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Abstract

Attribute editing has become an important and emerg-
ing topic of computer vision. In this paper, we consider
a task: given a reference garment image A and another im-
age B with target attribute (collar/sleeve), generate a photo-
realistic image which combines the texture from reference A
and the new attribute from reference B. The highly convo-
luted attributes and the lack of paired data are the main
challenges to the task. To overcome those limitations, we
propose a novel self-supervised model to synthesize gar-
ment images with disentangled attributes (e.g., collar and
sleeves) without paired data. Our method consists of re-
construction learning step and adversarial learning step.
The model learns texture and location information through
reconstruction learning. And the model capability is gen-
eralized to achieve single-attribute manipulation by adver-
sarial learning. Meanwhile, we compose a new dataset,
named GarmentSet, with annotation of landmarks of col-
lar and sleeves on clean garment images. Thoughtful ex-
periments on this dataset and real-world samples demon-
strate that our method can synthesize significantly better
results than the state-of-the-art methods in both quantita-
tive and qualitative comparisons. The code is available
at:https://github.com/gli-27/TailorGAN.

1. Introduction
Deep generative techniques [8, 14] have led to highly

successful image/video generation, some focusing on style
transfer [36], and others on the synthesis of desired condi-
tions [15, 24]. We propose a novel schema to disentangle
attributes and synthesize high-quality images with the de-
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Figure 1. A graphical demonstration of our task and result. Given
a reference fashion garment (on the left) and the desired design at-
tribute (in the middle), we aim to generate a new fashion garment
that seamlessly integrates the desired design attribute to the ref-
erence image. The first row shows collar-editing, and the second
row shows sleeve-editing. The results generated by our system are
shown on the right.

sired attribute while keeping other attributes unchanged. In
this paper, we focus on the problem of fashion image at-
tribute manipulation to demonstrate the capability of our
method. By our method, users can switch a specific part
of garments to the wanted designs (e.g., round collar to V-
collar). The objective is to synthesize a photo-realistic new
fashion image by combining different parts seamlessly to-
gether. Potential applications of such systems range from
item retrieval to professional fashion design assistant. In
Fig. 1, we make a graphical demonstration of our task and
result.

Recently, Generative Adversarial Networks (cGAN) [8,
15, 24], image-to-image translation [9], and Cycle-
GAN [36] have been proved effective in generating photo-
realistic images, image syntheses using such models usually
involve highly entangled attributes and may fail in editing
target attribute/object separately [18, 29, 36]. Furthermore,
the large variance in the garment textures causes additional



problems. It is impossible to build a dataset that is large
enough to approximate the distribution of all garment tex-
ture and design combinations, which serve as paired learn-
ing examples to train models such as [24, 9]. Novel learning
paradigm is expected to overcome this difficulty.

To solve these challenges, we propose a novel self-
supervised image generative model, TailorNet, that can
make disentangled attribute manipulations. TailorNet ex-
ploits the latent space expression of input images without
paired training images. Image edge maps are used to isolate
the structures from textures. By using edge maps instead
of RGB color images, we achieve good results with only a
small amount of data. Our model is data-parsimonious and
achieves fashion attribute-editing that is robust to various
geometric transformations between the reference and de-
sign attribute images. The model capacity is further gener-
alized in a GAN framework to achieve single-attribute ma-
nipulation using random fashion inputs. Besides the recon-
struction learning and the adversarial learning, an attribute-
aware discriminator is weaved into the model to guide the
image editing. This attribute-aware discriminator helps in
making high-quality single attribute editing and guides a
better self-supervised learning process.

Currently available fashion image datasets (e.g., Deep-
Fashion [13]) mostly consist of street photos with complex
backgrounds or with user’s body parts presented. That extra
visual information may hinder the performance of an image
synthesis model. Thus, to simplify the training data and
screen out noisy backgrounds, we introduce a new dataset,
GarmentSet. The new dataset contains fashion images with
no human user presented, and most images have single-
color backgrounds.

Contributions made in this paper can be summarized as:

• We propose a new task in deep learning fashion stud-
ies. Instead of generating images with text guid-
ance, virtual try-on, or texture transferring, our task is
to make new fashion designs with disentangled user-
appointed attributes.

