierar-
chy

E and NE are exponential time analogues of P and NP. The structure of these
exponential time classes is linked to the structure of polynomial time classes.
In particular, the complexity of tally? and sparse sets within NP is tied to the
structure of E and NE (Book, Cai, Hartmanis, Hemachandra, Hunt, Inmerman,
Sewelson, and Yesha [Boo74,HH74,HY84 HIS85,CH86a,CHHS86b]).

The strong exponential hierarchy (Figures 2.5 and 2.6) is a natural exponential
time analogue of the polynomial time hierarchy. Its high levels at first seem to have
great computational power. Thus it is somewhat of a surprise that the hierarchy
collapses to its PNE level (Chapter 3).

2.6 P /Poly: Small Circuits
P/poly={L | (3 sparse §)[LeP5]}

L is in P/poly (Figure 2.7) if and only if L has small circuits, i.e., there is a
family of representations of boolean circuits [Sav72,Sch86] ci, c3, ... and an integer
k so that:

e |ci|<i*+k, and
® z€ L& ¢, accepts z [KL80|.

Equivalently, a language L is in P/poly if and only if there is a sparse® set § so

2T is a tally set if TC1*={e, 1,11,111,...}.
3A set S is sparse if there are at most polynomially many elements of length <n in S, i.e.,
(3K)(Yn 2 1)[{z | 2€SA 2| <n} <.
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E, NE, PNE, NPNE | _ The Strong Exponential Hierarchy
Power Exponential computation hierarchy.
Definitions
E P = |J TIME[2"]
[
NE = ¥iF® = | JNTIME[2*"]

ASEE - pE i>9

nSEH _ NPEST i>9

SEH = EUNEUNPNEUNPNP™ (...

EXPSPACE

|J SPACE[2™"]
k .

Background The complexity of sparse sets in the polynomial hierarchy is

closely related to the structure of exponential time classes [Boo74,HHT74,

HY84,HIS85,CH86a, CHHSS6b).

Complete Languages

All these classes have straightforward canonical com-

plete languages that capture the actions of generic machines (see the tech-

niques of [Har78|).

Theorems

e E=NE if and only if there are no tally sets in NP —P.

e E=NE if and only if there are no sparse sets in NP —P.

[Boo74,HH74]

[HISS5]

e E=NE if and only if all capturable sets in the boolean hierarchy are in

P.

[CH86a)]

e NE =coNE if and only if every sparse set in NP is NP-printable. [HY84]
¢ PNECEUNEUNPYEUNPNP™® ...

E=NE= EXP=SEH (Downward Separation).

(Chapter 3)
(Chapter 3)

Figure 2.5: E, NE, and the Strong Exponential Hierarchy |




/ EXPSPACE \

NPNE cONPNE

/ e \

NE coNE
E

Figure 2.6: The Structure of the Strong Exponential Hierarchy
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P/poly — Nonuniform Polynomial Time

Power
Small circuits. Table lookup.

Definition
P/poly ={L | (3 sparse §)[LeP5]}

Theorems
e NPCP/poly=PH=NPNF. [KL80]
o (3S)INPC PP A S sparse A § € NP|= PH = PpNPllog], [Kad87]
e There is a relativized world A and a sparse set § so PSPACE4 C p495
yet the boolean hierarchy relative to A is infinite. (CH86a)]

e If P has small ranking circuits then P#F CPH=NPNF. (Chapter 4)

e If P has small ranking circuits then P has small ranking circuits that
can be printed by a A} machine. (Chapter 4)

Figure 2.7: P/Poly
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that L& PS (due to Meyer, see [BH77, p. 307] and [KL80)).

Intuitively, sets in P/poly are “close” to being in polynomial time. With a
small amount of advice (e.g., the circuit description), a polynomial machine can
recognize these sets. However, the advice may be terribly hard to compute; thus it
is not surprising that P/poly contains sets arbitrarily high in the Kleene hierarchy.

Some sets that are not known to be in P are known to have small circuits.
For example, the set of primes is not known to be in P, but has small. circuits - -
[Rab76,Ad178,APL80,GK86]. More generally, any set in the probabilistic class R
has small circuits.

Karp and Lipton show it unlikely that all NP sets have small circuits: if NP has
small circuits (i.e., if NP C P for some sparse set ) then the polynomial hierarchy
collapses to its second level. In the wake of their result, a flurry of related research
has extended our knowledge of the implications of “NPCPS, S sparse,” and of
“NPCP’, § sparse, § € NP” (Cai, Hemachandra, Mahaney, Immerman, Kadin,
and Long [MI82,CH86a,Lon82,Mah82,Kad87)).

2.7 UP and FewNP: Uniqueness

UP = {L]| there is a nondeterministic polynomial time Turing machine N
so L=L(N), and for all z, the computation of N(z) has at most
one accepting path}.

US {L| there is a polynomial predicate P and integer k so for all z,

zele|{y] lyl<|z|*AP(z,y)} =1}

The classes UP and US (Figures 2.8, 2.9, and 2.10) capture the power of
uniqueness. Given a boolean formula f a typical US question would be, “Does f
have exactly one solution?”

UP has a related but subtly different nature. UP is the class of problems that
have (on some NP machine) unique witnesses. That is, if there is an NP machine
M accepting L and for every input z the computation M(z) has at most one

accepting path, then we say L€ UP. We call NP machines that accept on at most
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NPNP coNPNP
PNP

coDP DP

coUs us

NP coNP

coUP upP

Figure 2.8: The Structure of UP and US within the Polynomial Hierarchy
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UP, US - Unique Polynomial Time

Power
Categorical-acceptance. -Uniqueness.

Definition
UP = {L| thereis a nondeterministic polynomial time Turing machine N
so L=L(N), and for all z, the computation of N(z) has at most
one accepting path}.
US = {L| thereis a polynomial predicate P and integer k so for all z,
zele|{y]lyI<|zl*AP(z,9)} =1},
Background

UP is defined in (Valiant [Val76]). US is studied in (Blass and Gurevich
[BG82]). UP is related to cryptography [GS84] and to central conjectures in
structural complexity theory [JY85,HH8T].

Complete Problems
USAT={f | f has exactly one satisfying assignment} is complete for US.

UP may not have complete languages. There are relativized worlds where it
does not have complete languages and relativized worlds where P4 £ UP4 #
NP4 yet UP4 does have complete languages [HH86a].

Figure 2.9: UP—Part I
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UP, US - Unique Polynomial Time

Theorems

P #UP & one-way functions exist. [GS84]
P#UPNcoUP & one-way functions whose range is in P exist. [GS84]
UPCNPNUS

If UP has complete languages then it has a complete language of the

form L=SATN A, A€P. [HH864a]
There is an oracle so USAT4 is not (DP)4-complete. (BG82]
(34)[P4=UP4A£NP4). (3B)[PZ#UP?=NPE]. [Rac82)
(34)[UP* has no complete languages]. (HH86a)
(34)[P# # UP* # NP4 and UP4 has complete languages |.  [HH86a]

(VA)[Nz-A is categorical | = (VA)[L(NiA) € PNPQ)A].
- (Chapter 5) and [HH87]
There is a reasonable (i.e., PA#NPA) oracle A for which P4 =UPA4

(that is, there are no one-way functions) yet there are sets that are

<24 _complete for NP4 and are non-p4-isomorphic. [HH87]

P#UPNcoUP if and only if there is a set S so (1) S€P and §CSAT,
and (2) f€§ = f has exactly one solution, and (3) no P machine can

find solutions for all formulas in §—that is,

(n=1° A
= the unique satisfying assignment of f fes
is not a polynomial time computable function. (Chapter 6)

Open Problems Prob A(PA=UPA)=1? Does UP have complete languages
[HH86a]? Do one-way functions exist [GS84]?

Figure 2.10: UP—Part II
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one path for all inputs categorical machines. Valiant started the study of UP and
categorical machines in [Val76].

Recently, UP has come to play a crucial role in both cryptography and struc-
tural complexity theory. In cryptography theory, Grollmann and Selman [GS84]
prove that one-way functions* exist if and only if P # UP, and one-way functions
whose range® is in P exist if and only if P#UPNcoUP. Thus we suspect that
P #UP because we suspect that one-way functions exist.

A central question in structural complexity theory, first asked by Berman and
Hartmanis [BH77|, is “how many NP-complete problems are there?” Berman
and Hartmanis conjectured that there is only one NP-complete problem, which
appears in many guises. That is, they conjectured that all NP-complete sets are
polynomial time isomorphic (p-isomorphic). Indeed, they showed that all then-
known and all paddable NP-complete sets are p-isomorphic ((BH77] and Mahaney
and Young [MY85]). Note that the conjectured p-isomorphism of NP-complete
sets implies P #NP.

Joseph and Young found NP-complete “k-creative” sets that are not obviously
p-isomorphic to SAT. However, if no one-way functions exist then these sets are
isomorphic to SAT. This led to the following conjecture [JY85,KMR86]. Since
one-way functions exist if and only if P # UP, this conjecture links P=UP to the
structure of NP.

One-way Conjecture  One-way functions exist if and only if non-p-isomorphic
NP-complete sets exist.

This coupling between UP and NP has been weakened. Hartmanis and Hema-
chandra [HH87] show that there is a relativized world in which the One-way Con-
jecture fails. That is, there is a world in which there are no one-way functions yet
there are non-p-isomorphic NP-complete sets. Their oracle consists of a powerful
collapsing component (PSPACE) unioned with an extraordinarily sparse diago-

nalizing component.

%A function f is honest if (3k)(Vz)[|f(2)|* + k> |z|]. A one-way function is a total, single-valued,
one-to-one, honest, polynomial time computable function f such that f~! (which will be a partial
function if range(f)# Z*) is not computable in polynomial time [GS84].

*Range(f) = U cz- £(3)-
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Theorem 2.1 There is a reasonable (i.e., P4 # NP#) oracle 4 for which P4 = UP4
(that is, there are no one-way functions) yet there are sets that are <2:4-complete

for NP4 and are non-p4-isomorphic.

This does not imply that the one-way conjecture is false, though it does open
that possibility. This theorem, however, suggests that the conjecture is unlikely
to be proved by standard techniques.

The class FewNP (Allender [All86]) is an analogue of UP that restricts machines.
not to one accepting path but to at most polynomially many accepting paths.
Clearly, PC UP CFewNP C NP, and Allender [All86] shows that P =FewNP if and
only if all sparse sets in P are P-printable.®

Definition 2.2 L€ FewNP if there is a nondeterministic polynomial time Turing
machine NV so that N accepts language L and for some polynomial ¢, (Vz)[N(z)
has at most ¢(|z|) accepting paths].

2.8 #P: Counting

#P = {f|(3 nondeterministic polynomial time Turing machine N)(Vz)
[f(2) = number of accepting paths of N(z)]}.

#P is the class of functions that count the accepting paths of nondeterministic
polynomial time Turing machines (Figure 2.11). For example, the function that
maps any boolean formula to its number of satisfying assignmentsis a #P function.
To create a language, as opposed to a function class, we usually discuss P#P or
p#Pll (P*P with at most one oracle call allowed).

Little is known about the complexity of P#P_ Since the number of solutions of
a boolean formula tells if it is satisfiable, we have pNP - p#P 554 PNP C P#P,
Also, PSPACE can count accepting paths by brute force so P*F C PSPACE (Figure
2.12). Angluin displays a relativized world in which P#F 9 L2 UM} [Ang80].

#P is closely related to PP, probabilistic polynomial time: PP = p#P [GilT7,
Sim75).

A set S is P-printable if there is a polynomial time Turing machine M such that for each n,
M(1™) prints all elements of S of length at most n [HY84].
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#P — Sharp P (Counting Functions)

Power .
Counting.

Definition

#P = {f|(3 nondeterministic polynomial time Turing machine N )(Vz)
[f(z)= number of accepting paths of N(z)]}.

Background
#P was first studied by Valiant [Val79a], who showed that counting ver-
sions not only of NP-complete problems but also of P problems can be #P-

complete.

Complete Problems
#SAT is a representative #P function: P#P[1] = p#SAT]

Theorems
o GA)P* - (=AU £0). [Ang80]
o If #SAT has a O(n!™®) enumerative approximator then P =P#P.
[CHS86a]
e P=P*P if and only if every P set has a polynomial time computable
ranking function. [GS85], [Rud87], and (Chapter 4)
Open Problems
o P#PCpPH?
o PHCP#P?

Figure 2.11: #P
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/ PSPACE \
/ P#P \
/ PNP \
NP coNP
P

Figure 2.12: The Structure of #P and the Polynomial Hierarchy
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Recently, the possibility of approximating #P functions has been studied.
Stockmeyer [Sto85] shows that A} machines can approximate #P functions within
a tight factor. Cai and Hemachandra [CH86b] show that the range of #P functions
cannot be reduced to a sublinear size unless P = P#P,

#P is intimately connected to the ::omplexity of ranking—determining the
position of elements in a set (Goldberg and Sipser [GS85], Rudich [Rud87], and
(Chapter 4)).



Chapter 3

The Strong Exponential
Hierarchy Collapses

3.1 Chapter Overview

The polynomial hierarchy, composed of the levels P, NP, PNP NPNP etc., plays a
central role in classifying the complexity of feasible computations. It is not known
whether the polynomial hierarchy collapses.

This chapter resolves the question of collapse for an exponential time analogue
of the polynomial time hierarchy. Composed of the levels E (i.e., J. DTIME[2¢"]),
NE, PNE, NPNE, etc., the strong exponential hierarchy collapses to PNE, its Az

level.
E+#PNE— NPNE U NPNPT

Our proof stresses the use of partial census information and the exploitation of
nondeterminism.

Extending our techniques, we also derive new quantitative relativization re-
sults. We show that if the weak exponential hierarchy’s Aj;; and X;; levels,
respectively EZ and NEZS , do separate, this is due to the large number of queries
NE makes to its Z;’ database.!

1P is the j’th level of the polynomial hierarchy [Sto77].

27
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Our techniques provide a successful method of proving the collapse of certain

complexity classes.

3.2 Introduction .

We wish to know if the high A and I levels of complexity hierarchies are compu-
tationally complex, and if.so, why they are-complex.---
Section 3.3 looks at the strong exponential hierarchy:

PNE

EUNEUNPNEyUNPNP ...,

We show that the strong exponential hierarchy collapses to its Aj level, PNE. Qur
proof is based on a careful inspection of the computation tree involved in an NPNE

PNE can construct increasingly accurate partial census

computation. We show how

information about the number of “yes” responses NE makes to queries from NP in

the action of NPNE, Finally, we have the correct census and collapse the classes.?
The main result of Section 3.3 is:

Lemma 3.2 PNE—-NPNE,

It follows that

E # PVE = NPNEyNPNP® .

Section 3.3.2 shows that this result does not follow simply from the fact that
NE is a hard set. The section also notes that the combinatorics involved prevents
this technique from collapsing the polynomial hierarchy [Sto77] to PNP.

Section 3.4 uses the census techniques of Section 3.3 to prove new results on
quantitative relativization—relativization with restrictions placed on oracle access.
We first review the work on quantitative relativization of Book, Long, and Selman
[BLS84,Lon85]. Then we show how our method of computing partial census func-
tions, instead of the mames of strings used in previous work, collapses complexity

classes and unifies previous results.

