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Abstract

Example-guided image synthesis has been recently at-
tempted to synthesize an image from a semantic label map
and an exemplary image. In the task, the additional ex-
emplar image serves to provide style guidance that control
the appearance of the synthesized output. Despite the con-
trollability advantage, the previous models are designed on
datasets with specific and roughly aligned objects. In this
paper, we tackle a more challenging and general task, where
the exemplar is an arbitrary scene image that is semanti-
cally unaligned to the given label map. To this end, we first
propose a new Masked Spatial-Channel Attention (MSCA)
module which models the correspondence between two un-
structured scenes via cross-attention. Next, we propose an
end-to-end network for joint global and local feature align-
ment and synthesis. In addition, we propose a novel patch-
based self-supervision scheme to enable training. Experi-
ments on the large-scale CCOO-stuff dataset show signif-
icant improvements over existing methods. Moreover, our
approach provides interpretability and can be readily ex-
tended to other tasks including style and spatial interpola-
tion or extrapolation, as well as other content manipulation.

1. Introduction

Conditional generative adversarial network (cGAN) [34]
has recently made substantial progresses in realistic image
synthesis. In cGAN, a generator & = G(c) aims to output a
realistic image & with a constraint implicitly encoded by c.
Conversely, a discriminator D(z, ¢) learns such a constraint
from ground-truth pairs (z, ¢) by predicting if (&, ) is real
or generated.

The current cGAN models [36, 43, 19] for semantic im-
age synthesis aim to solve the structural consistency con-
straint where the output image x is required to be aligned
to a semantic label map c. The limitation of the above
generative process is that the styles of the image outputs
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Figure 1. The inputs to style-consistent scene image generation is
a structurally uncorrelated and semantically unaligned segmenta-
tion map (column 1) and a reference image (column 2) that con-
straints the style of the output. The corresponding reference seg-
mentation map is also taken as input. In spite of the complexity of
the task, our model can generate high-quality scene images with a
consistent style with the reference image.

are inherently determined by the model and thus cannot be
controlled by users. To provide desired controllability over
the generated styles, previous studies [27, 41] impose ad-
ditional constraints and allow more inputs to the generator:
Za—1 = G(z,¢1,x2), where x5 is an exemplar image that
guides the style of ¢;. However, previous studies are de-
signed on datasets such as face [30, 37], dancing [41] or
street view [47], where the input images usually contain
similar semantics and the spatial structures of y and ¢, are
usually similar as well.

Different from the previous studies, we propose to ad-
dress a more challenging example-guided scene image gen-
eration task. As shown in Fig. 1, given a semantic label map



c1 (column 1) and an arbitrary scene image 2 (column 2)
with its semantic map co (column 3) as the input, the task
aims to generate a new scene image Zs—,1 (column 4) that
matches the semantic structure of c; and the scene style
of zo. The challenge is that scene images have complex
semantic structures as well as diversified scene styles, and
more importantly, the inputs ¢ and xo are structurally un-
correlated and semantically unaligned. Therefore, a mech-
anism is required to better match the structures and seman-
tics for coherent outputs, e.g., the tree styles can be applied
to mountains but cannot be applied to sky.

In this paper, we propose a novel Masked Spatial-
Channel Attention (MSCA) module (Section 3.2) to prop-
agate features across unstructured scenes. Our module is
inspired by a recent work [6] for attention-based object
recognition, but we apply a new cross-attention approach
to model the semantic correspondence for image synthesis
instead. To facilitate example-guided synthesis, we further
improve the module by including: i) feature masking for
semantic outlier filtering, ii) multi-scaling for global and
local feature processing, and iii) resolution extending for
image synthesis. As a result, our module provides both
clear physical meaning and interpretability for the example-
guided synthesis task.

We formulate the proposed approach under an unified
synthesis network for joint feature extraction, alignment
and image synthesis. We achieve this by applying MSCA
modules to the extracted features for multi-scale feature
domain alignment. Next, we apply a recent feature nor-
malization technique, SPADE [36] on the aligned features
to allow spatially-controllable synthesis. To facilitate the
learning of this network, we propose a novel patch-based
self-supervision scheme. As opposed to [41], our scheme
requires only semantically parsed images for training and
does not rely on video data. We show that a model trained
with this approach generalizes over scales and across differ-
ent scene semantics.

Our main contributions include the following:

e A novel masked spatial-channel attention (MSCA)

module to propagate features for unstructured scenes.

e An unified synthesis network for joint feature extrac-
tion, alignment and image synthesis.

e A novel patch-based self-supervision scheme that re-
quires only annotated images for training.

e Experiments on COCO-stuff [3] dataset that show sig-
nificant improvements over existing methods. More-
over, our model provides interpretability and can be
extended to other tasks of content manipulation.

2. Related work

Generative Adversarial Networks.  Recent years have
witnessed the progresses of generative adversarial networks

(GANSs) [10] for image synthesis. A GAN model con-
sists of a generator and a discriminator where the genera-
tor serves to produce realistic images that cannot be dis-
tinguished from the real ones by the discriminator. Re-
cent techniques for realistic image synthesis include mod-
ified losses [1, 33, 38], model regularization [35], self-
attention [48, 2], feature normalization [23] and progressive
synthesis [22].

Image-to-Image translation (I2I). 12I translation aims
to translate images from a source domain to a target do-
main. The initial work of Isola et al. [19] proposes a
conditional GAN framework to learn I2I translation with
paired images. Wang et al. [43] improve the conditional
GAN for high-resolution synthesis and content manipula-
tion. To enable 121 translation without using paired data, a
few works [50, 29, 17, 25, 4] apply the cycle consistency
constraint in training. Recent works on photo-realistic im-
age synthesis take semantic label maps as inputs for image
synthesis. Specifically, Wang er al. [43] extend the condi-
tional GAN for high-resolution synthesis, Chen et al. [5]
propose a cascade refine pipeline. More recently, Park et
al. [36] propose spatial-adaptive normalization for realistic
scene image generation.