• We exploit a novel training schema consists of recon-
structive learning and adversarial learning. The self-
supervised reconstructive learning guides the network
to learn shape, location information from the edge
map, and texture information from the RGB image.
The unpaired adversarial learning gives the network
generalizability to synthesize images with new disen-
tangled attributes. Besides the reconstructive learning
and adversarial learning, we propose a novel attribute-
aware discriminator, which helps high-quality attribute
editing by isolating the design structures from the gar-
ment textures.

• A new dataset, GarmentSet, is introduced to serve our
attribute editing task. Unlike existing fashion datasets

in which most images illustrate the user’s face or body
parts with complicated backgrounds, GarmentSet fil-
ters out the most redundant information and directly
serves the fashion design purpose.

The rest of this paper is organized as follows: A brief re-
view of related work is presented in Sec. 2. The details of
the proposed method are described in Sec. 3. We introduce
our new dataset in Sec. 4. Experimental details and results
are presented in Sec. 5. In Sec. 5.6, we further conduct ab-
lation studies to investigate the performances of our model
explicitly. And finally, Sec. 6 concludes the paper with dis-
cussions of limitations.

2. Related Work

Generative Adversarial Network (GAN) [8] is one of the
most popular deep generative models and has shown im-
pressive results in image synthesis studies, like image edit-
ing [22, 28] and fine-grained objects generating [24, 12].
Researchers utilize different conditions to generate images
with desired properties. Existing works have explored var-
ious conditions, from category labels [21], audio [6, 5],
text [24], skeleton[19, 10, 35, 23] to attributes [26]. There
are a few studies that investigate the task of image trans-
lations using cGAN [15, 24, 4]. In the context of fashion-
related applications, researchers apply cGAN in automated
garment textures filling [31], texture transferring [11], and
virtual try-on [37, 30] by replacing dress on a person with a
new one. More related work is sequential attention GAN
proposed by Cheng et al. [7]. Their model uses text as
the guidance and continuously changes the fashion designs
based on user’s requests, but the attribute changes are highly
entangled. In contrast to this work, we propose a new train-
ing algorithm that combining self-supervised reconstruction
learning with adversarial learning to make disentangled at-
tribute manipulations with user-appointed images.
Self-supervised generation is recently introduced as a
novel and effective way to train generative models with-
out paired training data. Unpaired image-to-image transla-
tion framework such as CycleGAN [36] removes pixel-level
supervision. In CycleGAN, the unpaired image to image
translation is achieved by enforcing a bi-directional trans-
lation between two domains with an adversarial penalty on
the translated image in the target domain. The CycleGAN
variants [34, 16] are moving towards the direction of unsu-
pervised learning approaches. However, CycleGAN-family
models also create unexpected or even unwanted results,
which are shown in the experiment section. One reason
for such a phenomenon is due to the lack of straightforward
knowledge of the target translation domain in the circularity
training process. Inherent attributes of the source samples
may be changed in a translation process. To avoid such un-
wanted changes, we keep an image reconstruction penalty



Figure 2. The network architecture of TailorNet. At the supervised reconstruction step (upper part), we extract the edge feature (e.g.
location and shape feature) by Φedge and extract image feature (texture feature) by Φimg . Then we merge the two vector in latent space
and pass through image generator Ψ to output mask and attention. At the adversarial training step (the lower part), we extract the shape
feature of target edge map ET usingΦedge and extract texture feature using Φimg . The attribute discriminator (Attr-D) outputs real/fake
score and the attribute class of the fake image ÎT yield by Ψ.

in our image editing task.
Attracted by the huge profit potentials in the fashion in-

dustries, deep learning methods have been conducted on
fashion analysis and fashion image synthesis. Most existing
researches focus on fashion trend prediction [2], clothing
recognition with landmarks [13], clothing matching with
fashion items in street photos [17] and fashion recommen-
dation system [3, 32]. Different from those research lines,
we focus on the fashion image synthesis task with single
attribute manipulations.