3The author has been informed that recent work of Book, Schoning, Toda, Wagner, and Watan-
abe provides an alternative way of proving Lemma 3.2 [Wat87].
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For the main result of Section 3.4, we study the weak exponential hierarchy,
which is NE given a rich database:

NEUNENPUNENPY ...

We show that if the weak exponential hierarchi;’s A; and I; levels do separate,
this is due not to the power of the database but to the large number of queries
NE makes to the database. |
Theorem 3.12 * EZk = {L | LENEZX and some NEZF machine a.ccépting L, for
some ¢ and every z, queries its E’,: oracle at most 2¢/%/ times in its entire compu-
tation tree on input z}.

We also show that if EXPNP is to dominate PNE , 1t must use the answers to
early queries to help it pose later ones.
Theorem 3.19, Part 2 {5 |S<;™, == NP}CPNE

Finally, Section 3.5 lists open problems and summarizes the implications of our
results.

Thus the high levels of the strong exponential hierarchy are no harder than
the low levels—the strong exponential hierarchy collapses. The high levels of the
weak exponential hierarchy separate completely only if NE floods its database with

queries.

3.3 On the Strong Exponential Hierarchy

3.3.1 The Strong Exponential Hierarchy Collapses

This section proves that the strong exponential hierarchy collapses to its PNE Jevel.
It suffices to collapse the strong exponential hierarchy’s PNE and NPNE levels.
Then downward separation gives us a quick proof of the hierarchy’s collapse.
Both U, DTIME[2¢"] and J; DTIME[Z""] are commonly referred to as expo-
nential time (compare [CT86] with [BH77]), though the former is more common in
the literature of structural complexity [Sel86,HY84]. We always make clear which
exponential time we are speaking of. Our main result—the strong exponential

hierarchy collapses—holds under either definition.
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Deﬁnition 3.1 3 E = Uc DTIME[2cn]
EXP = (J, DTIME[2"]
NE = U, NTIME[2°"]

NEXP = (J; NTIME[2"| >
SEH = strong exponential hierarchy
= EUNEUNPYNEUNPNP™ (...
SEXPH = EXPUNEXPU
NPNEXP | NpNPTERF

Lemma 3.2 PNE _ NpNE,
Theorem 3.3 PNE -SEH.
Corollary 3.4 E#PNE =SEH = PNEXP _GEXPH.

Proofof Theorem 3.3  Define S{*H =NE, £{FH = NPZR™ for & >1,and ASEH =
PYE. By Lemma 3.2, ASEE = $SEH  Inductively assume (for some k>2) that
ASEH =5 5EH Now

SEH SEH NE
Tit: =NPE =NPATT —NPPT —NPME,
The last equality holds because there is an NP machine that takes over the job of
the P machine (in NPPNE) and does all the NE queries itself.
Thus, by induction, T3FH = ASEH for 4]l k, so SEH = PNE, O

Corollary 3.4 is proven in Section 3.3.3.

31t might seem natural to define an exponential hierarchy as EUNEUN ENEUNENE™ (...
However, by asking long queries to their oracles, these machines can unnaturally boost their power.
For example, NEN® contains double exponential time and NEVE™ contains triple exponential
time. Thus we can obtain trivial separations in this hierarchy by using the Hartmanis-Stearns
time hierarchy theorem [HS65]. Even worse, an exponential hierarchy defined this way would not
even be contained in EXPSPACE.

What causes this strange behavior is that a polynomial composed with a polynomial yields a
polynomial, but an exponential function composed with an exponential function does not yield an
exponential function. To avoid these anomalous behaviors, exponential hierarchies are defined by
composing a single exponential function with many polynomial functions.
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accept

Figure 3.1: Nondeterministic Computation Tree

All the work of our result lies in the proof of Lemma 3.2. We make extensive
use of the power of NE to guess query strings, witnesses, and paths in trees. We
now give a sketch of the proof of Lemma 3.2; on page 35 we give a formal proof.

First, we wish to place graphically in mind our image of an NPNE computation.
An NP computation tree has branches for each nondeterministic guess made by
the NP machine. The machine is said to accept if any branch accepts [HU79]. For
example, Figure 3.1 shows an NP machine checking the satisfiability of the formula
z1AZ;. The NP machine has nondeterministically guessed all possible assignments
and has found one that satisfies the formula. Throughout this chapter we assume,

for simplicity of presentation, that our nondeterministic machines have at most
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two successor states for any given state.

We view an NPNE computation similarly, except the NP machine can pose
queries to an NE oracle. Each of the nondeterministic paths may, of course, pose
different queries than its brothers do (Figure 3.2). We label the depth of the
nodes in computation trees in the standard way (Figure 3.2).

Now we describe our strategy. Figure 3.3 shows the computation tree of an

NPNE machine: Our goal is to accept, with a PNE machine, the same language the-

NPYE machine accepts. The PN® machine computes the number of query strings
receiving yes answers from NE at each depth of the tree. For example, there are
two yes strings at depth two in Figure 3.3.

We cannot simply jump in and compute the number of yes answers deep in
the tree. To know which strings are even queried deep in the tree, we must first
know the answers to queries more shallow in the tree. Thus we must be patient
and first find the number of yes responses in the first level of the tree. Then using
this knowledge, we find the number of yes responses at the second level, and so
on. At each level we use knowledge of the previous levels to help us do a binary
search for the number of strings at the current level.

For concreteness, suppose our NPNE language is accepted by NP machine N7
with NE machine NE; as its oracle. At a typical stage we know, for example,
that the computation tree for N17NE"(z) has exactly 1,1,0,4, and 11 yes answers
(queries of strings accepted by NEy;) at levels 0,1,2,3,4, respectively, and between
8 and 16 at level 5. Our question (asked by P to NE) is: given z and assuming
1,1,0,4,11 are the correct number of yes answers at levels 0,1,2,3.4, are there at
least 12 yes strings queried at level 5?

This is the kind of question that NE can answer. NE guesses the first six levels
of N17’s computation tree, checks that the tree and queries written are really the
actions that Nj7 would take given the query answers guessed, checks that there
are 1,1,0,4,11 alleged yes strings at levels 0,1,2,3,4 and >12 alleged yes strings at
level 5, and guesses the proofs that these strings really are yes strings (i.e., are
accepted by NEj).

If 1,1,0,4,11 is correct, then the first 5 levels correspond to the first 5 levels
of the actual computation tree of N17NE’1(2:), and if there are > 12 yes strings at
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Depth =2

An NP computation tree with oracle calls allowed to an NE oracle.

Figure 3.2: NPNE Computation Tree
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Note: Two strings, 110 and 011, receive "yes” answers at depth 2.

Figure 3.3: Our Strategy
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level 5 level we will have guessed them.

Eventually we know the number of yes answers at each depth, and a final call
of P to its NE oracle lets NE guess and check the correct computation tree of
Ni?"E%(z). |

Crucially, we do not need to verify that the no strings deserve “no” responses.
We know the total number of yes answers at each level, and have proofs that
strings do indeed get yes answers. Thus, in a guessed tree that gets all desired yes
proofs, our no strings must indeed deserve “no” answers, as we have insured that
our tree agrees with the action of Nj7.

Let’s refer to the P and NE machines we use to simulate NPNE a5 P, and N E,,
i.e., we insure that L(P*NE*)zL(NnNE“). Figure 3.4 shows how the trees NE,
guesses increase in the (literal) depth of their accuracy at reflecting the tree of
N17NE"(3). Crucially, P, learns only the number of yes answers at each depth of
N17NE“(z)’s tree. This is fortunate; there is no way that P, could remember all
the yes names since deep in the Ni7NE?! tree there may be as many as gn* yes
strings on a single level. Our use of increasingly accurate censuses of the number
of queries per level is central to the success of our result.

We now make precise the proof just sketched.

Proof of Lemma 3.2 (PNE = NPNE) Let L be an arbitrary language in

NPYE. For concreteness, suppose L=L(N17NE“), where N7 is an NP machine

running in NTIME[n”] and NEy; is an NE machine. We describe machines P, and

NE., respectively P and NE machines, so that L=L(P,NE*). Thus PNE = NPNE,
Let us first describe NE,.

L(NE,)= {ﬁnal#l"'ls#co#cl#cz# ---#c1#c;| There exist sets
Co, C1 ..., C_y, C) of strings so:
1. |Ci]=c; and U; C; C L(NEg),
2. if we simulate N 17()(2), answering each oracle query ¢ at depth ¢

with a yes if and only if ¢ € C;, then each y in C; is really queried

at level 4 in this simulation, and

3. if final is 1, there is an accepting path in the simulation mentioned

in 2 above.}
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. o " 0 .' “.‘ 0 . 1 2 .‘
YN -~ 1 YN " 1 YN
L] N “ " L] 0 .. N
Y Y Y . . . . .
True NPNE tree (1) (2)
. : 0 :.. 0 s
1 YN 1 YN 1 SYN
0 N 0 - N 0 - N
> . ; ) .
=2 .%2.§4 ‘ 3 Y Y Y
(3) (4) (5)

The true NPNE tree and five snapshots showing a few of the
increasingly correct images of the tree and its partial census
information created in NE's mind. The numbers denote the number of
queries on that level receiving a "yes” answer from the NE oracle.

Figure 3.4: The True NPNE Tree and Five Snapshots
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Table 3.1: Binary Search over Calls to NE, Discovers that there are Three Yes
Strings at Level 3 of the Computation Tree of N17N2%1(11101)

Query NE.’s Answer |
{0#11101#15 #04#041#1} accept |
{0#11101#15"° #0404 142} accept
{0#11101#15"° #0404144} reject |
{0#1110141%° #0H04 143} - accept-| -

Given that we know the number of yes answers that appear in the first k levels of
the computation tree of N17NE”(2), we can use binary search on NE, to find the
number of yes answers that appear at level k£ +1.

Note that L(NE,) is in NE. The value of each ¢; is at most 2""'17, since this is
the maximum width of the computation tree Nj7NE?(z). So by guessing (at most)
|z |17 glal? strings and then guessing proofs that each is in L(NE2;) and guessing
the paths by which each occurs in the simulation, we can implement NE, easily in
NTIME[2I“’|13]. Note that we’ve padded so our input size to NE, is greater than
2|8, so NE, runs in NTIME[2¢Inputsize] ' 51 thus is in NE. Thus L(NE,) € NE.

Now we describe the action of our machine P, (on input z). P, uses NE, to
find the correct number of yes strings at each level of N17NE“(z).

Stage i: Inductively, we have numbers ¢y, cy, ..., ¢i_1, so ¢g, ¢1, ..., ci_1 are the
correct number of yes strings at levels 0,1, ...,# —1 of the actual computation tree
of N17VE%(2) (Figure 3.2). During this stage we find c;, the actual number of yes
strings at level i. This is easy—just perform binary search (varying z) using calls
to NE, of the form

(0424117 Hegth - Hei1#2)

to find the value of c;.
Recall that, when ¢q, ¢y, ..., ¢i—1 are correct, NE, says yes if z is a lower bound
for the number of yes answers at level i. Table 3.1 gives a sample binary search

run. At the end of it P, has learned that there are exactly 3 yes strings at level 3.
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It is crucial to notice that when ¢y, ..., c;_1 are correct, the ¢; we find is correct.
This is because some branch B of NE, will guess the true yes strings C, ..., C;_;.
The queries asked at level i depend only on the fact that we know the right oracle
replies at levels 0 through i — 1; thus the queries asked at level i on branch B will
be the queries that are asked in the tree of N 17NE"(2:) at level 7. Thus if there are
at least z yes strings queried at level i of the tree of N 17NE21(2:), an extension of
B will guess them and accept.

On the other hand, any branch that does not guess the sets Cy, ..., C;_; cor-
rectly (it guesses, say, Cy', ..., C{_,) will certainly not accept. At the first level
it errs from the true set of C;’s (say level m) it will not be able to find all
the strings of its incorrect Cp,' in the simulation tree. Why? Since Cm';é Cn,
yet |Cm'|=|Cm|=cm, some string w in Cp' is not a yes string of N17NE"(2:)
at level m. Since the C;' are correct at levels 0,...,m—1, the strings queried
at level m in the simulation are exactly those queried at level m in the tree
of Ni7VE2(z). So if w is queried at level m, it is not in L(NEy;) (if it were
it would have to be in Cp); thus condition 1 of the definition of L(NE,) is
violated and the branch won’t accept. If w is not queried at level m, con-
dition 2 of the definition of L(NE,) is violated and the branch won’t accept.
End of Stage i

Since ¢; can be at most 2"’|17 in value (this is as wide as the tree of N17NE“(z)
gets), the binary search process at stage i takes at most around |z['7 steps, each
requiring writing a string of length at most about 12|17 |z|'" +|2|*® + |z|. There
are at most |z|!7 stages, so the total run time of PS.') is easily polynomial; it runs
in TIME[n*17*2]. Returning to the general case, if Ny7 runs in NTIME[n*], then
P, runs in deterministic TIME[n*¢+2],

After stage |z|!7
call to NE, suffices. P, accepts if and only if NE, accepts l#z#llzlls#co# .- #c|z|17
(thus stating that N17NE“(:¢:) accepts). O

, we know the correct values o, ..., ¢|z17- At this point, a single
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3.3.2 Relationship of Our Collapse to Other Collapses and
to the Polynomial Hierarchy

We have just shown that PNE =NPNE, and thus the strong exponential hierarchy
collapses to PNE. Is this collapse of the strong exponential hierarchy trivial in the
same sense that PPSPACE — NpPSPACE _ popA CE is trivial? PSPACE is so power-
ful that both PPSPACE 5,4 NPPSPACE . equal to PSPACE. Do we similarly have
PNE=NE? Relativization ‘techniques help ‘us here.- There is-a relativized: world ‘-
where PNE* QNEA. That this is not a side effect of the ability of PNE to reach
length gn’ strings (compared with NE’s reach of 2°) is shown by Theorem 3.5.

Section 3.3.3 discusses this “reach” anomaly in detail.

Theorem 3.5 There is a recursive oracle 4 for which
PNE* D NEXPADNEA.

Proof Sketch This is a straightforward diagonalization using the techniques
of Baker, Gill and Solovay [BGS75]. We separate PYE® from NEXP4 by forcing
a coNE4 language out of NEXP4. In particular, we diagonalize so that

La={0"|(Vy)(ly|=2"=y ¢ A]} ¢ NEXP4.

Interlaced with this, we separate NEXP4 from NE4 simply using the fact that the
former class is sensitive to length 27" oracle strings. O

More generally, the collapse does not occur simply because NE is hard. Even
though PNE =NPNE there are many NE-hard sets, 4, for which P4 #NP4. This
follows from direct diagonalization, and is related to Hartmanis’s [Har85] results
on the re-relativization of PSPACE.

On the other hand, our techniques do not collapse the polynomial hierarchy
(NPUNPNPU---) to PNP. Suppose we tried to show that PNP = NpNP using the
above methods. NPNP may have exponentially many yes replies given to its lower
NP machine by the upper one. The P machine can record an exponential count,
but the NP machine sitting over it (in PNP) certainly cannot guess an exponentially

large object: the names of the gn* yes strings in the tree of NPNP .
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Of course, if we change the game so that, in NPNP| few queries are made
to the oracle, then the same argument works. This “quantitative relativization”
approach is what is done by Book, Long, and Selman in [BLS84], where they show
that a hierarchy of quantified relativizations collapses. Section 3.4 of this thesis
studies quantified relativizations of the exponential hierarchy, where we’ll see the

partial census technique of this section put to further use.

