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Abstract

We devise a cascade GAN approach to generate talk-
ing face video, which is robust to different face shapes,
view angles, facial characteristics, and noisy audio con-
ditions. Instead of learning a direct mapping from au-
dio to video frames, we propose first to transfer audio to
high-level structure, i.e., the facial landmarks, and then
to generate video frames conditioned on the landmarks.
Compared to a direct audio-to-image approach, our cas-
cade approach avoids fitting spurious correlations between
audiovisual signals that are irrelevant to the speech con-
tent. We, humans, are sensitive to temporal discontinu-
ities and subtle artifacts in video. To avoid those pixel
jittering problems and to enforce the network to focus on
audiovisual-correlated regions, we propose a novel dynam-
ically adjustable pixel-wise loss with an attention mech-
anism. Furthermore, to generate a sharper image with
well-synchronized facial movements, we propose a novel
regression-based discriminator structure, which considers
sequence-level information along with frame-level informa-
tion. Thoughtful experiments on several datasets and real-
world samples demonstrate significantly better results ob-
tained by our method than the state-of-the-art methods in
both quantitative and qualitative comparisons.

1. Introduction

Modeling the dynamics of a moving human face/body
conditioned on another modality is a fundamental prob-
lem in computer vision, where applications are ranging
from audio-to-video generation [28, 3, 2] to text-to-video
generation [23, 19] and to skeleton-to-image/video genera-
tion [21, 7]. This paper considers such a task: given a target
face image and an arbitrary speech audio recording, gener-
ating a photo-realistic talking face of the target subject say-
ing that speech with natural lip synchronization while main-
taining a smooth transition of facial images over time (see
Fig. 1). Note that the model should have a robust general-
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Figure 1: Problem description. The model takes an arbi-
trary audio speech and one face image, and synthesizes a
talking face saying the speech. The synthesized frames (last
row) consist of synthesized attention (first row) and motion
(second row), which demonstrate where and how the dy-
namics are synthesizing. For example, the face in the green
box looks similar to the example face so that the attention
map is almost dark; the face in the red box differs much
from the example image, and hence the attention highlights
the mouth region and the motion part hints white pixels for
teeth.

ization capability to different types of faces (e.g., cartoon
faces, animal faces) and to noisy speech conditions (see
Fig. 7). Solving this task is crucial to enabling many ap-
plications, e.g., lip-reading from over-the-phone audio for
hearing-impaired people, generating virtual characters with
synchronized facial movements to speech audio for movies
and games.

The main difference between still image generation and
video generation is temporal-dependency modeling. There
are two main reasons why it imposes additional challenges:
people are sensitive to any pixel jittering (e.g., temporal dis-
continuities and subtle artifacts) in a video; they are also
sensitive to slight misalignment between facial movements
and speech audio. However, recent researchers [3, 12, 17]
tended to formulate video generation as a temporally inde-
pendent image generation problem. For example, Chung
et al. [3] proposed an encoder-decoder structure to gener-
ate one image from 0.35-second audio at each time. Song
et al. [27] adopted a recurrent network to consider tem-
poral dependency. They applied RNN in the feature ex-
traction part, however, each frame was generated inde-
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pendently in the generation stage. In this paper, we pro-
pose a novel temporal GAN structure, which consists of a
multi-modal convolutional-RNN-based (MMCRNN) gen-
erator and a novel regression-based discriminator struc-
ture. By modeling temporal dependencies, our MMCRNN-
based generator yields smoother transactions between ad-
jacent frames. Our regression-based discriminator struc-
ture combines sequence-level (temporal) information and
frame-level (pixel variations) information to evaluate the
generated video.