3. Methodology
This section presents the implementation details of our

method. There are two crucial steps in the model train-
ing: (1) self-supervised reconstruction learning and (2) gen-
eralized attribute manipulations using adversarial learning.
The model learns how to fill the correct texture and to lo-
cate the fashion pattern in the correct position. The second
step helps the model generating high-quality images with
desired attributes. Although we use collar translating ex-
ample in Fig. 2, we emphasize here that our model can be
applied to attributes other than collar parts. We show the
sleeve editing results in the later section.

3.1. TailorNet: Learning to Manipulate Designs

Self-Supervised Learning Step. The motivation of for-
mulating a self-supervised model is the fact that it is almost
impossible to collect paired training images for a fully su-
pervised model. Using the collar editing task as an exam-
ple, for each image in a fully supervised training process,

one needs to collect paired images for each collar type. In
these paired images, only the collar parts are different while
the other attributes, like body decorations, clothing textures,
etc., must stay unchanged and match with other paired im-
ages. Such data is usually unavailable. Also, the dataset size
increases exponentially when multiple attribute annotations
are needed for each image.

Based on the motivations discussed above, we employ
an encoder-decoder structure for the self-supervised recon-
struction training step. Given a masked garment image IM

(mask out the collar/sleeve part from the original garment
image IO) and edge map EO, our reconstruction step re-
constructs the original garment image (collar region). From
daily experiences, individual fashion designs may highly
entangle with textures or colors. For instance, light pink
color is rarely used on men’s garments, and leather is usu-
ally used to make jackets, etc. In our task, we want our
model focusing only on the design structure editing rather
than the clothing texture translating, which is inherited
from the reference garment image. Specifically, the self-
supervised learning step is defined as:

ÎR = SAM(Ψ(Φimg(IM )⊕ Φedge(E
O)), IM ) , (1)

where Φimg and Φedge are image encoder and edge encoder,
respectively. Φimg and Φedge consist of several 2D convo-
lution layers and residual blocks. Ψ is the image decoder,
which consists of several 2D transpose-convolution layers.
⊕ is channel-wise concatenation. After encoding, we feed
the concatenated latent vector to Ψ to output attention mask
m and new pixel C . The SAM block (see Eq.3) outputs



the reconstructed image ÎR based on m, C and IM . This
learning step learns how to reconstruct IO according to the
texture feature from IM and shape feature from EO.

Different from other methods [6, 5], we only use percep-
tual loss, which is computed by taking the L1 distance of
the VGG features (first 16 layers) for this step, which yields
better results (see Fig. 10). Specifically, the loss function
for this training step is defined as:

LR =LVGG(IO, ÎR)

= Ê
IR

[||φ(IO)− φ(ÎR)||11] , (2)

where φ is a feature extractor pretrained from image clas-
sification [27]. From the reconstruction training, the gener-
ator learns to fill the garment texture and allocates the de-
sired part at the correct position to output the original un-
masked image IO. In our empirical study, we observe that
this learning step is critical to the full model since it learns
how to synthesize the collar part by reconstruction. In this
step, the model learns how to do texture matching and do
pattern locating. During the training process, we apply ran-
dom rotations, translations, and scale shifts to the input edge
maps. Thus, the model can is trained to handle potential ge-
ometric transformations and can allocate the desired fashion
pattern in the correct position.
Self-Attention Mask Operation (SAM). During the re-
construction step, the model should learn to change only the
target part and keep the rest parts of an image untouched.
Thus, we introduce a self-attention mask to the generator.
The self-attention mechanism can guide the model to focus
on the target region. This subsection reveals how the self-
attention mask helps in making high-quality results.

After the edge map and the masked image are encoded,
the latent space vectors are concatenated and then are de-
coded by the decoder network. The decoder produces two
outputs: single-channel self-attention mask m and new
pixel C. The final output of the generator combines the
masked color image with the input cropped image IM . The
combination step follows the equation:

ÎRi,j = mi,j ×Ci,j + (1−mi,j)× IMi,j , (3)

where mi,j , Ci,j and ÎRi,j are the pixel at ith row and jth

column in the self-attention mask, the new pixel and the
final output image. The self-attention mask layer and the
color layer share the bottom transpose convolutional blocks
in the decoder. The output of the last transpose convolu-
tional layer is fed into two activation layers: a Sigmoid layer
with a single-channel output (self-attention mask) and a hy-
perbolic tangent layer with three-channels output (the new
pixel). The self-attention mask guides the network focusing
on the attribute related region while training the network in
a fully self-supervised manner.