3.3.3 The Strong Exponential Hierarchy and Sensitivity
to Padding
Definition 3.6 1. The weak exponential hierarchy, EH [HIS85|, is NEUNENP
UNENPY ...
2. The EXP hierarchy, EXPH, is NEXPUNEXPNP UNEXPNP™" ...
SEH is “strong” because in a relativized world 4, SEH is not contained in
EHA. This is simply because from its Af level (PNEA) on up, SEH4 can query

strings in A of length 2"k, but EH4 can only query strings of length 2°". To
understand this, just reflect on the fact that

E P
PEDEP,
since EF =E but PE =EXP, and EXP QE by the time hierarchy theorem of Hart-
manis and Sterns [HS65].
Theorem 3.7 There is a relativized world A so that SEH4 — EH4 #0. Indeed, in
this world PNE* _EH4 £0,
Proof @ We make L € PNEA - EHA, where
2
Ly={0"|(Fy)lyeAn|y|=2"]}

A
L is clearly in PNE , but since no EH# machine can reach strings of length gn’
on inputs of length n, we can easily diagonalize against each EH machine. a
Similarly we get the following separation that is due wholly to this padding

anomaly.
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Fact 3.8 SSEHALASEH ;o E£PNE

This sensitivity of E and NE oracles to polynomial padding of their input
strings has another consequence. The hierarchy SEXPH (Definition 3.1) equals
SEH. Why? Clearly PNF = pNEXP  NPNEXP _ NPNE a1d so forth, since if P (in
PNE) just adds polynomial padding to each query string, its NE oracle can sim-
ulate the NEXP calls of PNEXP | Thus we have extended the collapsing result of
Section 3.3.

Corollary 3.4
E#PNE =SEH = PNEXP —SEXPH =4 NEXPUNPNEXP y NpN

PNEXP

3.3.4 Downward Separations

If we collapse the polynomial hierarchy at any level, the entire hierarchy collapses
to that level; ¥ =II" = E? =PH [Sto77]. This is known as downward separa-
tion. One troubling feature of the exponential hierarchy is that it does not have
downward separation. Hartmanis, Immerman, and Sewelson [HIS85] display a
relativized world A where EA =NE* # NENP?,

On the other hand, the strong exponential hierarchy does have downward sep-
aration of a sort. A subtlety is that we must account for the sensitivity to padding

discussed in the previous section.
Theorem 3.9 (Downward Separation)

1. E=NE=EXP=SEH

2. NE=coNE=NEXP =SEH.

3. EXP=NEXP= EXP =SEXPH.

4. NEXP =coNEXP = NEXP =SEXPH.

Proof of Theorem 3.9 (Using Theorem 3.3)

1. Using Theorem 3.3 and our assumption that E=NE,

EXPCSEH=PNE —pE_EXP.
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2. When NE=coNE (and thus even “no” answers to NE queries have certifi-

PNE

cates), can be simulated by NEXP, which just guesses the correct oracle

answers along with their certificates of correctness.
3. See proof of 1.

4. See proof of 2. a
Alternate Direct.Proof of.Theorem.3.9... .. ...

1. NPE=EXP (C by brute force tree simulation, O by the padding trick of
Section 3.3.3). Also, NPE =NPEXP by padding (see Section 3.3.3). Thus if
E=NE we have:

EXP = NPE-NpPMNE
EXP = NPE = NPEXP _ NpNP® _ NpNP™®
and so on

2. NPNENcoNP C NEXP, since NEXP simulates the NP machine and guesses
the correct oracle answers with their certificates. Also, NPNEXP — NpNE by
padding. Thus if NE=coNE the hierarchy collapses as follows.

NEXP ) NPNEﬂcoNE

- NPNE
NEXP D NPNE

- NPNEXP

D NPNPNENCONE

and so on

a
There is no point in stating more general downward separation results. Since
we already know that PNE =SEH with no assumptions needed, the results above
are the only nontrivial downward separations possible in the strong exponential

hierarchy.
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3.4 Quantitative Relativization Results

3.4.1 Definitions

Quantitative relativization means relativization in which the power of the base

machine to query its oracle is restricted. Before studying quantitative relativiza-

tion, we define our notation. Since varied notations have previously been used, we

take this opportunity to define a notation that is transparent: . -.

Definition 3.10 Let 4 and B be complexity classes. The class

A B [f(")]path (9(n)]tree (A(n)]named — restriction

is the class of languages accepted by an oracle Turing machine from A4 with a set

from B as its oracle, under the restrictions that:

1.

3.

on input of size n, each path of A’s computation tree (4 may be nondeter-

ministic) queries B about at most f(n) different strings, and

the total number of strings B is queried about throughout A4’s entire com-

putation tree is g(n), and

there is an A(n) bound on whatever is named by “named-restriction.”

Examples and Notes

1.

zCﬂ
NENP — |y, NENP[®" leree | Gince the NE computation tree is 2°" deep it onl
c p y

has 2-227" nodes, so it cannot make more than 222" queries (Figure 3.5a).

NENP[2Teree goes put some restriction on the querying action of NE (Fig-
ure 3.5b). Note that NENP [Hpatn (Figure 3.5¢) may query 22 many strings—
one on each of NE’s 227" computation paths (Figure 3.5d).

In classes such as NEXPNP NEXP may query NP about strings of length
exponential in the input size. Thus it is not obvious and probably not true
that NEXP equals NEXPN?, even though NP C NEXP.
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Table 3.2: Nomenclature of Quantitative Relativization

Class = ABrestrictions

Restrictions

[time bound] pqsn limit on the number of strings queried on each of

E A’s computation paths
| limit on the number. of. strings queried.throughout-{. ..

[time bound]iree --

| A’s computation tree

[time bound]y | tree : limit on the number of strings queried throughout

A’s computation tree that are in B

L

Time Bounds

log U, TIME|[clog n]
poly Uk TIME[n*]
e U. TIME([2¢"]
ezp Uk TIME[2"k]

4. Our quantitative classes count strings—not oracle calls. That is, [n%]tree

means that for all z we have

|{y | v is queried in the tree on input z}| < |z|%.

For example, an NE computation tree that queries string y on each of its
22" branches would be charged just “1” in the [-]ree measure for this whole

set of queries—not 22° (Figure 3.5d).

Finally, we make it harder to prove our theorems.

Notation 3.11 Adding a “Y” (e.g., NENF [2“]”'7’“"') means we are counting just
the number of strings queried that get a “yes” answer from the oracle (and “no”
answers don’t count). This makes our theorems harder to prove and stronger; any

theorem we prove with a “Y” also holds without the “Y.” Table 3.2 summarizes

our notation.
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At most 2¢n
x strings are
S / \ queried
L) ,x .
N X X . X'
"X X  x X x "
a: NENPTree b: NENP(2¢] Tree
X
/ \ At most one
X string per path
is queried XXXXXXXXXXXXXXXXXXXXKXXKXKX
%
c: NENP[1]path d: NENP[1]path querying 22" strings

Key: x = oracle query

Figure 3.5: Quantitative Relativizations
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3.4.2 Introduction and Background

The census techniques of Section 3.3.1 will be used to prove new theorems about

quantitative relativizations. We’ll see, for example, that:

ENP _ NENPleleree

Thus the only way NENP can avoid collapsing to ENP is by using its oracle often.

Similarly, we’ll see that:
PNESNENP [poly]tree

Note that the P machine here cannot write down even one of the long queries
(length 2¢") the NE machine makes to NP, yet PNE can nonetheless simulate the
action of NENF [polyleree

This highlights the difference between our techniques and those found in previ-
ous work. Previous quantitative relativization results, centered in the polynomial
hierarchy, require that the base machine obtain the names of all strings queried.
However, our base class P can only use a polynomial amount (n’) of tape. So
previous methods did not prove that PNEONENP [P"ly]"“, as each queried name is
too long (length 2°"). Previous methods did not prove that PNE — NPNE | 45 there
are too many names (the NP tree has on* nodes).

The body of previous work in quantitative relativization contains many gems
[Boo81|[SMB83|[BLS84][Lon85]. Book, Long, and Selman [BLS84] prove that
PNP — NPU NPNPlrelytre NP(NPNP[”lyhm)[P"ly]"'“U---, which provides a poly-
nomial analogue of our PNE — NPNE result. Their paper provides a detailed study
of quantitative relativization in a polynomial setting. Recently, Long [Lon85| ex-
tended this work by noting that many quantitative relativization results still hold

when we restrict our counting to yes queries.

3.4.3 Quantitative Relativization Theorems

This section proves theorems that give insight into what makes hierarchies non-
trivial. The first and most important theorem shows that the X;,; and Ay,
levels of EH (Definition 3.6) collapse unless the X ; level, NEzz, uses its X
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oracle extensively. This is related to the polynomial time results of Long [Lon85,

page 595]|.
Theorem 3.12 EZ% = NEZk[ely, tree k>0.

Corollary 3.13
1. ENP _ NENP[ely, tree

2. ENP — NENP[eleree

Proof Sketch of Theorem 3.12 The method of Section 3.3.1 works with
a subtle but important modification. In that section, we could guess a whole
computation tree and check it. Here, the computation tree of NE is too huge to
do this; it has around 22" nodes. Luckily, since there is a [e]y,iree bound we are
interested in checking at most 2°" nodes of this tree. Our new trick is that we just
guess and check the parts of the tree that are of interest to us.

So now, our £} machine called by E will just (1) guess the yes strings, (2) guess
the paths in the computation tree of NEZk that lead to them, and (3) verify that
the strings really are accepted by NE’s oracle. Note that (3) is subtle; £} is closed
under intersection, so checking if all our guessed strings are accepted by NE’s
oracle is a £} question. We use the same existential block (i.e., the first existential
block of E’s oracle) that tackles (1) and (2) to start on the first existential block
of the membership checking question.

This can all be done in 2¢" steps, and thus allow E’s £¥ oracle to guess and
check all the portions of the huge NEZE tree that are of interest to it. m

The following theorem shows that NEN? is dominated by PNE unless NENP
makes many oracle calls. The result is surprising as PNE makes only polynomi-
ally many nondeterministic queries, but NENP [olylpath[ezPleree 115 kes exponentially

many queries, any one of which may be far too long for P to record.

Theorem 3.14 PNE QNENP [p"ly]path[ezp] Y, tree

Corollary 3.15

1. PNE — NEXPNP(polylpatn[ezp]y, tree
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Figure 3.6: One Query per Path, but Many Levels Have Queries

2. PNE = NEXPNP[Poltleree

Proof Sketch of Theorem 3.14

We need a new trick here. Our problem is that PNE can only store the query
census for polynomially many levels. However, though NENP[Poly]path (2Pl Y, tree }ag
only polynomially many queries per path, it might have queries at exponentially
many levels (Figure 3.6).

Our trick is to associate with each query its query depth: how many queries

PNE

are made before it on its path (Figure 3.7). will have polynomially many

rounds. In each round ¢ it will find, by binary search, the number of yes answers
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o0

/ W\,
ANANENAN

Key: ® = Query; the numeric label indicates the query depth

Figure 3.7: Query Depths
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received by queries at query depth 3.

Since the query depth of the tree of N ENP[polvlpatnezPly, tree i polynomial, and
since getting the right string to ask for a query depth i query depends only on
having queries of query depth less than i correctly answered, the method of Sec-
tion 3.3.1 now works. After polynomially many rounds of binary search the P
machine knows the census of yes answers at each query depth and can finish off
its simulation with one final query to NE. a
Proofof Corollﬁry 3.15 These results use the same argument as Theorem 3.14,
but since PNE C NEXPNP [pottltree © NEXPNP [Poltlpatn 2Py tree | e get equality in
this corollary. a
It is easy to see from Corollary 3.15 that NEXPMP is a delicate class. If you restrict

its query access too much, it is weakened to the point of collapsing to pNE,

3.4.4 More Quantitative Relativization Theorems

We can tailor and extend the techniques we’ve developed to a range of problems.
This section presents three such problems and briefly outlines the modifications

needed.

3.4.4.1 Paying Only for the First Occurrence

Note that, within a computation tree, a query consists of both a string queried,
and the location in the tree at which the query is made. The first occurrence
depth (Figure 3.8 gives examples) of an oracle query in a computation tree is 0 if
there are no queries made along the path between it and the root. Inductively, an
oracle query is of first occurrence depth i+1 if (1) the string associated with the
query has not been already been assigned a query depth less that ¢ +1 and (2)
the largest query depth of a query along the path from the query to the root is i.
(Figure 3.8). Intuitively, the first occurrence depth of a query string is how many
times we must expand from the root our “frontier” of queries to reach the query
string.

Simply put, the following theorem says that once a query is paid for by a

nondeterministic branch, its brother branches get to query the same string for
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01%#0
10% % 01% %

1001% 2 /\ 1115 % 014 %

Key: std means s = Querystring; t = First-occurrence
depth of s; t = % indicates that this is not a first-
occurrence, and thus adds no depth.

Figure 3.8: First-Occurrence Depths
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free.

Theorem 3.16 PNEXP = NEXPNP (ezp]tree LPOly]ﬁru occurrence depth _

3.4.4.2 Many “No” Strings

PNE can query its oracle only a polynomial number of times. Is it possible that
PNE can contain NENPIPOWlY.tree 5 class that may make up to 22" oracle calls

(most receiving “no” answers)? The following theorem shows that it does.

Theorem 3.17 PNEDNENPPoW]Y, tree
Corollary 3.18 PNE = NEXPNPIPoWlY, tree,

Our trick is for PNE to do binary search to find the depth of the first “yes” response
in the run of NENP[Polly, tree(.). Then as before it does binary search to find the
number of yes strings at that level. pNE repeats this level-finding/census-finding
alternation until it has gone through all the levels that have yes responses (it can

detect this).

3.4.4.3 Truth-Table Classes

Finally, we mention some easy but surprising results, probably part of the folk-
lore, about truth-table classes [Yes83]. They follow not from the method of Sec-
tion 3.3.1, but simply from the weakness of truth table reductions.

Theorem 3.19

1. {§|5<P NP} C pNPllog],

—truth—table

2. {S I S Sterzl.zl’th—l:able NP} c PNE'

Proof We prove the second part. § S:::th—table NP means there is a machine
that answers “z € §?” by making exponentially many queries to SAT [GJ79], such
that the queries asked of SAT are independent of the answers received (see Ladner,
Lynch, and Selman [LLS75] for a discussion of <P ., ... ).