Another challenge of the talking face generation is to
handle various visual dynamics (e.g., camera angles, head
movements) that are not relevant to and hence cannot be in-
ferred from speech audio. Those complicated dynamics, if
modeled in the pixel space [30], will result in low-quality
videos. For example, in web videos [5, 24] (e.g., LRW and
VoxCeleb datasets), speakers move significantly when they
are talking. Nonetheless, all the recent photo-realistic talk-
ing face generation methods [3, 12, 27, 1, 28, 35] failed to
consider this problem. In this paper, we propose a hierarchi-
cal structure that utilizes a high-level facial landmarks rep-
resentation to bridge the audio signal with the pixel image.
Concretely, our algorithm first estimates facial landmarks
from the input audio signal and then generates pixel varia-
tions in image space conditioned on generated landmarks.
Besides leveraging intermediate landmarks for avoiding di-
rectly correlating speech audio with irrelevant visual dy-
namics, we also propose a novel dynamically adjustable
loss along with an attention mechanism to enforce the net-
work to focus on audiovisual-correlated regions. It is worth
to mention that in a recent audio-driven facial landmarks
generation work [8], such irrelevant visual dynamics are re-
moved in the training process by normalizing and identity-
removing the facial landmarks. This has been shown to
result in more natural synchronization between generated
mouth shapes and speech audio.

Combining the above features, which are designed to
overcome limitations of existing methods, our final model
can capture informative audiovisual cues such as the lip
movements and cheek movements while generating ro-
bust talking faces under significant head movements and
noisy audio conditions. We evaluate our model along with
state-of-the-art methods on several popular datasets (e.g.,
GRID [6], LRW [5], VoxCeleb [24] and TCD [13]). Exper-
imental results show that our model outperforms all com-
pared methods and all the proposed features contribute ef-
fectively to our final model. Furthermore, we also show
additional novel examples of synthesized facial movements
of the human/cartoon characters who are not in any dataset
to demonstrate the robustness of our approach.

The contributions of our work can be summarized as
follows: (1) We propose a novel cascade network struc-
ture to reduce the effects of the sound-irrelevant visual

dynamics in the image space. Our model explicitly con-
structs high-level representation from the audio signal and
guides video generation using the inferred representation.
(2) We exploit a dynamically adjustable pixel-wise loss
along with an attention mechanism which can alleviate tem-
poral discontinuities and subtle artifacts in video genera-
tion. (3) We propose a novel regression-based discrimi-
nator to improve the audio-visual synchronization and to
smooth the facial movement transition while generating
realistic looking images. The code has been released at
https://github.com/lelechen63/ATVGnet.

2. Related Work
In this section, we first briefly survey related work on the

talking face generation task. Then we discuss the related
work of each technique used in our model.
Talking Face Synthesizing The success of traditional ap-
proaches has been mainly limited to synthesizing a talking
face from speech audio of a specific person [11, 9, 29].
For example, Suwajanakorn et al. [29] synthesized a tak-
ing face of President Obama with accurate lip synchro-
nization, given his speech audio. The mechanism is to
first retrieve the best-matched lip region image from a
database through audiovisual feature correlation and then
compose the retrieved lip region with the original face.
However, this method requires a large amount of video
footage of the target person. More recently, by combin-
ing the GAN/encoder-decoder structure and the data-driven
training strategy, [27, 4, 1, 12] can generate arbitrary faces
from arbitrary input audio.
High-Level Representations In recent years, high-level
representations of images [31, 14, 34, 15] have been ex-
ploited in video generation tasks by using an encoder-
decoder structure as the main approach. Given a condi-
tion, we can transfer it to high-level representations and
feed them to a generative network to output a distribution
over locations that a pixel is predicted to move. By adopt-
ing human body landmarks, Villegas et al. [31] proposed an
encoder-decoder network which achieves long-term future
prediction. Suwajanakorn et al. [28] transferred the audio
signal to lip shapes and then synthesized the mouth texture
based on the transferred lip shapes. These works have in-
spired us to use the facial landmarks to bridge audio with
row pixel generation.
Attention Mechanism Attention mechanism is an
emerging topic in natural language tasks [20] and im-
age/video generation task [26, 37, 22, 36]. Pumarola et
al. [26] generated facial expression conditioned on action
units annotations. Instead of using a basic GAN structure,
they exploited a generator that regresses an attention mask
and a RGB color transformation over the entire image. The
attention mask defines a per-pixel intensity specifying to
what extend each pixel of the original image will contribute
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Figure 2: Overview of our network architecture. The blue part illustrates the AT-net, which transfers audio signal to low-
dimensional landmarks representation and the green part illustrates the VG-net, which generates video frames conditioned on
the landmark. During training, the input to VG-net are ground truth landmarks (p1:T ). During inference, the input to VG-net
are fake landmarks (p̂1:T ) generated by AT-net. The AT-net and VG-net are trained separately to avoid error accumulation.

to the final rendered image. We adopt this attention mech-
anism to make our network robust to visual variations and
noisy audio conditions. Feng et al. [10] observed that inte-
grating a weighted mask into the loss function during train-
ing can improve the performance of the reconstruction net-
work. Based on this observation, rather than using a fixed
loss weights, we propose a dynamically adjustable loss by
leveraging the attention mechanism to emphasize the audio-
visual regions.