3.2. Generalized Single Attribute Manipulations

We introduced the self-supervised reconstruction learn-
ing step in Sec. 3.1, which can reconstruct the original im-
age. However, our task is to synthesize new images by ma-
nipulating the attributes. The model trained with the recon-
struction step can not yield good results since it is not gener-
alizable to synthesize a new image with other new attribute
types (e.g., new collar type, and new sleeve type). Mean-
while, the synthesized image with the reconstruction step is
blurry, which makes the results unrealistic. To tackle those
problems, we have another adversarial learning step, which
consists of the encoder-decoder network(see Sec. 3.1) and a
novel attribute-aware discriminator.

To enforce the model to output image with correct at-
tributes, we propose a discriminator with two different re-
gression scores: a binary (real/fake) label and an attribute
prediction vector. The attribute prediction vector is further
optimized by cross-entropy loss, which is defined as:

`attr(I), ~V T/O) =− ~V T/O ∗ log(f(I))

− (1− ~V T/O) ∗ log(1− f(I)) , (4)

where the vector ~V T/O is the class vector of target attribute
and f is an attribute classifier that outputs the class label
vector of image I . During adversarial training, when we
forward IO and ~V O to discriminator, the parameters of dis-
criminator is updated to learn how to classify the attribute;
when we forward ÎT and ~V T to discriminator, we do not
update the parameters in discriminator, but update the pa-
rameters in generator according to the output attribute label.
Thus, the full GAN loss can be formulated as:

LGAN = E
{ET ,IM}

[(1− D(G(ET , IM ))2]+

1

2
E

{ET ,IM}
[D(G(ET , IM ))2]+

1

2
E

{IO}
[(D(IO)− 1)2]+

λ1 ∗ E
{ET ,IM}

[`attr(G(ET , IM ), ~V T )]+

λ1 ∗ E
{IO}

[`attr(IO), ~V O)] , (5)

where the λ1 is a hyper-parameter to balance the loss terms.
We set λ1 = 0.1 in all experiments. Besides the GAN loss,
we also apply perceptual loss in this training step. Thus, the
loss function for this adversarial learning step is defined as:

Ladv = LGAN + λ2 ∗ LV GG , (6)

. We set the hyper-parameter λ2 = 0.5 to balance the loss
terms. In our empirical study, we observe that the model is
sensitive to λ2 and we need to choose different λ2 if we use
different VGG layer feature to compute perceptual loss.



Figure 3. Samples of each collar type and sleeve type from GarmentSet dataset. The pie charts demonstrate the collar type and sleeve type
distribution. There are in total 12 collar types and 2 sleeve types. That is the data distribution used in this paper. We will release the dataset
once the paper is accepted.

Algorithm 1 Training steps
Require: α is the learning rate. B is the batch size.
Require: θG generator parameter. θD is the discriminator parameter.

for number of iterations do
Sample {IOi , EOi , IMi }Bi=1
Updating the generator G in reconstruction step:
{ÎRi }

B
i=1 ← Gθ({EOi }Bi=1, {IMi }Bi=1)

θG ← Adam{∇θG ( 1
B

∑B
i=1(LR(IOi , ÎRi ), α))}

for number of iterations do
Sample {IOi , ETi , IMi , ~V Ti }Bi=1
Updating the discriminator D in adversarial step:
ÎTi ← Gθ(E

T
i , I

M
i )

θD ← Adam{∇θD ( 1
B

∑B
i=1(LGAN (IOi , Î

T
i ,
~V Ti ), α))}

Updating the generator G in adversarial step:
ÎTi ← Gθ(E

T
i , I

M
i )