To prove part 2 of the theorem, we have P perform binary search, using its NE

oracle, to find the number of yes answers, and with one final query to the oracle
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have NE guess the yes answers and simulate the action of the truth-table reducer.
|

Theorem 3.19 says that if EXP™ s to strictly contain PNE it must use the
answers to early queries to help it pose later ones. Of course, we don’t hope to
show EXPNP 9 PNE as this implies P # NP. However, we suspect that P # NP and
even EXPNP 9 pNE,

3.5 Conclusions and Open Problems

o The weak exponential hierarchy, EH, has characterizations in terms of the
alternating Turing machines of Chandra, Kozen, and Stockmeyer [CKS81]
and in terms of quantified formulas. EH is exactly the languages L of the

form that for some k and c:

L={z | (Gen1)(VEy2) - (Qk,E¥:)[R(Z, 91, ¥k)]}

where R is a polynomial time predicate and an “E” subscript denotes a 2"
bound on the quantifier size (e.g., “(Igy)[” is short for “(Iy)[|y| <2 A7)
[HIS85]. In terms of alternating Turing machines, EH models alternating
Turing machines with a bounded number of 2°"-sized alternation blocks.
Similarly, EXPH models alternating Turing machines with a bounded num-
ber of 2" -sized alternation blocks. Does the strong exponential hierarchy

have similar representations via quantifiers and alternating Turing machines?

o Is there a relativized world where EXPNF 9PNE (see the discussion following
the proof of Theorem 3.19)? We conjecture that there is.

Our goal was to find out if exponential hierarchies collapse, or if not, why they
might separate. We’ve seen that the strong exponential hierarchy collapses, via a
tight analysis of the query census of NPNE, We've viewed the weak exponential
hierarchy as NE with a rich database, and seen that the A and X levels of the

weak exponential hierarchy separate only if NE floods its database with queries.
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More generally, the census techniques of this chapter can be used as a general

procedure for collapsing complexity classes that meet certain counting conditions

[Hem86b].



Chapter 4

The Complexity of Ranking

4.1 Chapter Overview

This chapter structurally characterizes the complexity of ranking.

A set A is (strongly) P-rankable if there is a polynomial time computable
function f so that for all z, f(z) computes the number of elements of A that are
lexicographically <z, i.e., the rank of z with respect to A [GS85|. This is the
strongest of three notions of P-ranking we consider in this chapter. We say a class
C is P-rankable if all sets in C are P-rankable. Our main results show that with
the same certainty with which we believe counting to be complex, and thus with
at least the certainty with which we believe P # NP, we believe that P has no
uniform, strong, weak, or enumeratively approximate ranking functions.

We show that:

e P and NP are equally likely to be P-rankable, i.e., P is P-rankable if and
only if NP is P-rankable.

e Pis P-rankable if and only if P= P#P_ This extends work of Blum, Goldberg,
and Sipser [GS85].

e Even the two weaker notions of P-ranking that we study are hard if P # p#P.

e PSPACE is P-rankable if and only if P=PSPACE.

55
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¢ If P has small ranking circuits, then it has small ranking circuits of relatively

low complexity.

e If P has small ranking circuits,.then the power of counting falls into the
polynomial hierarchy (i.e., P#F C £f = PH).

o P/poly, the class of sets with small circuits, is not P-rankable.
o P/poly has small ranking circuits if and only if P#P /poly = P#P/PO¥ L p /50l

o If P is P-rankable, then P/poly has small ranking circuits. This links the

ranking complexity of uniform and nonuniform classes.

e The ranks of some strings in easy sets are of high relative time-bounded Kol-
mogorov complexity unless P =P#P_ It follows that even a type of approx-
imate ranking, enumerative ranking, is hard unless P = P#P_ This partially

resolves a question posed by Goldberg and Sipser [GS85, pp. 447-448].

4.2 Introduction_

This chapter characterizes the complexity of ranking sets from standard complexity
classes such as P, NP, PSPACE, and P/poly. Over the past decade, much effort
has been spent studying the complexity of the membership problem for languages
from NP and PSPACE [GJ79]. At the same time, Valiant [Val79a,Val79b], Angluin
[Ang80], Stockmeyer [Sto85], Valiant and Vazirani [VV85], and Jerrum, Valiant,
and Vazirani [JVV86] have studied the complexity of the counting problem for
NP: how hard is it to determine the number of satisfying assignments that a given
boolean formula has?

The counting problem is formalized by Valiant’s counting class #P [Val79a], the
class of functions that count the accepting paths of a nondeterministic polynomial
time (NP) Turing machine. A function f is in #P if and only if there is an NP
machine N so that for every z, f(z) equals the number of accepting paths of N(z).
P#P is the language class of sets accepted by some polynomial time machine with
a #P oracle.
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This chapter studies the ranking problem: given a fixed set, how hard is it
to determine the rank of elements within that set. Intuitively put, the ranking
problem seems harder than the membership problem! and is closely related to the
counting problem. )

Studying the ranking problem gives a new perspective on the determinism-
vs-nondeterminism question. It is likely that P# NP, and thus the membership
problem for NP is harder than the membership problem for P. Nonetheless, we
shall show that the ranking problems of NP and P stand or fall together: either
both are easy or both are hard.

Another reason that ranking is of interest is that it is a natural generalization
to non-sparse sets of the concept of P-printability.? A set § is P-printable if there
is a polynomial time function that on input 1™ prints all strings in § of length <=
(Hartmanis and Yesha [HY84]). Recent work by Allender [All86], Balcazar and
Book [BB86], and Hartmanis and Hemachandra [HH86b] has shown P-printability
to be intimately related to Kolmogorov complexity and to the P=NP question.
[BB86] and [HH86b] show that in worlds where P =NP, the sparse sets 5 that
separate NP® from PS5 are exactly those that are PS:printable. It is well known
that a sparse set is strongly P-rankable (defined below) if and only if it is P-
printable.

Thus rankability provides one natural generalization to dense sets of the no-
tion of P-printability, which applies only to sparse sets. Other generalizations of
printability to dense sets are self-encodability and self-P-producibility, essentially
equivalent notions, which have been explored by Ko, Long, and Selman (see [Ko85,
page 228|), Balcazar and Book [BB86|, and Hartmanis and Hemachandra [HH86b].

Sipser [GS85] proves that 1-way-Logspace sets have easy ranking problems
and Allender [All85] proves that certain classes of automata accept only sets with
easy ranking functions. Nonetheless, Blum, Goldberg, and Sipser [GS85] show
that some simple sets may have hard ranking problems: if a certain set in P can

be strongly P-ranked then #P functions can be computed by polynomial time

1Given a language A and a string z, one can answer “z€ A?” if one can compute the ranks if
z and z-1.
3Dr. Osamu Watanabe introduced the author to this view of ranking.
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machines. We prove the converse of this result and thus completely characterize
when P is strongly P-rankable, and we study some novel facets of the ranking

problem—ranking with circuits, the complexity of ranking circuits, etc.

Definition 4.1
1. For any set A C X*, the strong rank function f4 is defined for all z € X* by:

fa(z) =457,

where AS® indicates all strings in A that are lexicographically <z. A set
A is strongly P-rankable if its strong rank function f4 is polynomial time
computable. In this case, we call f4 a strong P-ranker. A strong ranking

function tells us the number of elements in A up to a given string.
2. For any set ACX*, the rank function g4 is defined by:
(a) (Vz€4)[ga(z)=|457]], and
(b) (Vz¢& A)[ga(z) prints “not in A”].

A set A is P-rankable if its rank function g4 is polynomial time computable.
A P-ranking function ranks elements that are in the set but merely detects

the nonmembership of those outside the set.

3. A function h is a weak rank function of set A if
(Vz € A)[h(z)=|A5%]].

A set is weakly P-rankable if it has a weak rank function that is polynomial
time computable. A weak P-ranking function may (deviously) output false

values on inputs not in A.

4. We use P-rankable, weak-P-rankable, and strong-P-rankable to denote the

classes of languages having these properties.

5. We say a language class C is P-rankable if all languages in C are P-rankable,

i.e., if C C P-rankable (similarly for weakly P-rankable and strongly P-rankable).
Section 4.3 proves our first ranking result, which

e characterizes the complexity of ranking in structural terms,
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e shows that even weak types of ranking are hard unless complexity classes

collapse, and

e shows that the P-ranking problems for P and NP are equally likely to be

easy.
Theorem 4.3 The following are equivalent:

P =P*P.

P =P-rankable.

P = strong-P-rankable.
P C weak-P-rankable.

P ¢ weak-P-rankable.
NP =P-rankable.

NP = strong-P-rankable.
NP C weak-P-rankable.
NP ¢ weak-P-rankable.
PH =P-rankable.

A S A o o

—
e

Corollary 4.5 P is P-rankable if and only if NP is P-rankable.
Steven Rudich has, independently, proven the equivalence of (1) and (2) [Rud87].
Given our belief that sets in P are hard to rank, it is natural to ask whether
sets in P have small ranking circuits. That is, does each set A in P have a family
of circuits ¢;, so (1) |ci| grows polynomially in i and (2) on any z of length 1,
¢; computes the rank of z in A? (Here each ¢; will be a circuit of logical gates
[SavT72], with enough output wires to carry any possible binary value of the rank.)
Section 4.4 shows that if P has small ranking circuits then the power of counting
is dominated by the polynomial hierarchy:3
Theorem 4.11 If P has small ranking circuits, then P#P C ¥?=PH.

Our proof has two steps.

3The levels of the polynomial hierarchy (Stockmeyer [Sto77]) are defined in Section 2.4.
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1. We show that if a set has small (but possibly complex) ranking circuits,
then it has small ranking circuits that are relatively easily computed, i.e.,
they are printed by a A} machine.* This technique of pulling circuits and
sets down into the polynomial hierarchy has been mined by Hartmanis and
by Balcazar, Book, Long, Selman, and Schéning [BBL*84] in their work on
sparse oracles. Our application of their technique is surprising. Given our

i assumptlon of small circuits, we show that a boolean predicate with shallow
‘ quantlﬁer nesting can verify that a given circuit is a valid ranking circuit for

a given set in P.

2. We combine our result with the useful small circuit theorem of Karp and
Lipton [KL80] to obtain Theorem 4.11.

Section 4.5 turns from studying the ranking problem of uniform classes such
as P and NP to studying the ranking problem of the nonuniform complexity class
P/poly (see [Sch86] for a discussion of results about P/poly). P/poly, the class of
sets with small circuits, is an important class. Sets in P/poly are near P in the
sense that with a sparse amount of additional information for each input length a
P machine can accept any given P/poly set. The central result on P/poly is that
_ if P/polyDNP, then the polynomial hierarchy collapses to its second level [KL80].

Some classes that we discuss, in particular P/poly, contain a nondenumerable
number of sets; thus many standard techniques no longer apply. For example,
these classes lack many-one complete languages. Thus we must modify the proof
techniques of previous sections to eliminate their reliance on complete languages.®

By simple counting we show that P/poly is not P-rankable. As a nonuniform
analogue of the results of Section 4.3, we show that P/poly has small ranking
circuits if and only if P/ polsz#:P /poly. A connection between the rankability

4 As a corollary of Theorem 4.11, we’ll see that the circuits are much simpler than this (Corollary
4.12).

5A study of other classes that are suspected (for different reasons) not to have many-one com-
plete languages and of the techniques that apply to these classes appears in recent papers of
Hartmanis and Immerman [HI85] and Hartmanis and Hemachandra [HH86a]. They note that
many probabilistic, intersection, and counting classes may not have complete languages (and do
not, in some relativized worlds), and that if these classes do have complete languages they are of
a particularly simple form.
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of P and P/poly follows from this. If the uniform class P can be uniformly ranked
(i.e., P-ranked), then the nonuniform class P/poly can be nonuniformly ranked.
Theorem 4.16 P/poly has small ranking circuits & P/polsz#P/poly.
Corollary 4.17 If P is P-rankable then P/poly has small ranking circuits.

Finally, having shown in the previous sections that even weak or nonuniform
ranking of P causes unlikely collapses of complexity classes, we naturally ask
whether it is easy to approximate the rank functions of sets in P. This is an
open question-posed by Goldberg and Sipser-{GS85]: -

It follows directly from the fact that the ranking functions of P sets belong to
#P (see “(1)=(T7)" of the proof of Theorem 4.3, page 62) and from Stockmeyer’s
result that approximate counting can be done in Aj, that A} machines can com-
pute “approximate ranks” for P sets. The notion here is that the “approximate
rank” will be related to the true rank by a multiplicative factor that is around
1+0(n~%), where d is arbitrary but fixed.

Section 4.6 studies a different notion of approximate ranking, which we call
enumerative ranking. Cai and Hemachandra [CH86b] introduce a notion of enu-
merative counting in which they ask whether one can quickly compute a small set -
of candidate solutions to a #P problem, one of which is guaranteed to be correct.
They show that notion of their enumerative counting is Turing equivalent to exact
counting. Thus this type of enumerative counting is as hard as exact counting.

Let’s adopt a similar approach to approximation of ranks.

Definition 4.2 We say a set A is k-enumeratively-rankable if there is a polynomial
time computable function f so for every z, f(z) prints a set of k¥ numbers, one of

which is the rank of z with respect to A.

Similarly we can define g(n)-enumeratively-rankable. As a corollary of the above-
mentioned result of [CH86b], we show that enumerative ranking is impossible
unless P =P#P,
Theorem 4.18 P = P#P if and only if for each set A € P there exists some positive
integer k such that 4 is k- enumerative-rankable.

With some care, we can show that P = P#P if and only 1f each set A in P for

some €4 is nl/2~€4_enumeratively-rankable, where n is the input length.
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Section 4.7 summarizes the above results and presents related open problems.
This chapter structurally characterizes the complexity of uniform, weak, non-
uniform, and enumerative ranking. It follows from the characterizations that if
our intuition about the inequality of certain complexity classes (such as P and’

P#P) is correct, then ranking lies beyond the grasp of polynomial time.

4.3.. When+Can-Uniform:Complexity Classes:be:
Ranked?

This section answers the questions:

e Is NP harder to rank than P?
e When can P be ranked?

e When can NP be ranked?

e When can PSPACE be ranked?

Theorem 4.3 The following are equivalent:

P =P#P,

P =P-rankable.

P = strong-P-rankable.
P C weak-P-rankable.

P G weak-P-rankable.
NP =P-rankable.

NP = strong-P-rankable.
NP C weak-P-rankable.
NP ¢ weak-P-rankable.
PH=P-rankable.

OB R N

—

Blum, Goldberg, and Sipser [GS85] show that if a certain P set is strongly
P-rankable then all #P functions can be computed in polynomial time. Their

method is to construct a set® combining formulas and their assignments, so that

®Loosely, this set is {f# assign | |assign|=|f| and |assign| is a vector of assignments to all
variables of f that satisfies f}.
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all the variable assignments to a formula are lexicographically adjacent. Thus
computing a #P question reduces to the problem of subtracting two ranks, i.e.,
computing how many variable assignments are satisfying (and thus in the set).

This method fails for weak P-rankers; the extreme assignments may be out of
the sets, and thus the ranker’s answers about them may be lies. We modify of the
argument of Blum, Goldberg, and Sipser to show that if all P sets are even weakly
P-rankable, then P =P#P.

A weak P-ranker-may give false ranks for-elements out of the set, butis correct
for elements in the set. We take advantage of the ranker’s correctness on these
values by inserting easily located beacons into the set. The weak P-ranker of course
is compelled to be truthful on these beacons, and we force it to solve a #P query
(this is done in the proof below that (4)=>(1)).

Going the other way, (1)=(7) below shows how to strongly rank NP sets when
P =P#P_ Simply put, when P =P#P_ we can bring down from the #P oracle, one

bit at a time, the correct ranks of strings from our NP language.

Notation 4.4 Rank,(z)=4.f |AS2|, i.e., the number of strings in A that are lex-
icographically <z.