3. Architecture
This section describes the architecture of the proposed

model. Fig. 2 shows the overall diagram, which is decou-
pled into two parts: audio transformation network (AT-net)
and visual generation network (VG-net). First, we explain
the overall architecture and the training strategy in Sec. 3.1.
Then, we introduce two novel components: attention-based
dynamic pixel-wise loss in Sec. 3.2 and a regression-based
discriminator structure in Sec. 3.3 used in our VG-net.

3.1. Overview

Cascade Structure and Training Strategy We tackle
the task of talking face video generation in a cascade per-
spective. Given the input audio sequence a1:T , one exam-
ple frame ip and its landmarks pp, our model generates fa-
cial landmarks sequence p̂1:T and subsequently generates
frames v̂1:T . To solve this problem, we come up with a
novel cascade network structure:

p̂1:T = Ψ(a1:T , pp) , (1)
v̂1:T = Φ(p̂1:T , ip, pp) , (2)

where the AT-net Ψ (see Fig. 2 blue part) is a condi-
tional LSTM encoder-decoder and the VG-net Φ (see Fig. 2
green part) is a multi-modal convolutional recurrent net-
work. During inference, the AT-net Ψ (see Eq. 1) observes

audio sequence a1:T and example landmarks pp and then
predicts low-dimensional facial landmarks p̂1:T . By passing
p̂1:T into VG-net Φ (see Eq. 2) along with example image
ip and pp, we subsequently get synthesized video frames
v̂1:T . Ψ and Φ are trained in a decoupled way so that Φ can
be trained with teacher forcing strategy. To avoid the error
accumulation caused by p̂1:T , Φ is conditioned on ground
truth landmarks p1:T during training.
Audio Transformation Network (AT-net) Specifically,
the AT-net (Ψ) is formulated as:

[ht, ct] = ϕlmark(LSTM(faudio(at), flmark(hp), ct−1)), (3)

p̂t = PCAR(ht) = ht � ω ∗ UT + M . (4)

Here, the AT-net observes the audio MFCC at and land-
marks PCA components hp of the target identity and out-
puts PCA components ht that are paired with the input au-
dio MFCC. The faudio, flmark and ϕlmark indicate audio en-
coder, landmarks encoder and landmarks decoder. The ct−1
and ct are outputs from cell units. PCAR is PCA reconstruc-
tion and ω is a boost matrix to enhance the PCA feature.
The U corresponds to the largest eigenvalues and M is the
mean shape of landmarks in the training set. In our em-
pirical study, we observe that PCA can decrease the effect
of none-audio-correlated factors (e.g., head movements) for
training the AT-net.
Visual Generation Network (VG-net) Intuitively, simi-
lar to [34, 31], we assume that the distance between current
landmarks pt and example landmarks pp in feature space
can represent the distance between current image frame and
example image in image feature space. Based on this as-
sumption (see Eq. 5), we can obtain current frame feature
v′′t (size of 128 × 8 × 8). Different from their methods,
we replace element-wise addition with channel-wise con-
catenation in Eq. 5, which better preserves original frame
information in our empirical study. At the meanwhile, we
can also compute an attention map (attpt ) based on the dif-



Figure 3: The results of our baseline method. The synthe-
sized frames with pixel jittering problem. The discontinu-
ous problem and subtle artifacts will be amplified after com-
posing into a video.