θG ← Adam{∇θG ( 1
B

∑B
i=1(Ladv(IOi , ÎTi , ~V

T
i ), α))}

3.3. Training Algorithm

Combining the self-supervised reconstruction learning
step (Sec. 3.1) with the adversarial learning step (Sec. 3.2),
our full model is trained in two separately training steps.
Specifically, we formulate the training algorithm in Algo-
rithm 1. When training the generator G in reconstruc-
tion step without discriminator D, the generator G receives
masked image IM and an original attribute type Eo as in-
put, and it outputs the reconstructed image ÎR. We try to
minimize the reconstruction loss LR to enforce the network
to learn to generate correct texture and put it to geometry
location. When training the discriminator D in adversarial
step, the generator G receives masked image IM and a new
attribute type ET as input, and it outputs the edited image
ÎT . We try to minimize the GAN loss (LGAN ) since there
is no paired ground truth in this step. This step enforces
the network to learn to synthesize images by manipulating
the target attribute type ET . Then we update parameters in

generator G in the adversarial step by minimizing the adver-
sarial loss (Ladv). By optimizing the loss in reconstruction
and adversarial steps, the TailorNet can learn realistic tex-
ture and geometry information to yield high-quality images
with the new attribute type.

4. GarmentSet dataset

This part serves as a brief introduction to GarmentSet
dataset. Currently available datasets like DeepFashion [13]
and FashionGen [25] mostly consist of images including the
user’s face or body parts and street photos with noisy back-
grounds. The redundant information raises unwanted hard-
ness in the training process. To filter out such redundancy
information in the images, we build a new dataset: Gar-
mentSet. In this dataset, we have 9636 images with collar
part annotations and 8616 images with shoulder and sleeve
annotations. Both classification types and landmarks are
annotated. Although in our studies, the landmark locations
are only used in the image pre-processing steps, they still
can be useful in future researches like fashion item retrieve,
clothing recognition, etc.

In Fig. 3, we present sample pictures for each collar type,
each sleeve type, and the overall data distributions in the
dataset. Round collar, V-collar, and lapel images together
contribute over eighty percent of the total collar-annotation
images. The sleeve-dataset only contains two types: short
and long sleeves. Although not used in training, the dataset
also contains attribute landmark locations, including col-
lars, shoulders, and sleeve ends. We keep collecting more
data images and adding new attribute annotations. This dis-
tribution may change in the published version.



Type Type 1⇒ Type 2 Type 2⇒ Type 1 Type 1⇒ Type 6 Type 6⇒ Type 1 Type 2⇒ Type 6 Type 6⇒ Type 2

C.E. SSIM PSNR C.E. SSIM PSNR C.E. SSIM PSNR C.E. SSIM PSNR C.E. SSIM PSNR C.E. SSIM PSNR
CycleGAN 12.48 0.77 18.72 1.74 0.64 13.97 5.21 0.74 23.40 2.97 0.78 18.77 6.02 0.89 18.89 10.02 0.77 17.63
Pix2pix 20.01 0.87 22.75 12.73 0.89 21.42 21.62 0.88 17.63 15.79 0.89 21.88 15.12 0.77 23.15 19.67 0.88 23.04
Ours 9.17 0.89 23.53 3.70 0.89 23.75 6.29 0.90 23.92 3.25 0.90 22.47 5.62 0.89 23.08 8.13 0.90 22.24

Table 1. Measurements for all three models based on target translating types on testing set. In the table C. E. column is the average
classification error scores for each paired type translation. The bold numbers in each column are the best scores.
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Figure 4. Testing results of collar editing. The images are clus-
tered based on the target collar types. The generated results of
simple collar patterns (round and V-collar) are, in general, better
than complicated ones (lapel). We train CycleGAN, pix2pix mod-
els separately for each specific transformation.

5. Experiments
5.1. Data Pre-processing

In this paper, we randomly sample 80% data for train-
ing and 20% for testing. Meanwhile, in Sec. 5.3, we keep
one collar type out in the training set to demonstrate the
robustness of our model. In the data pre-processing step,
we generate mask-out images IM and edge maps of data
images. We use the left/right collar landmark locations to
make a bounding box around the collar region. A pretrained
holistically edge detection (HED) model [33] takes charge
of making edge maps. The HED model is trained on the
BSDS dataset [20].