Proof of Theorem 4.3 Obvious implications that we use are (3)=-(2)=-(4),
(7)=(6)=(8), (8)=(4), (10)=(2), (1) & (2)=(10), and (7)=(3). We prove
that (4)=(1), (1)=(7),(4)=(5), and (8)=(9). Thus (1)=(7)=(6)=(8)[=(9)]=
(4)[=5]=(1), 1)=(7)=(3)=(2)=(4)=(1), and (10)=(2)=(2) & (1)=(10).
Thus (1) through (10) are all equivalent.

[(4)= (1)

To show that P=P#P it suffices to show that #SAT (i.e., computing the
number of solutions to a boolean formula F) can be done by a polynomial time
machine. Let

L = Satisfiers U Beacons,

where Satisfiers = {F#01#2z | |2|=3|F| and z is a vector that assigns all variables
of boolean formula F (followed by padding ones) and F is satisfied by the assign-
ment coded by z} and Beacons = {y#00#13|y| | yEE*}U{y#11#13|y| |yeX*}.
Clearly LeP and by hypothesis (4), L has a weak P-ranker.
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Asked the #SAT question about boolean formula F', we use our weak P-ranker

to compute in polynomial time the integer:
(Rankr(F#11#13F1) - Rankr(F#0041%F1)) —1. (4.3.1)

This equals the number of solutions of F, as the beacons are in L and get truthful
responses from the weak P-ranker. A difference of one between the above ranks
is due to the beacons’ rank difference, and any additional difference comes from
satisfying assignments to F that are lexicogr;aphiéa.lly sandwiched between the
beacons. Thus with a weak P-ranker for L we compute #SAT in polynomial time,
so P=P#F,

(1) = (D)]:

Clearly every strongly P-rankable language is in P, and hence a fortiori in
NP. Assuming P=P#P we must show that an arbitrary language L € NP can be
strongly P-ranked. Since NP C P#P hypothesis (1) implies NP =P, and so L is
accepted by some polynomial time machine M. Then there is an NP machine N
such that, on any input z, N nondeterministically prints a string y as a “guess” on
its tape, subject to the restriction that y is lexicographically <z. N then simulates
M on input y deterministically, and accepts if and only if M(y) accepts. Since N is
an NP machine, its counting function ¢y (cy(z)= the number of accepting paths
of N(z)) is in #P. Clearly, by our choice of N, we have Rankr(z)=cn(z). Thus
the language Ly, = {z#1#b | cy(z) has > i bits and the ith bit is b} is in P. By
repeatedly using Lp;;, to get one more bit of cy(z), we can compute in polynomial
time cy(z)= Rankr(z), and thus we have strongly P-ranked the language L.
(9)=(5)], [(8)=(9)]:

That (5) implies (4) and (9) implies (8) follow immediately.

Every language having exactly one string of each length n>0 is weakly P-
rankable by the function z — |z|, which is polynomial time computable. Since
there clearly are nonrecursive languages L with this property (via diagonalization
or Kolmogorov complexity), we have (4)=>(5) and (8)=(9). O

Aside from showing that ranking is complex, Theorem 4.3 reveals a striking
contrast between the determinism-vs-nondeterminism questions for membership
and counting. We believe that P # NP and thus the membership problems of NP
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and P are of different complezities, respectively hard and easy. Corollary 4.5 says
that either the ranking problems of P and NP are both easy, or are both hard.

Corollary 4.5 P is P-rankable if and only if NP is P-rankable.

Though at first surprising, this is not hard to understand. The ranking prob-
lems of P and NP are so complex that if either is easy it causes a major collapse
of complexity classes, which in turn destroys any difference between P and NP.

Only a powerful complexity class can avoid being pulled into polynomial time
if P=P#P. PSPACE may be such a class.

Theorem 4.6 PSPACE is P-rankable if and only if P=PSPACE [Hem8T7a].

It is possible that the ranking problem of PSPACE may be hard even if the ranking
problems of P and NP are easy. However, no oracle is known to certify this
possibility (i.e., for no known oracle 4 is p4 =P#PA ;éPSPACEA), and any such
oracle would resolve the major open relativization question about the polynomial
hierarchy left in the aftermath of Yao’s breakthrough [Yao85]: Is there an oracle
for which the polynomial hierarchy collapses yet differs from PSPACE?

4.4 Small Ranking Circuits and P

In this section, we answer the questions:

e What happens if P has small strong-ranking circuits?
e What happens if P has small ranking circuits?

e What occurs if P has small weak-ranking circuits?

Having small circuits for a problem is the next best thing to having a poly-
nomial time algorithm. If a problem has small circuits, there are relatively small
machines that solve the problem for all non-enormous instances.

The previous section gives strong evidence that not all languages”L € P can be

ranked with P machines. A natural weaker goal is to find small circuits for the
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ranking problem of L. For example, the set of primes has small circuits ([Rab76,
Adl78], see [Sch86, pp. 33,40]), but is not known to belong to P [APL80,GK86|.

Again, we prove that ranking is probably hard. If all sets in P can be ranked
with small circuits, then the power of counting falls into the polynomial hierarchy.

We first show that if P has small strong-ranking circuits, then P#F C ¥} =PH.
Then we sketch how to modify the proof to obtain the more powerful result that
if P has small ranking circuits, then P#*F C £ = PH.

Indeed, we can show that if P has small weak-ranking circuits, the same con-
clusion holds: P#FP C X! =PH.

4.4.1 If P has Small Strong-Ranking Circuits then P#P C
b3

The crucial step in our proof is to show that if P has small strong-ranking circuits

(possibly complex ones), then it has small strong-ranking circuits that are rela-

tively simple, i.e., printable by a A} machine.

Balcazar, Book, Long, Schéning, and Selman [BBL*84] and Hartmanis use this
paradigm of pulling down complexities in their work on sparse oracles. Qur appli-
cation to ranking of “pulling complexities down into the polynomial hierarchy” is
a bit subtle. Our goal is to show that if small strong-ranking circuits exist then
we can compute them using only a few polynomially bounded quantifiers.

Simply put, we guess a small circuit and make sure that the function that it

computes:

1. starts at Zero,
2. increases by one at each (small enough) string in L, and

3. stays the same at each (small enough) string not in L.

If so, the circuit is a small strong-ranking circuit.
This is done in Lemma 4.8 below. Theorem 4.9 follows after an appeal to a

result of Karp and Lipton on the consequences of NP having small circuits.
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Definition 4.7 We say a set L has small strong-ranking circuits if there is a family
{ci} of circuits such that:
1. |ci| is polynomial in ¢, and

2. for all z with |z]| <14, ci(z) outputs Rankr(z).

Comments on Definition 4.7:

o When wesay: ¢;(z); we of course assume that-z is prefixed-by enoughteading:~ = -

special padding characters (#) to make its length exactly i. (Equivalently
our circuits could have two wires for each input, one to say if there was a
digit in that place and another to give the digit’s value. Alternatively, we
could use logt extra inputs to specify the length.)

e Typical definitions of a family of small circuits [Sch86] have circuit ¢; perform
correctly on all length i strings. Our definition (which will shorten the
proofs) says it performs correctly on all length <1 strings. It is clear that a
set L has small strong-ranking circuits under the first definition if and only if
it has small strong-ranking circuits under the second definition (one direction
is trivial, in the other direction our circuit first determines the length of the

(unpadded) input and uses the appropriate circuit).

Lemma 4.8 If P has small strong-ranking circuits, then every P set has a family

of small strong-ranking circuits that is printable by a A ( ) machine.

Theorem 4.9 If P has small strong-ranking circuits, then P#P C ¥} =PH.

Proof of Lemma 4.8 Let L€P have small strong-ranking circuits. W.l.o.g.
suppose that |¢;| <i* for some fixed k and all 1.

Note that it suffices to show that the bottom NP machine of an NPN? machine
can find (if one exists) a small strong-ranking circuit consistent with some prefix,
for L up to a given length. This is because then a PNPNP(z A?Y) machine with this
NPYP oracle can print a small circuit. It does so by getting one bit of the circuit at
a time from the oracle with queries of the form, “Is there a strong-ranking circuit

for L up to length ¢ whose representation starts with bits 001101?”
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More rigorously, let k be the degree of the polynomial growth of the small
circuits. Let Leire={1'#0 | There exists a circuit representation c so that |¢| < ik
and ¢ has prefix ¢ and c is a strong-ranking circuit for L up to length i}.

Here is the NPN? procedure that accepts Lir. z_ denotes the string that
lexicographically precedes z and € denotes the empty string. Let o be the prefix
we are extending and c; Jo indicate that (the representation of circuit) ¢; starts
with the bits 0. Recall that the expression below simply says we start at zero,

increase by one at elements of L, and stay the same at nonmembersof L. z € L¢rc &

(Feidei <i*)(ciToA[(e€ LA ci(e)=1) V (eEL A ci(€)=0)] A
(Vz.|z| <4) [(zEL/\ ci(z)—ci(z=)=1)V(z&LA c,-(z)—c;(z-):O)]).

This depth-two-polynomially-bounded-quantifier language, Lirc, can be accepted
by an NPNP machine (the base machine does the 3 and the NP oracle does the V,
see Stockmeyer [Sto77]). This, as noted at the start of this proof, suffices to prove
our lemma. ]
Proof of Theorem 4.9 By Lemma 4.8, every P set has small strong-ranking
circuits computable in A}. Thus we can solve #SAT, as in the proof of Theorem 4.3,
with two calls to this A}-computable object, and thus place pP#P C PA3 = Af. But
it is easy to see that if P has small strong-ranking circuits then NP has small
membership circuits (via the language Lp of page 63). So by the Karp-Lipton
result [KL80], £2 =112 = PH. Thus P** CAPCPHC 2. O

4.4.2 IfP has Small Weak-Ranking Circuits or Small Rank-
ing Circuits then P#*P C X}

This follows the same argument as the previous section, except we must account
for the change from strong-ranking circuits to ranking circuits. The potential
problem is that a ranking circuit, on input z ¢ L, merely says “this is not in L”
(unlike a strong-ranker, which ranks nonmembers).

Given that a collection of small ranking circuits exists, we guess a small circuit
and make sure that the function it computes meets conditions which guarantee

that it really is a ranking circuit of L, as argued before in the proof of Lemma 4.8.
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Simply put, our conditions are that the function starts at zero, is correct about
membership and nonmembership, and increases its rank exactly one between ad-
jacent members of L. These conditions bear contrast with the simpler conditions
used to check strong-ranking circuits on page 66.

Spelled out in full, our conditions on the function f that the guessed circuit

computes are that f:

1. starts at zero,
2. at each (small enough) string out of L function f proclaims nonmembership,

3. at each (small enough) string in L function f proclaims membership by

announcing (its version of) the string’s rank.

4. for every pair of (small enough) strings z,y (w.l.o.g. y is lexicographically
greater than z), such that:
(a) f thinks that z and y are in L and thus gives them ranks, and

(b) there exists no string z lexicographically between z and y in Z,

the rank f assigns y is exactly one greater than the rank f assigns z.

Looking at the quantifier structure implicit in the above conditions, they can be
written as a L} predicate; so we can print a small ranking circuit with a A}
machine. Theorem 4.11 now follows as in the previous section.

Interestingly, as a corollary of the theorem, we conclude that the circuits can

be printed by a A} machine.”

Lemma 4.10 If P has small ranking circuits, then every P set has a family of

small ranking circuits that is printable by a A} machine.
Theorem 4.11 If P has small ranking circuits, then P#*F C £ = PH.

Corollary 4.12 If P has small ranking circuits, then each P set has a family of

small ranking circuits that is printable by a A} machine.

"Even though we conclude that all languages in the polynomial hierarchy are in £, some
functions computable by polynomial hierarchy machines may need A} machines, which use T%
oracles to get longer and longer prefixes of the functions’ outputs.
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By slightly modifying the four conditions above® we can strengthen our results

to apply to small weak-ranking circuits.

Theorem 4.13 If P has small weak-ranking circuits, then P#P C ¥? =PH.

4.5 Ranking P/Poly

This section- answers the questions:-

e Can P/poly be P-ranked?
e When can P/poly have small ranking circuits?

e What techniques can be used in proofs about uncountable classes, which

necessarily lack polynomial many-one complete sets?

The classes P/poly and p#P /poly contain uncountably many languages. Be-
cause of this, they are immune to many techniques we use on standard complexity
classes such as P and NP. In particular, they have no many-one complete lan-
guages, at least with respect to uniform many-one reductions, so the technique
of Theorem 4.3, which used the fact that rendering #SAT polynomial time com-
putable makes all of #P polynomial time computable, does not apply.

We prove an analogue of Theorem 4.3 without using any complete language.
Thus complete sets, usually a crucial tool, seem to have been thrown aside. How-
ever, when we look carefully, we see what has happened. Before, our proof centered
on a complete set and the set dragged its class with it. Now, our proofs must take
an arbitrary member of the nondenumerable class and operate on it. Thus in-
stead of working with a simple set like #SAT, we work directly with an arbitrary
P#P /poly set by formalizing in the standard way [Coo71][Har78] the computations
of its underlying machine.

Also, note that by simple counting, P/poly is not P-rankable; this is because
P/poly contains sets spanning an uncountable number of ranking functions, and

there are only a countable number of P-rankers.

8FEliminate condition 2. Change condition 1 so that it checks that the first string in the set is
indeed assigned rank one.
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Theorem 4.14 P/poly is not P-rankable.

Definition 4.15 A language Lisin p#P /poly if there is a polynomial time Turing

machine M, a #P function f, and an advice function g such that:

1. (3k)(Vz)[lg(z)| < |z[* + k], and
2. (Vz)[Mf(z#g(1!%)) accepts if and only if z € L).

Put another way; L is 'in'P#'P"/’poly if-a P#P ‘machine, given a bit of free advice’
that depends only on the length of the input, can compute L. It is easy to prove

that
P#P/poly = p#P/Poly’

where the #P/poly oracle counts the accepting paths of NP machines that are

given a bit of advice.
Theorem 4.16 P/poly has small ranking circuits if and only if
P/poly:P#P/poly=P#P/p°ly.

Remark: In this proof we revert to the standard notion of families of circuits
accepting languages, rather than computing functions as in the previous proof,
and we use the standard definition of circuits—each circuit accepts all strings of
the set of some single length.

Proof of Theorem 4.16

<=: Given L€ P/poly, we know that L has small circuits. We wish to show that
L has small ranking circuits.

Let N be an NP machine that, on any input of the form z#co#...#c,
makes a nondeterministic path for each string y lexicographically <z. The path
associated with y will accept if and only if the circuit c|, accepts y. Clearly, if the
circuits given to N are correct circuits for L, then Rankr(z) equals the number of
accepting paths of N(z).

A P#P /poly machine whose #P oracle is the counting function of N and whose
advice function is the circuit family of L can compute the ranking function, and

in particular, can accept the following languages Ly, for each fixed 0 <k <|z|.
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Ly ={z#b| the k’th bit of Rankr(z) is b}.
By assumption, P#P/poly=P/poly, so we have small circuits for Ly, Ly, ..., L4,

i.e., each circuit computes one bit of the ranking function. We can easily fan out
the inputs and combine these circuits, thus obtaining a small ranking circuit for
our arbitrary P/poly language L.