ference between pt and pp (see Eq. 6). By feeding the com-
puted v′′t and attpt

along with example image feature i′p
(size of 128× 32× 32) into the MMCRNN part, we obtain
the current image feature v′t (see Eq. 7). The resultant image
feature v′t will be used to generate video frames as detailed
in the next section. Specifically, the VG-net is performed
by:

v′′t = fimg(ip) ⊕ (flmark(pt)− flmark(pp)) , (5)

attpt = σ(flmark(pt)⊕ flmark(pp)) , (6)
v′t = (CRNN(v′′t ))� attpt + i′p � (1− attpt) , (7)

where ⊕ and � are concatenation operation and element-
wise multiplication, respectively. The CRNN part consists
of Conv-RNN, residual block and deconvolution layers. i′p
is the middle layer output of fimg(ip), and σ is Sigmoid ac-
tivation function. We omit some convolution operations in
equations for better understanding.

3.2. Attention-Based Dynamic Pixel-wise Loss

Recent works on video generation adopt either GAN-
based methods [1, 32, 27] or Encoder-Decoder-based meth-
ods [3]. However, one common problem is the pixel jit-
tering between adjacent frames (see Fig. 3). Pixel jittering
is not obvious in single image generation but is a severe
problem for video generation as humans are sensitive to any
pixel jittering, e.g., temporal discontinuities and subtle ar-
tifacts in a video. The reason is that GAN loss or L1/L2
loss can barely generate perfect frames that all pixels are
consistently changing in temporal domain, especially for
audiovisual-non-correlated regions, e.g., background and
head movements. In order to solve the pixel jittering prob-
lem, we propose a novel dynamic pixel-wise loss to enforce
the generator to generate consistent pixels along temporal
axis.

As mentioned in Sec. 2, Pumarola et al. [26] exploited a
generator that regresses an attention mask and a RGB color
transformation over the entire image. We adapt this atten-
tion mechanism in our VG-net to disentangle the motion
part from audiovisual-non-correlated regions. Therefore,
our final frame output is governed by the combination:

v̂t = αt �mt + (1−αt)� ip , (8)

where attention αt is obtained by applying convolution and
Sigmoid activation operations on v′t, motion mt is obtained
by applying another convolution and hyperbolic tangent ac-
tivation operations on v′t. This step enforces the network to
generate stable pixels in audiovisual-non-correlated regions
while generating movements in audiovisual-correlated re-
gions.

From Fig. 5, we can conclude that the pixels in
audiovisual-non-correlated regions (e.g., hair, background
etc.) usually attract less attention and are irrelevant to given
condition (audio). In contrast, the network is mainly fo-
cusing on correlated regions (e.g., mouth, jaw, and cheek).
Intuitively, 0 ≤ αt ≤ 1 can be viewed as a spatial mask
that indicates which pixels of given face image ip need to
move at time step t. We can also regard αt as a reference to
represent to what extend each pixel contributes to the loss.
The audiovisual-non-correlated regions should contribute
less to the loss compared with the correlated regions. Thus,
we propose a novel dynamic adjustable pixel-wise loss by
leveraging the power of αt, which is defined as:

Lpix =

T∑
t=1

‖(vt − v̂t)� (αt + β)‖1) , (9)

where αt is the same as αt but without gradient. It repre-
sents the weight of each pixel dynamically that eases the
generation. We remove the gradient of αt when back-
propagating the loss to the network to prevent trivial so-
lutions (lower loss but no discriminative ability). We also
give base weights β to all pixels to make sure all pixels will
be optimized. Here, we manually tune the hyper-parameter
β and set β = 0.5 in all of our experiments.

3.3. Regression-Based Discriminator

Recently, people find that perceptual loss [16] is help-
ful for generating sharp images in GAN/VAE [27, 1]. Per-
ceptual loss utilizes high-level features to compare gen-
erated images and ground-truth images resulting in better
sharpness of the synthesized images. The key idea is that
the weights of the perceptual network part are fixed, and
the loss will only contribute to the generator/decoder part.
Based on this intuition, we propose a novel discriminator
structure (see Fig. 4). The discriminator observes exam-
ple landmarks pp and either ground truth video frames v1:T
or synthesized video frames v̂1:T , then regresses landmarks
shapes p̂1:T paired with the input frames, and addition-
ally, gives a discriminative score s for the entire sequence.
Specifically, we formulate discriminator into frame-wise
part Dp (blue arrows in Fig. 4) and sequence-level part Ds