We notice that the image quality of the edited results de-
pends on the input edge map resolution. Since the HED
model used is pretrained on a general image dataset, it
struggles in catching structural details and may also gen-
erate unwanted noise maps. The HED model produces low-
resolution edge maps for a target image with complicated,
detailed structures.

5.2. Comparative Studies

For the comparative studies, we compare our model with
CycleGAN [36] and pix2pix [9]. In Table 2, we compare
our model with pix2pix using random collar types. Since
the CycleGAN model can not handle two specific collar
type translations, we drop the cycleGAN model in this ran-

C.E. SSIM PSNR
Our model 5.78 0.8921 23.36
pix2pix 16.12 0.8783 22.83

Table 2. Testing results of TailorGAN and pix2pix trained on all
collar type inputs.

dom translating comparison test. In the testing results, our
models out-performances pix2pix model in all collar-type
translating tasks. To compare with [36], we have trained
three different CycleGAN models: collar type 1 (round col-
lar) ⇔ type 2 (V-collar), collar type 1 (round collar) ⇔
type 6 (lapel) and collar type 2 ⇔ type 6. But our model
is trained with all different types together.
Qualitative results. In Fig. 4, we present testing results
of three models. As one can see in the sample images, Cy-
cleGAN does not preserve garment textures. The trained
pix2pix model performs poorly in all examples. At the col-
lar part, the pix2pix outputs only show color bulks with no
structural patterns.
Quantitative results. For the quantitative comparisons,
in measuring model performances, we use three metrics:
classification cross-entropy errors (C.E.), structure similar-
ity index (SSIM), and peak signal to noise ratio (PSNR).
The classification error is measured with a classifier pre-
trained on GarmentSet dataset. We use a classification error
since there are no paired testing images for the edited re-
sults. The classification error can measure the distance from
the target collar designs. The SSIM and the PSNR scores
are derived from the differences between the original image
and the edited image. From the numerical results presented
in Table.1, our model outperforms both CycleGAN and
pix2pix in making high-quality images with higher classi-
fication accuracy. We attribute this to the poor texture pre-
serving the ability of the CycleGAN/pix2pix model.

5.3. Synthesizing Unseen Collar Type

To test our model’s capability of processing collar types
that are missing in the dataset, we take one collar type out
in the training stage and test the model’s performance on
this unseen collar type. In this test, we take collar type 1,
2, and 6 out. We also test the taken-one-out model with a
fully trained model that meets all collar types in its’ training
process. The classification errors for each pair of models are
calculated for each taken out collar type on the testing set.
The qualitative result is shown in Fig.5



Figure 5. The testing results of the unseen target collar type. The
left side indicates which type we are generating (remove this type
in training set). The 1th, 4th columns are the original reference
images. The 2th, 5th columns are images with target collar types.
The 3th, 6th columns are generated images with target collar types
with texture/style of reference image.

C. E. type 1 out type 2 out type 6 out
full model 3.48 7.41 5.27
one-out model 4.74 8.59 5.34

Table 3. The one-out model V.S. the fully trained model.

Based on the qualitative analysis and quantitative com-
parisons (see Tab.3), our model shows a strong generalizing
ability in synthesizing unseen collar types.

5.4. Sleeve Generation

In the previous discussions, we applied our model in col-
lar part editing. GarmentSet dataset also contains sleeve
landmarks and types information. Thus, we test our model’s
capability in editing sleeves and present testing results in
Fig. 6. We used the same training scheme. Instead of col-
lars, the sleeve parts are masked out. Due to simpler edge
structures and better resolutions in the edge maps, the edited
sleeve images have better image qualities and are close to
the real images. We discuss more details of sleeve editing
results in the user evaluation section.

