Deep Cross-Modal Audio-Visual Generation
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Introduction

Motivation: Cross-modal audio-visual perception has been a long-lasting topic in
neurology and psychology. However, the problem of computational cross-modal
audio-visual generation has not been systematically studied in computer vision,
audition or multimedia communities.

Objective: In this paper, we make the first attempt to solve this cross-modal
generation problem leveraging the power of deep generative adversarial training. Our
system 1s trained with pairs of visual and audios, which are typically contained in
videos, and 1s able to generate one modality (1mage/sound) from the other modality
(sound/image). We generate images 1n two scenarios, instrument-oriented and
pose-oriented; we generate sound 1n log mel-spectrum (LMS).
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Generated images with different poses
S21 (Pose-oriented): Figure above shows output of pose-oriented model. We can
see this model can generate a sequence of 1images. I12S: Figure below shows the
mel-spectrum we generated using I12S network.
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Generated outputs using our cross-modal audio-visual generation models
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(b) Image-to-Sound (I12S) network
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The overall diagram of (a)S21 GAN network and (b) 12S GAN network E

S21 Generator: The S2I generator 1s denoted as: Gg, ,; : RI¢@I x RZ s RI. The sound |
encoding vector of size 128 is first compressed to a vector of size 64 via a fully 0.4
connected layer followed by a leaky ReLU, which 1s denoted as ¢(A4). Then 1t 1s
concatenated with a random noise vector z € RZ. The generator takes this concatenated
vector and produces a synthetic image Z; + Gg.,1(z, p(A))of size 64x64x3. 0
S2I Discriminator: The S2I discriminator is denoted as: Dg.,; : RY x RI*(4!— [0, 1], Tt Epochnumber -+ Acouracy

takes an 1mage and a compressed sound encoding vector and produces a score for this Classification accuracy on generated images
pair being a genuine pair of image and sound.

Conditional GANs: min maxV(D, G) =Egnpy,,,(2) 108 D(2]Y)] + Eanp, () [log(1 — D(G(2]y)))],

=
N

/ |
I
/ | :
/ I
| I ’
|
f ! |
/ ' .
| : |
b & \4
i
! i
‘l
!
/
\ 4

20 40 60 80

Accuracy

Classifier-based evaluation: We build a image verifier trained by real images (acc
>95%). Figure above shows the relation between 1mage quality and verification

Hereyisa COIldlthIl.—a labelofor example, (.ngly) 1s the out.put sample generated by the accuracy. Human-based evaluation: We also have human subjects evaluate our
Generator network given noise z and conditiony, D(zly) 1s a score between 0 and 1 sound-to-image generation (see figure below). Score guideline is shown in the table.
corresponding to how genuine the sample x 1s as an element satisfying condition vy. — it
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