(red arrows in Fig. 4).
The Dp observes example landmarks and video frames,

then regresses the landmarks sequence based on observed
information. By yielding the facial landmark, it can evalu-
ate the input image based on high-level representation in a
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Figure 4: The overview of the regression-based discrimina-
tor. The ⊕ means concatenation. The + means element-
wise addition. The blue arrow and red arrow represent Dp

and Ds, respectively.

frame-wise fashion. Specifically, the p̂t is calculated by:

p̂t = Dp(pp, vt)

= pp + LSTM(flmark(pp)⊕ fimg(vt)) , (10)

which observes ground truth image during discriminator
training stage and observes synthesized image during gen-
erator training stage.

Besides Dp, the LSTM cell unit yields another branch
Ds, which obtains vectors from each LSTM cell unit and
aggregates them by average pooling. By passing through a
Sigmoid activation function, Ds yields final discriminative
score s for the overall input sequence. The score s can ob-
tained by:

s = Ds(pp, v1:T )

= σ(
1

T

T∑
t=1

(LSTM(flmark(pp)⊕ fimg(vt)))) . (11)

The Dp part is optimized to minimize the L2 loss between
the predicted landmarks and the ground truth landmarks.
Thus our GAN loss can be expressed as:

Lgan =Epp,v1:T [log Ds(pp, v1:T )]+

Epp,p1:T ,ip [log(1− Ds(pp,G(pp, p1:T , ip))]+

‖(Dp(pp,G(pp, p1:T , ip))− p1:T )�Mp‖22+

‖(Dp(pp, v1:T )− p1:T )�Mp‖22 , (12)

where Mp is a pre-defined weight mask hyper-parameter
which can penalize more on lip regions. By updating the

parameters based on the regression loss when training the
discriminator, the Dp can learn to extract low-dimensional
representations from raw image data. When we train the
generator, we will fix the weights of discriminator includ-
ing Ds and Dp so that Dp will not compromise to generator.
The loss back-propagated from Dp will enforce generator to
generate accurate face shapes (e.g., cheek shape, lip shape
etc.) and the loss back-propagated from Ds will enforce the
network to generate high-quality images.

3.4. Objective Function

By linearly combining all partial losses introduced in
Sec. 3.2 and Sec. 3.3, the full loss function L can be ex-
pressed as:

L = Lgan + λ ∗ Lpix , (13)

where λ is a hyper-parameter that controls the relative im-
portance of different loss terms. We set λ = 10.0 in our
experiments.

4. Experiments
In this section, we conduct thoughtful experiments to

demonstrate the efficiency and effectiveness of the proposed
architecture for video generation. Sec. 4.1 explains datasets
and implementation in detail. Sec. 4.2 shows our results
along with other state-of-the-art methods. We show user
studies and ablation study in Sec.4.3 and Sec. 4.4 respec-
tively.

4.1. Experimental Setup

Dataset We quantitatively and qualitatively evaluate our
ATVGnet on LRW dataset [4] and GRID dataset [6]. The
LRW dataset consists of 500 different words spoken by hun-
dreds of different speakers in the wild. We follow the same
train-test split as in [4]. In GRID dataset, there are 1000
short videos, each spoken by 33 different speakers in the
experimental condition. For the image stream, all the talk-
ing faces in the videos are aligned based on key-points (eyes
and nose) of the extracted landmarks using [18] at the sam-
pling rate of 25FPS, and then resize to 128 × 128. As for
audio data, each audio segment corresponds to 280ms au-
dio. We extract MFCC at the window size of 10ms and
use center image frame as the paired image data. Similar
to [3, 27], we remove the first coefficient from the original
MFCC vector, and eventually yield a 28×12 MFCC feature
for each audio chunk.
Implementation Details Our network is implemented
using Pytorch 0.4 library. We adopt Adam optimizer during
training with the fixed learning rate of 2 × 10-4. We ini-
tialize all network layers using random normalization with
mean=0.0, std=0.2. All models are trained and tested on a
single NVIDIA GTX 1080Ti. During the training, the AT-
net converges after 3 hours and the VG-net is stable after
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Figure 5: The outputs of ATVGnet. The inputs are one real-world audio sequence and different example identity images range
from real-world people to cartoon characters. The first row is ground truth images paired with the given audio sequence. We
mark the different sources of the identity image on the left side. From this figure, we can find that the lip movements of our
synthesized frames (e.g., the green box in the last row) are well-synchronized with the ground truth (red box in first row).
Meanwhile, the attention (middle row of the green box) accurately indicates where need to move and the motion (last row of
the green box) indicates what the dynamics look like (e.g. white pixels for teeth and red pixels for lips).