—: Let L be an arbitrary language in P#F /poly. We show that, if P/poly has
small .ranking circuits,. then L is in P/poly. W.l.o.g., let the #P. oracle of -the -
P#P /poly machine accepting L be the counting function (computing the number
of accepting paths) of the machine N. Since N is an NP machine, we may suppose

that N runs in nondeterministic time O(n') for some fixed integer I. Define:

I' = {z#01#path#17*
as an accepting path}U

{z#00#1""“ lze z*} u

|path#17%¢| = |z|'*! and N(z) has path

{3#11#1“"“ ]zEE*}.

Then L' €P, so from our assumption L' has small ranking circuits.

Here is how to accept L with a P/poly machine. Qur advice will consist of the
advice given to L by Definition 4.15 plus the small ranking circuits of L'. On input
z, the P/poly machine simulates the run of the p#P /poly machine accepting L
(recall, we have its advice function) up to its first call to its #P oracle; say the

call is y. We know that the answer will be (see equation 4.3.1):
{ Rankp (y#11#19" )~ Rankp (y#00#114* ")} —1.

But from our advice function, we have small circuits computing the rank function
of L', so our P/poly machine can easily do the above subtraction, and thus answer
the first query made in the run of p#P /poly.

Our P/poly machine continues to simulate the P#P /poly machine accepting
L, answering later queries in the same way. Thus we have accepted an arbitrary
language L€ P#? /poly via a P/poly machine. a

It is easy to see that

P=P#¥? — P/poly=P*F/poly.
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From Theorems 4.3 and 4.16, it follows that if uniform (P) sets can be uniformly
ranked, then nonuniform sets (P/poly) can be nonuniformly ranked. Thus uniform
and nonuniform ranking problems are structurally related. Yap [Yap83] has also

related uniform and nonuniform membership and hierarchy questions.

Corollary 4.17 If P is P-rankable, then P/poly has small ranking circuits.

4.6 Enumerative Ranking-

In this section we answer the question:
e Do all sets in P have enumerative rankers?

The number of possible ranks a given string z can have, expressed in terms of
its length, is on the order of 2/l. An enumerative ranker (recall Definition 4.2)
reduces this huge set of potential ranks to a small set of plausible ranks. It follows
that if all P sets have enumerative rankers, then the ranks of strings in P sets are
of low relative Kolmogorov complexity. The small name of a rank, relative to the
string it ranks, is its rank (index) in the small set of plausible ranks.

This enumerative approach to approximation is modeled after the work of
Cai and Hemachandra [CH86b] on enumerative counting, and our results follow
as corollaries of their main theorem: Suppose there exists an €, 0<e<1, and a
polynomial time machine M such that for every boolean formula f, M(f) outputs
a set of m values, where m <|f|!™¢, of which one of the values is the number of
satisfying assignments to f. Then P =P*P, _

Our key observation is that if we have a k-enumerative-ranker (Definition 4.2),
we can k2-enumerate #SAT. Why? With a k-enumerative-ranker, when we do the
subtraction of ranks that yields our #SAT answer (as in the proof of Theorem 4.3),
we now have k possibilities for each of the two participating ranks in the subtrac-
tion, so we have k% overall possibilities. The following theorem follows from this
observation, the result of [CH86b], and an easy converse direction that is a corol-
lary of Theorem 4.3. Theorem 4.18 below says that it is unlikely that we can

enumeratively rank all sets in P. Indeed, enumerative ranking is so hard that it
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is no more likely that we can enumeratively rank them in polynomial time than

that we can exactly rank them in polynomial time.

Theorem 4.18 P =P#P if and only if each set A€ P has a k-enumerative-ranker

for some k.

Indeed, since (by the observation above) we need only square the size of the enu-
merative list for ranking to get the size of the enumerative list for #SAT, and
since the [CH86b] result is valid up to-O(n!=¢)-énumerative-counting, we can even

conclude that:

Theorem 4.19 P=P#F if and only if for each set A€ P there exists an €4 >0

such that A has an O(n!/2~%4)-enumerative-ranker.

4.7 Conclusions and Open Problems

This chapter has studied the complexity of the ranking problem and has charac-
terized the complexity of many types of ranking. Now, with the same the certainty
with which we believe counting is hard, and thus with at least the certainly with
which we believe P #NP, we believe that uniform, strong, weak, and enumera-
tive ranking cannot be done efficiently for all sets in P. Indeed, if any of these
types of ranking can be done efficiently then deterministic polynomial time equals
probabilistic polynomial time (since P = P#P if and only if P=PP [Gil77,Sim75]).

Many related open questions remain. Section 4.3, page 65, asks if there is a
world in which P and NP have easy ranking problems but PSPACE has hard rank-
ing problems. That is, is there a relativized world in which P = P#F £ PSPACE?
We also would like to know if there is a world in which P and NP have easy
membership problems but hard ranking problems. That is, is there are relativized
world in which P = NP # P#F? Resolving either of these questions would settle the
major open problem about the relativized structure of the polynomial hierarchy
that remains in the wake of Yao’s results [Yao85|: Is there a relativized world in
which the polynomial hierarchy collapses yet is not equal to PSPACE?

Any advance beyond the work of [CH86b] in our knowledge of the complexity

of enumerative counting would strengthen the results of Section 4.6. Can the
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O(n'~¢) bound in the theorem of [CH86b] cited on page 73 be improved to n* for
all fixed k?



Chapter 5

Robustness

5.1 Chapter Overview

A robust machine is a machine that maintains a computational property for every
oracle. For example, a pair of NP machines that accept complementary languages
not only in the real world but in every relativized world are said to be robustly
complementary.

In this chapter we study robustly complementary, robustly categorical, robustly
¥*-accepting, and robustly *-spanning machines. We prove that robust machines
squander their powerful nondeterministic oracle access in all relativizations. For
example, a robustly complementary machine will accept, for every oracle A, a

PNP@A

language in , where @ represents disjoint union.

5.2 Introduction

Informally, a robust property of a machine is a property that a machine has with
every oracle. For example, if two machines accept complementary languages for
every oracle ((VA)[L(NIA)=Z(_N_2:4—)]) we say that the machines are robustly com-
plementary. ‘

Schoning [Sch84] considers deterministic machines M that accept some lan-

guage robustly (i.e., there is a language L so that for all oracles 4, L(M4)=1L).
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He shows that the machines of this sort that for some oracle A’ run in polynomial
time accept exactly the NPNcoNP languages.

In this chapter, we ask what price a machine pays to have robust properties.
Throughout the chapter, all robust machines (with names like N, N1, Na, ..., N;)
are assumed to be nondeterministic polynomsial time Turing machines. We discuss
robustly categorical machines (machines that for no oracle and no input have more
than one accepting path), robustly £*-accepting machines (machines that for ev-
ery oracle accept all inputs), robustly complementary machines (pairs of machines
that accept complementary languages for every oracle), and robustly £*-spanning
machines (sets of machines whose languages union to X* for every oracle). In each
case we show, if P equals NP, that a machine having a property robustly is emas-
culated. That is, if P equals NP we conclude that, in some cases for all oracles A

and in some cases for all sparse oracles 4,

e robustly categorical machines accept only trivial (P“) languages.
e robustly complementary machines accept only trivial (PA) languages.

e robustly ¥*-accepting machines have feasibly computable functions that de-

termine why they accept.

e robustly X*-spanning machines have feasibly computable selector functions.
(Selman [Sel79,Sel82| defines a P-selector function over a set of NP machines
to be a polynomial time function of z that, if at least one of the machines

accepts on input z, outputs one of the machines that does accept.)

Another way of looking at our robustness results is as a study of the complexity
of pulling NP from P. If P=NP, we are interested in knowing how oracles can
pull NP from P. In general, even if P =NP, there will be oracles A that separate
NP4 from P4. Indeed, Hartmanis and Hemachandra completely characterize, in
terms of Kolmogorov complexity, the sparse oracles that pull NP? from PS when
P=NP [HHS86b].

However, the NP4 machines that accept languages in NP4 —P4 are wild
machines—they make extensive use of their oracles. Our robustness theorems

(e.g., Corollary 5.4) say that if P equals NP, no robust machine (say, no machine
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that has a machine that is robustly complementary to it) will accept a language
in NP-P.
Yet another way of looking at these results is as “machine-based” lowness

results. A set A is extended low [Sch83] if
NPA - PNP$A.

This says we can- get by with a surprisingly ‘weak -form-of access-to~Aythoagh -
NP# might access A exponentially often, PNP®4 {5uches A at most polynomi-
ally often and has a far weaker acceptance mechanism. Our robustness results
(e.g., Theorem 5.1) say that any language accepted by a robust (e.g., robustly
categorical) machine can be accepted with exactly such weak access to A.

For example, the following theorem shows that if nondeterministic machine
N; is robustly categorical, then for every oracle A the powerful nondeterministic
access to the oracle N4 can make is squandered; a weak (polynomial time) machine
with NP @ A as its oracle can accept the same language.

Theorem 5.1 (VA)[NA is categorical] = (VA)[L(NA) e PNP®4),

We have mentioned general interpretations of our robustness theorems in terms
of the difficulty of separating NP from P when P=NP, and in terms of lowness.
Some of the results have special individual meaning, as they extend our knowledge
about some intriguing facets of structural complexity theory.

One example of this is the study of why X*-accepting NP machines accept.
Borodin and Demers [BD76] show that P#NPNcoNP implies there is an NP
machine N so L(N)=ZX*, yet there is no polynomial time machine that computes
accepting pa;ths of N. Simply put, they prove that if P#NPNcoNP there is a
machine that always accepts, but we cannot easily determine why it accepts.

Furthermore, even if P=NP, there will be many sparse oracles § and non-
deterministic polynomial time machines N for which L(N¥)=X* yet we cannot
easily find why N5(.) accepts. Nonetheless, we show that if P equals NP and non-
deterministic polynomial time Turing machine N accepts ¥* for all sparse oracles

S, then for all sparse oracles it will be obvious why N5 accepts. (This is true even
for sparse oracles § for which P¥ #NPS))
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Corollary 5.8 If P=NP and L(NT)=%* for every sparse oracle T, then for
every sparse set S there is a machine in P that on input z computes an accepting
path of N5(z).

Simply put, we show that machines that maintain certain properties for all

oracles accept relatively simple languages in every relativized world.

5.3 Robustness. Theorems .

This section gives a number of new robustness results. The proofs are outlined in
Section 5.5. Simply put, machines pay a heavy price for maintaining robustness
properties.

Below are a number of Theorem/Corollary pairs. The theorems emphasize a
“lowness” approach: an NP4 machine satisfying a robustness property is repeat-
edly shown to be understandable via the far weaker access method of PNP®4_ The
corollaries emphasize that if P =NP, machines satisfying a robustness property

cannot separate P4 from NP4 (i.e., do not accept languages in NP4 — PA).

Theorem 5.1 (Robustly categorical machines accept simple languages)
(VA)[NA is categorical] = (VA)[L(NA) € PNPQ)A].

Corollary 5.2 If P=NP and N; is robustly categorical (i.e., (VA)[NA is categor-

ical]), then for every oracle 4,
L(NA)eP4.

Theorem 5.3 (Robustly complementary machines accept simple lan-
guages) (V4) [L(NA) = L(N/)] = (VA)[L(N#) e PNPO4).

Corollary 5.4 ! If P=NP and N; and N; are robustly complementary (i.e.,
(VA) [L(NiA)zi(N—jA)]), then for every oracle A

L(N#)ePp4,

!Manuel Blum and Russell Impagliazzo have independently proved this result [Imp87].
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We can restrict our attention to sparse? sets and get similar results (with easier

proofs).

Theorem 5.5 (Machines robustly Y*-spanning on sparse oracles have
simple selector functions)

(V sparse §) [L(N,.f)u --UL(N3)=%*]= (V sparse §)(3f computablein pNPos)
(Vz)[z € L(Ny,,)]-

Corollary 5.8 If P=NP and for every sparse oracle 5, L(N;f)u ~-UL(NJ)=12*,
then for every sparse oracle S there is a selector function f computable in P° that
for every input z selects one of the machines that indeed accepts. That is,

(v sparse §)(3f computable in P¥)(Vz)[z € L(NS )]

Theorem 5.7 (Machines robustly £*-accepting on sparse oracles accept
for transparent reasons)

(V sparse S )[L(N7)=3*]= (V sparse §)(3f computable in PNPOS) (vz)(f(z)
prints an accepting path of N (z)].

Corollary 5.8 If P=NP and N; robustly accepts ¥* on sparse oracles (i.e.,
(V sparse T)[L(N;)=X*]), then for every sparse oracle S, there is a function

f computable in P so that on any input z
f(z) prints an accepting path of N7 (z).

Those who find the sight of “P =NP” unsettling will be pleased to know that
we can trade off strength of structural assumptions for strength of robustness

properties as shown below.

Theorem 5.9 (Machines robustly complementary and categorical on
sparse oracles accept simple languages)

(V sparse §)[NS and N are categorical and complementary] = (V sparse §)
[L(NS) € P(UPﬂcoUP)GS] )

2A set S is sparse if for some k, there are at every length n at most n* +k strings in S.
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Corollary 5.10 If P=UPNcoUP and NS and st are categorical and comple-

mentary for all sparse oracles S, then for all sparse oracles §,
L(N?)ePS.

A final point is that all of the above results hold uniformly. Taking Corol-
lary 5.2 as an example, not only is each L(N/) in P4, but there is a single polyno-
mial time Turing machine that works for all A. That is, there is a polynomial time
machine M-so that-for every A; L(M4)=E(NA). The machine'simply implements -

the procedure used in the proofs of Section 5.5.

5.4 A Note on Weakening the Hypotheses

In Theorems 5.1 and 5.3 and Corollaries 5.2 and 5.4, we can restrict our hypotheses
to sparse oracles. This follows from the easy observation that a machine is, e.g.,

categorical for all oracles exactly when it is categorical for all sparse oracles.

Lemma 5.11

1. (VA)[N4 is categorical] < (¥ sparse §)[N? is categoricall.

2. (VA)[L(NA)=L(NA)] & (V sparse §)[L(N7)=L(N/)].
Proof Sketch for Lemma 5.11 The = directions are direct. The other di-
rections hold because if a machine is, e.g., noncategorical for (dense) oracle 4’,
it fails to be categorical on some specific string z. Thus for any sparse oracle §'
that agrees with 4’ on a prefix large enough to include all strings queried during
the run of NA'(z), we know that Ns'(z) will be noncategorical. (Note that the

definition of sparseness allows oracles that are dense on a finite prefix.)

As an example, we can restate Theorems 5.1 and 5.3 as follows.

Theorem 5.12 (Robustly categorical machines accept simple languages)
(V sparse §)[N? is categorical] = (VA)[L(NA)e pNPe4)
Theorem 5.13 (Robustly complementary machines accept simple lan-

guages)
(¥ sparse §)[L(N5)=L(N?)|= (VA)[L(NA) e PNPo4),
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Proofs of Theorems 5.12 and 5.13 These follow directly from Lemma 5.11
and Theorems 5.1 and 5.3.

5.5 Proof Sketches for Robustness Theorems

The proof techniques here are inspired by the method Baker, Gill and Solovay
use to show that there is a relativized world .A-where P4 =NP4NcoNR4 #NPA
[BGST75] and the method Rackoff uses to show that there is a relativized world 4
for which P4 =UP4 £ NP4 [Rac82].