5.5. User Evaluations and Item Retrieves

To evaluate the performance in a human perceptive level,
we conduct thoughtful user studies in this section. Human
subjects evaluation (see Fig.7) is conducted to investigate
the image quality and the attribute (collar) similarity of our
generated results compared with [36, 9]. Here, we present
the average scores for each model based on twenty users’
evaluations. The maximum score is ten. As shown in Fig. 7,

Figure 6. Testing results of editing sleeves using TailorGAN. The
1th, 4th columns are the original reference images. The 2th, 5th

columns are images with target sleeve types. The 3th, 6th columns
are generated images with target sleeve types with texture/style of
reference image.

Figure 7. Average user evaluation scores based on image quality
and target part similarity. The part similarity is based on users’
scores on the edited part structure similarity between the edited
image and the target image.

our model receives the best scores in both image quality and
similarity evaluations.

We also collected users’ feedback to the sleeve changing
results, and the feedback shows that users can not distin-
guish real/fake between our generated images and real im-
ages. Sleeve-tests only evaluate image quality. In each test
case, there are two pictures: (1) the original picture and (2)
the edited picture. Users decide scores ranging from zero to
ten to both pictures based on the image quality. Translating
from short to long sleeves is, in general, a harder task due
to auto-texture filling and background changing. Users may
find that it is harder to distinguish the real images from the
edited ones for short sleeve garments. Those observations
are reflected in the evaluation scores.

To prove that TailorGAN can be useful in image item
retrieves, we upload the edited images to a searching-based
website[1] and show sample search results in Fig.9.



Figure 8. User feedback to sleeve editing results.

Generated image Retrived imagess
Figure 9. Top 5 matching items from [1]. The first column (green
box) are generated images and the rest of the column (yellow) are
retrieved images based on the generated images from [1].

5.6. Ablation Studies

In this section, we want to clarify our choices of two sep-
arately training steps are crucial to generate photo-realistic
results. As we argued, to disentangle the texture and the de-
sign structure meanwhile keep the rest similar, the model
needs to have the capacity to reconstruct. Also, using
two separately training steps makes sharper results. Tab. 4
shows that without using the reconstruction training step
produces blurry images. Similarly, feeding RGB reference
images as input instead of gray edge images, the model pro-
duces blurry results since the lack of clear geometric edge
information. For qualitative analysis, We plot testing results
of RGB inputs and results of only use adversarial training
step and compare those changes with our full model.

Fig.10 shows edited image results of our current model
versus L1 loss and RGB input results. L1 loss model
doesn’t prioritize high-frequency details and tends to av-
erage the pixel values in the editing region. On the other
hand, VGG layers capture various features from the edge,
color features in the starting layers to the texture, and com-
mon image structures in the high-level layers. On the other
hand, using RGB images as inputs, the results show un-
expected effects. The RGB-input includes extra structures

Real Full Model w/oTarget w/o  Pix2Pix

Figure 10. Results of using L1 loss (w/o LV GG) and using RGB
pictures (w/o ET ) as inputs instead of edge maps. We also present
results of Pix2Pix in the last column.

C.E. SSIM PSNR
Full model 5.78 0.8921 23.36
w/o reconstruction step 6.34 0.7706 19.46
w/o edge input 7.21 0.8782 21.58

Table 4. Measurements of the final model versus two variants on
testing set. w/o reconstruction step represents we use only adver-
sarial training step rather than two separately steps. w/o edge input
indicates that we use RGB image as input rather than grey-scale
edge map.

that are not related to the target images or original images.
We hypothesize that those unexpected structures are from
the texture-design entanglement. We measure the classi-
fication error, SSIM, and PSNR for three variants. Since
the major part of the image is left untouched in the result,
the leading score may not be impressive in numbers. But,
through the qualitative analysis, we can confirm that our
current model can generate high-quality images with mode
details preserved.

6. Conclusion

In this paper, we introduce a novel task to the deep learn-
ing fashion field. We investigate the problem of doing im-
age editing to a fashion item with user defined attribute.
Such methods can be useful in real world applications. We
propose a novel training schema that can manipulate a sin-
gle attribute to an arbitrary fashion image. To serve a better
model training, we collect our own dataset. Our model out-
performances the baseline models and successfully gener-
ates photo realistic images with desired attribute.
Acknowledgement. This work was partly supported by
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