Method Real time ATVGnet(our) Chung et al.[3] Zhou et al.[12] Wiles et al.[35]
Inference time (FPS) 30 34.53 19.10 10.00 10.53

Table 1: The inference time of difference models. We use frame rate (FPS) to measure the time.

24 hours. Table 1 shows the generation time during infer-
ence stage. We can find that our inference time can achieve
around 34.5 frames per second (FPS), which is much faster
than [34, 12, 3] and slightly faster than real time (30 FPS).

4.2. Results

Image results are illustrated in Fig. 5 and Fig. 7. To eval-
uate the quality of the synthesized video frames, we com-
pute PSNR and SSIM [33]. To evaluate whether the syn-
thesized video contains accurate lip movements that cor-
respond to the input audio, we adopt the evaluation ma-
trix Landmarks Distance (LMD) proposed in [1]. We
compare our model with other three state-of-the-art meth-

ods [1, 3, 35]. All of them are trained on LRW dataset while
Chung et al. [3] require extra VGG-M network pretrained
on VGG Face dataset [25] and Wilels et al. [35] need extra
MFCC feature extractor pretrained by [5]. The quantita-
tive results are illustrated in Table 2. The Baseline model is
a straightforward model without any features (e.g., DMA,
MMCRNN, DAL and RD explained in Sec. 4.4) as men-
tioned in Sec. 3. The model ATVG-ND has the same net-
work structure as ATVGnet. But it is trained end-to-end
without the decoupled training strategy (see Sec. 3.1). We
can find that our ATVGnet achieves the best results both in
image quality (SSIM, PSNR) and the correctness of audio-
visual synchronization (LMD).
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Figure 6: Statistics of user studies. The y-axis is the per-
centage of votes and the x-axis is different data sources
(e.g., total means all the video samples, Other means sam-
pled videos from YouTube.) The left histogram is the rating
on authenticity. The right histogram is the rating on syn-
chronization between facial movements and audio.

Method LRW GRID

LMD SSIM PSNR LMD SSIM PSNR
Chen [1] 1.73 0.73 29.65 1.59 0.76 29.33
Wiles [35] 1.60 0.75 29.82 1.48 0.80 29.39
Chung [3] 1.63 0.77 29.91 1.44 0.79 29.87
Baseline 1.71 0.72 28.95 1.82 0.77 28.78
ATVG-ND 1.35 0.78 30.27 1.34 0.79 30.51
ATVGnet 1.37 0.81 30.91 1.29 0.83 32.15

Table 2: Quantitative results of different methods on LRW
dataset and GRID dataset. Our models mentioned in this
table are trained from scratch. We bold each leading score.

4.3. User Studies

Our goal is to generate realistic videos based on the au-
dio information. The evaluation in 4.2 can only evaluate
the quality in a single frame style. To evaluate the perfor-
mance in a video level, we conduct thoughtful user studies
in this section. Human subjects evaluation (see Fig. 6) is
conducted to investigate the visual qualities of our gener-
ated results compared with Chung et al. [3] and Zhou et
al. [12]. The ground truth videos are selected from different
sources: we randomly select samples from the testing set
of LRW [5], VoxCeleb [24], TCD [13], GRID [6] and real-
world samples from YouTube (in total 38 videos). Three
methods are evaluated w.r.t. two different criteria: whether
participants could regard the generated talking faces as re-
alistic and whether the generated talking faces temporally
sync with the corresponding audio. We shuffle all the sam-
ple videos and the participants are not aware of the mapping
between videos to methods. They are asked to score the im-