Proof of Theorem 5.1

Use PNP to find if for some value of B' there is an accepting computation of
N,-Bl(z); if not, reject z. Use PNP to get the path, say pathg. Query A about all
elements in the path, let Sy be all elements queried on the path, and let Wy be
the elements on which the path was wrong (disagreed with A4). If the path was
never wrong, we have a true accepting path of NA(z), so accept z.

Similarly, use PNP o find if, for some value of B’ consistent with our knowledge
about the elements of Sp, there is an accepting computation of N2 I(a:); if not, reject
z. Use PNPto get the path, say path;. Query all elements in the path, let §; be all
elements queried on the path, and let W; be the elements on which the path was
wrong (disagreed with A). If the path was never wrong, we have a true accepting
path, so accept z.

‘Keep repeating this. The process finishes quickly. Why? Each path; must
conflict with each of the paths pathg, pathy, ..., pathy_q, since N; is robustly cat-
egorical. Note that for every j and [ such that j#!, we have W;N W;=0. Thus
path;, must conflict with pathg on some element that is both in Wy of pathg and
Sy — W} of path;. Similarly, it conflicts with path; on some element that is both in
Wi of path; and in S — W}, of path;, and so on. But since the W;’s are disjoint, we
take up k —1 spaces of Sy — W, just to disagree with the previous paths. Thus the
process goes on at most until we examine |z|'+1 paths. At that point we either
have eliminated all paths (so N/i(z) rejects) or we have found a path consistent
with our oracle (so N/A(z) accepts). Thus we have accepted the language of NA,
for arbitrary fixed A4, with a PNPO4 machine.
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Proof of Theorem 5.3

This is like Theorem 5.1, but is a bit more involved. Recall we have machines
N; and N; that are robustly complementary. W.l.o.g. they are respectively in
NTIME[n® +i] and NTIME(n? +j]. We consider the family F; of paths, over all
oracles A', on which N,-A'(z) accepts, and also consider the family F; of paths,
over all oracles 4', on which NJ—A'(:c) accepts.

Now we use NP to get an accepting path from F; and query in A all elements
along the path. Then we use NP to get a path from F; that is consistent with
our knowledge of A on all elements in the first path. Continue this, crucially
alternating between F; and F;.

If we ever fail to find a path we know that family has no accepting paths and
we are done (the machine of that family rejects). If we ever find a path that
agrees with A we have a true accepting path and again are done (the machine the
path belongs to accepts). Note that every pair of one path from F; and one path
from F; must explicitly conflict over the membership of some element in 4 (or
our machines would not be robustly complementary). But now the argument of
the proof of Theorem 5.1 applies. Each path we take from F; conflicts with each
previous path from F; on a different element, so our whole process terminates
after at most 2 max(|z|*+1, |z|? +J) paths have been studied. m
Proof of Theorems 5.7 and 5.5 These are much easier to prove than the general
theorems discussed above. We use an iterative adaptation of the methods of Baker,
Gill, and Solvay [BGS75] and Rackoff [Rac82].

As an example, we prove Theorem 5.7.

Let N; be the machine of the theorem. It robustly accepts £* for sparse oracles.
Our goal is to, in P¥, find an accepting path of N7(z).

Use NP to find an accepting path of N,-O. Query S about all elements along
the path. If none are in S, then we have a true accepting path of N5(z) and are
done. If some are in S, then we’ve discovered some elements of 5, call them Sp.

Now use NP to find an accepting path of Nis° (there must be one, as N;
robustly accepts £*). Again, if no elements on the path are in § — S, we have a
true accepting path. Otherwise, we have discovered some new elements of §. Let

$1 be the union of these elements and Sg. Keep repeating this.
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How long can this go on? We find new elements of § at each step (or we have
an accepting path and are done), but since § is sparse, it only has a polynomial
number of elements that can be touched by the run of N°(z). So in a polynomial
number of steps, we have found all the strings of § that N°(z) can touch, and the
next use of NP will give us a true accepting path. O

The proof of Theorem 5.9 uses the same techniques as the proofs just stated.

5.6 Conclusions

By repeatedly reducing the sets of plausible accepting paths, we’ve shown that
if P equals NP, robust machines are weak—with no oracle can they separate NP
from P, have mysterious accepting paths, or have hard selector functions.

Thus the tragedy of a machine N that has a robustness property is that for
every oracle 4, N4 squanders its powerful access to its oracle. A mere polynomial

time machine with oracle NP@ A can accept the language N4 accepts.



Chapter 6

Uniqueness

6.1 Chapter Overview

This chapter studies two uses of uniqueness. Section 6.2 shows that P#UPN
coUP if and only if there is a set S of formulas that obviously each have exactly
one satisfying assignment but no polynomial time machine can find the (unique)
satisfying assignments.

This is a UP analogue of a theorem of Borodin and Demers [BD76] about
P #NPNcoNP. However, only one direction is known for the NPNcoNP case.

Section 6.3 constructs a fast algorithm for SAT, under a complexity-theoretic
assumption. The algorithm quickly finds satisfying assignments for satisfiable

formulas that do not have many satisfying assignments.

6.2 A UP Analogue of the Borodin-Demers

Theorem

Borodin and Demers [BD76] prove:
Theorem 6.1 (Borodin-Demers Theorem) If P#NPNcoNP then there is a

set § so

1. §€P and S CSAT, and
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2. no P machine can find solutions for all formulasin §. That is, for no polyno-
mial time computable function g do we have (Vf)[f € § = g(f) is a satisfying

assignment of f].

Thus, if P # NPNcoNP there is an easily recognizable set S of satisfiable formu-
las whose satisfying assignments cannot be easily found. Loosely, we easily know
that S formulas are satisfiable but we cannot easily tell why they are satisfiable. It
is not known if the converse-of this theorem-holds; which would yield ‘a tomplete
characterization of P #NPNcoNP.

We prove a UP analogue of the Borodin-Demers Theorem, and show that the
converse of the analogue holds. Thus we completely characterize P = UPNcoUP.

Theorem 6.2 P#UPNcoUP if and only if there is a set § so

1. SeP and § CSAT,
2. f € S = f has exactly one solution, and

3. no P machine can find solutions for all formulas in §. That is,

0 fés
the unique satisfying assignment of f fes

y(f)={

is not a polynomial time computable function.

This theorem shows that if the (co)unique acceptance model yields power be-
yond P, then sets with bizarre properties exist. However, we need not consider
these results as evidence that P=UPNcoUP. Rather, we should view these results
as reflections of the amazing power of logical formulas to describe coxﬂputations—a
power that spawned the theory of effective computability.

Proof of Theorem 6.2
(=) Let Loe(UPNcoUP)—P. Let No and N; be categorical machines accepting,
respectively, Lo and Lg.

Construct a machine N that on input z nondeterministically simulates No(z)
and Ny(z). Now L(N)= L(No)UL(N1)= LoULo=ZX"*. Since Ny and N; are cate-
gorical, N has exactly one accepting path on each input. Thus, letting Fy ; be the
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Cook’s theorem formula for N’s computation on z, Fy ; has exactly one satisfying
assignment (since Cook’s reduction is parsimonious).

Let S=UzeE‘ Fy . From the structure of Cook’s reduction (as Fy ; clearly
displays N and z) § is in P. By the previous paragraph, f € § implies f has exactly
one solution. Thus conditions 1 and 2 of Theorem 2 are met by §.

From the satisfying assignment to Fy , we can quickly determine whether

z € Lg or z € Ly, by checking which path of the initial branching led to acceptance.
Thus if some polynomial time machine on input f € § outputs the (unique) satis-
fying assignment of f, then Lo €P. This contradicts our assumption that LogP
and proves condition 3.
(<) Let S'={<f,a1,a2,...,a; >| f €S and each q; assigns some variable in f and
f(a1,aa,...,a;) is uniquely satisfiable}. f(ai,...,ax) specifies the formula resulting
from making the assignments a1,...,a; in f. For example, if f =z;2323 and a; =%z,
is true,” then f(a1) =z1z3. a3 here would mean “z; is false” and f(a;)=False.

If §' were in P, then we could use tree search to find the satisfying assignment
 for any formula in §, contradicting condition 3. So §'¢P. It is obvious that
5'eUP.

To see that §' € coUP, simply note that S'={ < f,a1,az2,...,ar >|f&Sor [f€ S
and f*=f(a1)Vf(a1,a2)V...V f(a1,a2, ...,8) is uniquely satisfiable]}. f* has at
most one solution; it just picks up all assignments contradicting “aj,...,a;.” Thus
S'eUP, so §'€coUP. So §'€(UPNcoUP)—P. O

Of course, if P=UPNcoUP then this theorem is of little interest. However, it
is easy to diagonalize so that P4 £UP4NcoUP4, thus w1tnessmg the possibility
that P#UPNcoUP.

Fact 6.3 There is a recursive 4 so P4 #UP4NcoUP4.
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6.3 Conditionally Fast Algorithms for Finding
Satisfying Assignments: On Distinguishing

Zero from One

6.3.1 Introduction

In their paper, “NP is as Easy as Exact Solutions,” Valiant and Vazirani show how
to probabilistically reduce a (satisfiable) formula to one that with high probability
has exactly one solution [VV85]. It follows that if the (unlikely) Conjecture (xx)
holds then NP =R.

Conjecture (**) There exist polynomial time algorithms that correctly accept
SAT for inputs with at most one solution (but possibly err on other inputs).

The conjecture (*x) can be written (3 Q)[USAT g€ P], where USAT g ={f |
(IFIl>1A Q(f))VIIfl|=1}. Valiant and Vazirani [VV85,Vaz87] also show that (xx)
implies P =UP. Note that (¥*) does not appear to imply P =NP.

We ask how likely it is that (x*) holds, and thus that one and zero can be
distinguished in polynomial time. We also ask if one and zero can be distinguished
in other time classes (UP, NPNcoNP, FewNP). We could also ask if few and zero
can be distinguished, and show that this gives algorithms that are similar to but
slightly faster than those of the zero-vs-one case.

The result of [VV85] that (xx)= NP =R gives evidence that (*x) is false,
though we should note that there are relativized worlds where PA£NP4 yet
NP4 =R4 [Rac82]. The result of Valiant and Vazirani that (*+)=P=UP also _
gives evidence that (*x) is false. P#UP if and only if one-way functions exist
(Grollmann and Selman [GS84]). Since we suspect that one-way functions do ex-
ist, this suggests that (*x) is false. However, even if P # NP, it is possible that
one-way functions do not exist (Rackoff [Rac82]).

We present strong evidence that (xx) is false by showing that (**) implies a sur-
prising structure to the complexity of SAT. If (xx), then given a satisfiable formula
f we can find a satisfying assignment to f in time O(|f|* - ||f]|- (min(logﬁftitrgv)ar(f)/z)))
where ||f|| is the number of satisfying assignments to f, |f| is the size of f, #var(f)
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is the number of distinct variable names in f, and k is a constant.

Thus (**) says that formulas with few solutions have subexponential time
witness-finding algorithms,! and formulas with 0(2‘/;) solutions have witness find-
ing algorithms faster than any now known. Intuition and relativized evidence? say
that NP witness finding requires exponential time even for formulas with few so-
lutions. This suggests that (xx) is false.

Even though, given the above evidence, we suspect that distinguishing zero
from one in polynomial timme is-unlikely; we might hope that one can distinguish
zero from one within more powerful classes. Indeed, it is clear that we can (triv-
ially) distinguish zero from one in NP: (3 Q)[USAT g € NP]. What about smaller
classes? For example, can we tell zero from one within unique polynomial time
(Section 2.7)—i.e., (3Q)[USAT ¢ € UP]?

Valiant and Vazirani’s proof that that (**) = NP =R, does not show that (3 Q)
[USAT € UP]=UP=NP, as their reductions are randomized. Adopting the
approach of Valiant and Vazirani’s observation that (xx)= P =TUP, we see that
(3 Q)[USATQ € UP]|= UP=UP. Unfortunately, UP does equal UP, so this does
not tarnish the hypothesis.

We show that if (3 Q)[USAT g € UP] then we can find witnesses for satisfiable

formulas in:
— . #var(f)
TIMETUF1* W11 i rog 1], devar(f)/2)) -

This is unlikely and thus suggests that the hypothesis is false, and that UP lacks
the power to distinguish zero from one.

Similar results hold for distinguishing zero from one in FewNP, NPNcoNP, etc.,
and an analogous set of results, with sharper time bounds, hold for LinearSATQ €
p.3

1Though these algorithms quickly find one of few solutions, if a given formula has no solutions
the algorithms may take exponentially long to detect this.

3Fact  For every k there is an oracle 4 and a machine N so N4 is categorical (and thus has
at most one witness, see Section 2.7, yet no deterministic algorithm to find N4’s witnesses runs in
time 2"".
Proof Sketch  Let L4 ={0"|(3y)[|y|=n*t' A y€ A]} € NP“. Putting at most one string of each
length in A (thus assuring that L4 € UP# and thus N(z) has at most one witness), diagonalize in

turn against each TIME[2""] machine. O
3LinearSAT g = {f|(||fl| >n A Q(f))vn>||f||>0}. That is, LinearSAT o agrees with SAT on
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Thus it seems likely that distinguishing zero from one lies far beyond the power

of P and that the complexity of unique solutions is great.

6.3.2 Theorems, Algorithms, Proofs

We show that, if (x*) holds, then there exist fast algorithms for finding solutions

to formulas with few solutions.

Theorem 6.4 If (3Q)[USAT o €P] then there exists a machine M so if f is

a satisfiable formula, then M(f) prints a satisfying assignment of f in time
OUF1*-1F Il (imqrog e dorcry/2)
min(log ||f||, #var(f)/2)) /*

Some corollaries follow. Though less interesting than the theorem, they tell us

about the effect of (+*) on classes below NP.

Corollary 6.5 If (3Q)[USAT g €P] then

1. P=UP [Vaz87,VV85], and
2. (YE)[P=NP)*
3. FewNP € U, TIME([n¢lo8"] 5

Corollary 6.6 If (3Q)[USATocUP| then there exists a machine M so if
f is a satisfiable formula, then M(f) prints a satisfying assignment of f in

UP k #var(f)
TIMEP[f 1% £ 1| (caingog 1. our(r)/2) -

Corollary 6.7 If (3Q)[USAT g € FewNP] then there exists a machine M so if
f is a satisfiable formula, then M(f) prints a satisfying assignment of f in

TIMEP ™ (|£1% 111 (mintog 1 come(ryy2) -

formulas of size n that have at most n solutions, but it may disagree with SAT on formulas with
more than n solutions.

NP<x={L ' 3 nondeterministic polynomial time Turing machine N so N accepts L and for
no input z does N(z) have more than k accepting paths. This part of the corollary could also
be proved from part 1 of the corollary combined with the result of Osamu Watanabe that P =
UP = (Vk)[P=NP,;] [Wat87].

5FewNP is defined in Section 2.7.
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Corollary 6.8 If (3Q)[USAT g € NPNcoNP]| then there exists a machine M so
if f is a satisfiable formula, then M(f) prints a satisfying assignment of f in

TIMEN? (1% 1£ 1| (cminog 1 one(ry/2) -

The following lemma simplifies the proof of Theorem 6.4.