Method LRW GRID

LMD SSIM PSNR LMD SSIM PSNR
ATVGnet 0.80 0.86 33.45 0.70 0.89 33.84
w/o DMA 0.98 0.83 30.22 1.10 0.84 29.90
w/o MM-
CRNN

1.03 0.80 30.61 0.81 0.86 32.68

w/o DAL 0.86 0.86 31.35 0.76 0.87 33.11
w/o RD 0.82 0.84 32.84 0.73 0.88 33.25
Baseline 1.27 0.81 29.55 1.17 0.80 29.45
ATVG-P 0.90 0.84 30.45 0.75 0.87 31.78

Table 3: Ablation studies on the LRW dataset and the GRID
dataset. We remove each feature at a time. We bold the
highest scores.

ages on a scale of 0 (worst) to 10 (best). There are overall
10 participants involved, and the results are summed over
persons and video time steps.

According to the ratings from Fig. 6, we can find that
our method outperforms other two methods in terms of the
extent of synchronization and authenticity. More specifi-
cally, our model achieves the best results on all datasets in
terms of lip synchronization with audio input. As for image
authenticity, our model achieves the highest score the on
most of the datasets but slightly lower than Chung et al. [3]
on the VoxCeleb testing set. We attribute this to the audio
noise (e.g. background music) in the test samples.

4.4. Ablation Studies

We conduct ablation experiments to study the con-
tributions of the four components introduced in Sec. 3:
Dynamic Motion & Attention (DMA), Multi-Modal-crnn
(MMCRNN), Dynamically Adjustable Loss (DAL) and
Recreational Discriminator (RD). The ablation studies are
conducted on both LRW dataset and GRID dataset. Results
are shown in Table 3. Here we follow the protocols men-
tioned in Sec. 4.1. We test each model using ground truth
landmarks rather than fake landmarks generated by AT-net,
so that we can eliminate the errors caused by uncorrelated
noise and focus on each component.

As shown in Table 3, each component contributes to
the full model. We can find that MMCRNN and DMA
are critical to our full model. We attribute this to the bet-
ter ability of generating smooth transactions between adja-
cent frames. The ATVG-P model has the same structure as
ATVGnet but conditioned on the last fake frame v̂t−1 rather
than the example frame ip in Eq. 8 in Sec. 3.2. We suppose
it could yield better performance. However, the error am-
plifies quickly through time until it overwhelms the visual
information from example frame, which leads to a trivial
solution that αt = 0n×n and decreases the performance.

We investigate the model performance w.r.t. the gen-
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Figure 7: Qualitative results produced by ATVGnet, Chung et al. [3] and Zhou et al. [12] on samples from LRW and VoxCeleb
dataset. We can observe from it that our mouth opening is closer to ground truth compared with the other two methods. It is
worthwhile to mention that the second sample is recorded outside with loud background noise.
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Figure 8: The trend of image quality w.r.t. (a) the land-
marks (top) and (b) the poses (bottom). Please zoom in on
a computer screen.

erated landmarks accuracy and different pose angles ( see
Fig. 8). We add Gaussian noises with different standard de-
viations to the generated landmarks during inference and
conduct user study on the generated videos. The image
quality drops (see Fig. 8(a)) if we increase the standard de-
viation. This phenomenon also indicates that our AT-net can
output promising intermediate landmarks. To investigate
the pose effects, we test different example images (different

pose angles) with the same audio. The results in Fig. 8(b)
demonstrate the robustness of our method w.r.t. the differ-
ent pose angles.

5. Conclusion and Discussion

In this paper, we present a cascade talking face video
generation approach utilizing facial landmarks as interme-
diate high-level representations to bridge the gap between
two different modalities. We propose a novel Multi-Modal
Convolutional-RNN structure, which considers the correla-
tion between adjacent frames in the generation stage. Mean-
while, we propose two novel components: dynamically ad-
justable loss and regression-based discriminator. In our
perspective, these two techniques are general that could
be adopted in other tasks (e.g., human body generation
and facial expression generation) in the future. Our final
model ATVGnet achieves the best performance on several
popular datasets in both qualitative and quantitative com-
parisons. For future work, applying other techniques to
enable our network to generate unconscious head move-
ments/expressions could be an interesting topic, which has
been bypassed in our current approach.
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