Lemma 6.9 If (3Q)[USAT g € P] then there exists a polynomial time Turing ma-
chine M* so:

1. ||f||=1= M*(f) prints the unique satisfying assignment of f, and

2. ||f||#1=M*(f) either prints a satisfying assignment to f or prints “||f|| #
1.77

Proof of Lemma 6.9

Let M be a polynomial time Turing machine that for some @ accepts USAT .
Let f* be our input formula. Compute M(f*). If M claims that f* is unsatisfi-
able (that is, M rejects f*), print “|[f||#1”; f* is unsatisfiable or has more than
one solution. Otherwise, set some variable of f* to TRUE and FALSE. Call the
resulting formulas f} and fg§. If M accepts both ff and f§ then print “||f[|#1”
as f* must have ||f|| >1, as its subformulas have distinct solutions. If M rejects
both ff and f§ then forget f*, it must have ||f||>1, as ||[f*||=1 or [|f*||=0 both
conflict with the behavior shown by f* € L(M), ff ¢ L(M), and fg ¢ L(M). Finally,
if ff € L(M) and fg ¢ L(M), it is plausible that [|f*||=||ff||=1, so repeat the pro-
cess just described in this paragraph for f* on ff. - Similarly, if f§ € L(M) and
ft ¢ L(M), it is plausible that ||f*||=||f§||=1, so repeat the process just described
in this paragraph for f* on fg.

If this process ever gets down to a leaf (fully substituted formula), take the
assignment we have constructed amd see if it is a satisfying assignment to f*. If
so, we are done; we have, and print, a satisfying assignment to f*. If not, we have
been fooled—the current f* must have many solutions; print “||f||#1.” m
Proof Sketch for Theorem 6.4

In a nutshell, the structure of the proof is as follows. We seek to find a partially:
substituted version of f that has exactly one solution. This will quickly allow up

to find the solution of that formula. Unfortunately, we don’t know how to quickly
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obtain a partially substituted version of f that has exactly one solution. We give
a scheme that lets us create a collection of formulas so that we know that at least
one of the formulas in the collection will have exactly one solution (when ||f]| is
below a certain bound); this suffices.

Given f, we choose subsets of f’s variables. For each subset we try all possible
truth assignments (hoping to create a formula with exactly one solution), and with
the resulting partially substituted formulas use machine M* of Lemma 6.9 to try
getting a satisfying assignment.

Given a satisfiable formula f, we want to find a satisfying assignment of f. As
an aid, assumption (**) gives us, by Lemma 6.9, a machine M* that correctly
finds assignments for inputs with at most one satisfying assignment.

Running M* on input f will give us little information; f might have more
than one solution, thus M* might fail. Our goal is to obtain a formula f' that
has exactly one satisfying assignment, which is also a satisfying assignment of f.
Using M* on f' we can then quickly obtain that assignment.

Consider A, the set of satisfying assignmenté of f. Every two distinct elements
of A differ on at least one variable. Thus, if |4| > 1, there is some variable z;, so that
A; v={ala is a satisfying assignment of f and a has z; = True} and A; r={ala
is a satisfying assignment of f and a has z; = False} are both nonempty. Consider
the smaller of these two sets, which will be of size <|A|/2. If its size is greater than
one, then it too has some variable that splits it into nonempty parts, and we can
repeat this process. Thus, if we were magically guided in choosing the variables
to split, in at most log||f|| splits we would split to a formula that has exactly one
solution (i.e., f, with the split variables assigned as the splits dictate). Once we
have f', a formula with exactly one solution (which itself indicates a solution of f)
we can quickly find the solution using M™.

Unfortunately, we have assumed magic guidance in the choice of split variables.
Lacking sorcerous power, we must make do with a more brutish approach: we try
all possible sets of splitting variables.

However, we don’t know ||f||, so we don’t even know how many splitting vari-
ables are needed. We solve this by trying, in turn, the following procedure with

split set, in turn, to 2, 4, 8, 16, .... The variable split is our guess of an upper
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bound on ||f]|-

Now, for the choice of split we are currently working with, guess every possible

#var(f)

split ) such sets. For each set, set

set of split variables of f. There are at most (
the split variable to True and False in every possible combination, yielding split
partially substituted versions of f from each of the (#:;lri(tf )) splitting sets. For
each of these 2°Pht. (#:’;l'i(tf )) formulas, attempt to self-reduce it, using the machine
M?* of Lemma 6.9.

Note that if split > [log||f]|], by our earlier argument one of the formulas will
have exactly one solution, and thus M* finds it.

Why does this work? As soon as split >log||f||, we know that some set of split-
ting assignments will yield at least one f* with ||f*||=1, and that M*(f*) yields a
satisfying assignment. On the other hand, we can never be fooled into accepting
an unsatisfying assignment as M* only prints valid satisfying assignments and in
any case we can always check any final assignment to insure that it is a satisfying
assignment of f. A

When split = m, the cost of the above procedure is, for some k (related to the

degree of the polynomial run time of machine M*), and with |f|=~n,

O(nk-12m (#var(f)) )

m

ie., (#"f;(f )) splitting sets times 2™ substituted formulas per set times polynomial
work tree-pruning per formula. Since we set split=2,4,8,... and finish when
split > ||f||, our total cost is (note that [log||f||]=0(n)):

#var(f )))

1

total cost = O( > nk_l2i(
0<i<loglIfIl]

#var(f) ))
min([log||f|[], #var(f)/2)
#var(f) ))
min([log ||f|[], #wvar(f)/2)

Recall that this analysis applies only when ||f|| >0; if f is unsatisfiable it may

= O(flog I 1+~ 2"e1

= ot

take us exponential time to detect its unsatisfiability. a



94

6.4 Conclusions and Open Problems

Many open problems remain.

1. Can we prove the converse of the Borodin-Demers Theorem (Theorem 6.1)?

2. Can we find further connections between the number of solutions a formula

has and the complexity of finding some solution of the formula?

We’ve shown that if there is a @ such that USATg is in P, then formulas
with few satisfying assignments have easily obtained satisfying assignments.
Conversely, Ajtai and Widgerson [AW85, Section 5| show that formulas in
CNF form with many satisfying assignments have easily obtained satisfying
assignments—finding satisfying assignments for formulas in 3-CNF that are
satisfied by, say, one quarter of their assignments can be done in polynomial

time.

3. How likely is it that P=UP for a random oracle? That is, is Prob (P4 =
UP#)=1? Blum and Impagliazzo [Imp87] have shown that if P=NP then
for all generic oracles P4 =TUP4, but a probability one result has not yet

been found.
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P - Polynomial Time -
Power
Feasible computation.

Definition

P =, TIME[nF].

Background
P was described as embodying the power of feasible computation by Cob-
ham [Cob64] and Edmonds [Edm65]. The field of design and analysis of

algorithms attempts to place as many problems as possible in P.

Complete Languages
P has well-known complete languages under Siﬁ%’,f;feone reductions, e.g., the

emptiness for context-free grammars [HU79)].

Sample Problem
In a fixed, reasonable proof system, asking if z is a proof of T is a polynomial
time question. In particular, in polynomial time we can check if assignment

z satisfies boolean formula F'.

Figure A.1: P
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NP - Nondeterministic Polynomial Time

Power

Guessing. Nondeterminism.

Definition NP =, NTIME[n*].

Background
In the early 1970s, Cook [Coo71], Karp [Kar72], and Levin: [Lev73] initiated -
the study of NP and its complete problems. Many NP-complete problems

are now known, and the study of NP’s structure is the unifying theme of

structural complexity theory.

Complete Problems
NP has hundreds of <? (polynomial time many-one) complete problems
[GJ79]. The most studied NP-complete problem is satisfiability. SAT={f |
boolean formula f is satisfiable} was shown to be Turing-complete for NP by

Cook. Karp showed that SAT and many other problems were <? -complete
for NP.

Theorems

If (3 sparse § )[NPQPS] then the polynomial hierarchy, PH, equals

NPNP, [KL80]
NP has sparse complete sets if and only if P=NP. [Mah80]
NP —P contains sparse sets if and only if E # NE. [HIS85]
All paddable sets are p-isomorphic to SAT. [BH77,MY85]

If P=NP and § is sparse then [P° =NP5 & (3k)[S C K ¥[klogn,n*]]],
where K[| represents time bounded Kolmogorov complexity. [HH86b)]

P#NP = NP —P contains sets that are not NP-complete. [Lad75]
(34)[PA=NP4]. (3B)[PE£NPE). [BGS75]

Figure A.2: NP
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PH, PSPACE, P, NP, coNP, PNP, NPNP . — The Polynomial Hierar-
chy and Polynomial Space

Power Alternating polynomial bounded existential and universal quantifiers.

Definition
2 = O = P
AP, = PE x>0
£P,, = NPE >0
mf,, = co¥f, = {LIEGEI;H} 120
PH = Lijzf

PSPACE = | JSPACE[r*].
k

Background The polynomial hierarchy was defined in (Stockmeyer [Sto77]).

Complete Languages Canonical complete languages exist for each level of the
hierarchy [Wra77] and for PSPACE [Sto77].

Theorems ¢ (J4)[PA=PH4]. [BGST5]
o (34)[PA£NP4£NP¥P" £... L PSPACEA). [Ya085]
e PH=PSPACE & (V sparse §)[PHS =PSPACE®]. [BBL*84]
o £2=TI? = £? = PH (Downward Separation). [Sto77]
e Prob, (PHA#PSPACE4)=1. [Cai86]
e PSPACE = NPSPACE = Probabilistic-PSPACE. [Sav70,Sim77]

Open Problems e Does the polynomial hierarchy collapse?
e Proby (PA#£NPA£ANPNP 2. )=17
e For which j can we construct oracles so (2;’)‘4 #(2;’“)" =PH4?

o (3, A)[(T2)A=(I2)4 #PSPACE#]?

Figure A.3: The Polynomial Hierarchy and PSPACE
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E, NE, PNE, NPNE | _ The Strong Exponential Hierarchy

Power

Definitions
E

NE

ASEH

ySEH

SEH
EXPSPACE

Exponential computation hierarchy.

oSEH - | TIME[2"]
n3EH - U NTIME[2"]
pE z 2

NPT i>2
EUNEUNPNEUNPNP" ...
| SPACE[2"']

k

Background The complexity of sparse sets in the polynomial hierarchy is

closely related to the structure of exponential time classes [Boo74,HH74,

HY84,HIS85,CH86a, CHHS86b)|.

Complete Languages

All these classes have straightforward canonical com-

plete languages that capture the actions of generic machines (see the tech-

niques of [Har78]).

Theorems

e E=NE if and only if there are no tally sets in NP —P.

e E=NE if and only if there are no sparse sets in NP —P.

[Boo74,HH74]

[HISS5)]

e E=NE if and only if all capturable sets in the boolean hierarchy are in

P.

[CH86a]

e NE =coNE if and only if every sparse set in NP is NP-printable. [HY84|
o PME_EUNEUNPNEUNPYP™ ...

E=NE= EXP =SEH (Downward Separation).

(Chapter 3)
(Chapter 3)

Figure A.4: E, NE, and the Strong Exponential Hierarchy
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P/poly — Nonuniform Polynomial Time

Power
Small circuits. Table lookup.

Definition
P/poly={L | (3 sparse §)[LeP’]}

Theorems
e NPCP/poly=PH=NPF, [KL8O0]
o (35)[INPCPS A S sparse A § € NP|= PH=PNFlel, [Kad87]
e There is a relativized world A and a sparse set § so PSPACE# C p4®S
yet the boolean hierarchy relative to A is infinite. [CHS6a)

o If P has small ranking circuits then P#P CPH=NPYP.  (Chapter 4)

e If P has small ranking circuits then P has small ranking circuits that
can be printed by a A} machine. (Chapter 4)

Figure A.5: P/Poly
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UP, US - Unique Polynomial Time

Power

Categorical acceptance.. Uniqueness..... .

Definition
UP = {L| there is a nondeterministic polynomial time Turing machine N
so L=L(N), and for all z, the computation of N(z) has at most
one accepting path}.
US = {L| there is a polynomial predicate P and integer k so for all z,
zeLs|{y| ly|<[z[*AP(z, y)} =1}
Background

UP is defined in (Valiant [Val76]). US is studied in (Blass and Gurevich
[BG82]). UP is related to cryptography [GS84] and to central conjectures in
structural complexity theory [JY85,HH87].

Complete Problems
USAT={f | f has exactly one satisfying assignment} is complete for US.

UP may not have complete languages. There are relativized worlds where it
does not have complete languages and relativized worlds where P4 £ UP4 #£
NP4 yet UP# does have complete languages [HHS6a).

Figure A.6: UP—Part I
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UP, US — Unique Polynomial Time

Theorems
o P#UP & one-way functions exist. [GS84]

e P#UPNcoUP & one-way functions whose range is in P exist. [GS84]

e UPCNPNTUS
o If UP has complete languages then it has a complete language of the
form L=SATNA, A€P. [HH86a]
e There is an oracle so USAT# is not (DF)4-complete. [BG82]
e (3A)[PA=UP4£NP4. (3B)PZ#UPZ=NP?. [Rac82]
o (34)[UP4 has no complete languages]. (HH86a)
. (34)[PA #£UPA #NP4 and UP# has complete languages |.  [HH86a)

o (VA)[NA is categorical ]=>(VA)[L(N‘.A)€pNP€BA].
(Chapter 5) and [HH87]
e There is a reasonable (i.e., PA#NPA) oracle A for which P4 =UPA4

(that is, there are no one-way functions) yet there are sets that are

<P:4_complete for NP# and are non-p4-isomorphic. [HH8T]

o P#AUPNcoUP if and only if there is a set S so (1) S€P and § CSAT,
and (2) f€ S =f has exactly one solution, and (3) no P machine can

find solutions for all formulas in S—that is,

0 f€S
the unique satisfying assignment of f fes

9(f)={

is not a polynomial time computable function. (Chapter 6)

Open Problems Probs(P4=UP#4)=1? Does UP have complete languages
[HH86a]? Do one-way functions exist [GS84]?

Figure A.7: UP—Part II
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#P — Sharp P (Counting Functions)

Power

Counting.

Definition

#P = {f|(3 nondeterministic polynomial time Turing machine N)(Vz)
[f(z)= number of accepting paths of N(z)]}.

Background
#P was first studied by Valiant [Val79a], who showed that counting ver-
sions not only of NP-complete problems but also of P problems can be #P-

complete.

Complete Problems
#SAT is a representative #P function: p#P1] — p#SAT(1],

Theorems
o GAPF —((BH4U(m)*) 0. [Ang80]
o If #SAT has a O(n!™¢) enumerative approximator then P =P#P
[CH86a)]
e P=P#P if and only if every P set has a polynomial time computable
ranking function. [GS85], [Rud87], and (Chapter 4)
Open Problems
o P#¥PCPH?
o PHCP#F?

Figure A.8: #P
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/ PSPACE \

NPNP coNPNP

/ PNP

/

NP N coNP

Figure B.1: The Structure‘of The Polynomial Hierarchy
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EXPSPACE

\
/

NPNE coNPNE

PNE

/\
/

coNE

Figure B.2: The Structure of the Strong Exponential Hierarchy
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NPNP coNPNP
PNP
coDP DP
coUsS us
NP coNP

coUP UpP

Figure B.3: The Structure of UP and US within the Polynomial Hierarchy
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Figure B.4: The Structure of #P and the Polynomial Hierarchy
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