Example-Guided Style Transfer and Synthesis. Ex-
ample guided style transfer [12, 7] aims to transfer the
style of an example image to a target image. More re-
cent works [8, 16, 31, 21, 26, 11, 4, 15, 46] utilize deep
neural network features to model and transfer styles. Sev-
eral frameworks [17, 18, 32] perform style transfer via im-
age domain style and content disentanglement. In addition,
domain adaptation [4] applies a cycle consistency loss to
cross-domain style transformation.

More recently, example-guided synthesis [27, 41] is

proposed to transfer the style of an example image to a
target condition, e.g. a semantic label map. Specifi-
cally, Lin et al. [27] apply dual learning to disentangle
the style for guided synthesis, Wang et al. [41] extract
style-consistent data pairs from videos for model training.
In addition, Park er al. [36] adopt I2I networks to self-
encoding versions for example-guided style transfer. Differ-
ent from [27, 41, 36], we address spatial alignment of com-
plex scenes for better style integration in multiple regions
of an image. Furthermore, our patch-based self-supervision
learning scheme does not require video data and is a general
version of self-encoding.
Correspondence Matching for Synthesis. Finding cor-
respondence is critical for many synthesis tasks. For in-
stance, Siarohin et al. [39] apply the affine transformation
on reference person images to improve pose-guided person
image synthesis, Wang et al. [42] use optical flow to align
frames for coherent video synthesis. However, the affine
transformation and optical flow cannot adequately model
the correspondences between two arbitrary scenes.
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Figure 2. Our generator consists of three steps, namely i) feature
extraction, ii) spatial feature alignment, and iii) image synthesis.
We elaborate each step in its corresponding section, respectively.

The recent self-attention [44, 48] can capture general
pair-wise correspondences. However, self-attention is com-
putationally intensive at high-resolution. Later, Chen et
al. [6] propose to factorize self-attention for efficient video
classification. Inspired by [0], we propose an attention-
based module named MSCA. It is worth noting MSCA is
based on cross-attention and feature masking for spatial
alignment and image synthesis.

3. Method

The proposed approach aims to generate scene images
that align with given semantic maps. Differ from conven-
tional semantic image synthesis methods [19, 43, 36], our
model takes an exemplary scene as an extra input to provide
more controllability over the generated scene image. Un-
like existing exemplar-base approaches [27, 41], our model
addresses the more challenging case where the exemplary
inputs are structurally and semantically unaligned with the
given semantic map.

Our method takes a semantic map c;, a reference im-
age xo and its corresponding semantic map cz as inputs
and synthesizes an image Z5_; which matches the style
of zo and structure of x; using a generator G, Z2,1 =
G(c1, @2, c2). As shown in Fig. 2, the generator G consists
of three parts, namely i) feature extraction ii) feature align-
ment and iii) image synthesis. In Sec. 3.1, we describe the
first part that extracts features from inputs of both scenes.
In Sec. 3.2, we propose a masked spatial-channel attention
(MSCA) module to distill features and discovery relations
between two arbitrarily structured scene. Unlike the affine-
transformation [20] and flow-base warping [42], MSCA
provides a better interpretability to the scene alignment task.
In Sec. 3.3, we introduce how to use the aligned features for
image synthesis. Finally, in Sec. 3.4, we propose a patch-
based self-supervision scheme to facilitate learning.

3.1. Feature Extraction

Taking an image xo and label maps c1, co as inputs, the
feature extraction module extracts multi-scale feature maps

for each input. Specifically, the feature map Ff% of image

pooling*

Figure 3. The spatial-channel attention module for feature align-
ment. Our module takes image features map F( 2 and segmen-

tation features map FC( 1), F(Q) as inputs to output a new image
feature map Fz(zi that is aligned to condition c;.

T9 at scale ¢ is computed by:

FU) = W9 « FQ)(x2),

aj7

fori € {0,...,L}, (1)

where * denotes the convolution operation, Fv(;g; denotes the

feature map extracted by VGG-19 [40] at scale ¢, and Wéi)
denotes a 1 x 1 convolutional kernel for feature compres-
sion. L is the number scales and we set L = 4 in this paper.

For label map ¢y, its feature Fc(zl) is computed by:

P _ LReLU(W(’) i) fori = L,
S\ LReLUWS # [ (FUTY), 7)) otherwise,
()

where 1} () denotes x2 bilinear interpolation, cgi) denotes

the resized label map, Wc(i) denotes a 1 x 1 convolutional
kernel for feature extraction, and operation [-,] denotes
channel-wise concatenation. Note that as scale ¢ decreases
from L down to 0, the feature resolutions in Eq. 2 are pro-
gressively increased to match a finer label maps c( ),
Similarly, applying Eq. 2 with the same Welghts to label
map cy, We can extract its features Fc(lg)
P _ JURLUWE 5 ) o fori=L
o2 LReLU(W.!" « [ (Fc(f;l)), D)) otherwise
3)
3.2. Masked Spatial-channel Attention Module

As shown in Fig. 3, taking the image features Fggl% and

the MSCA

module generates a new image feature map F@L that has

the label map features %) F(Q) as inputs',

c,1°

the content of F( % but is aligned with F C(l) We elaborate
the detailed procedures as follows:

'We assume spatial resolution at scale i being H x W and channel size
of F;Z%, FY) F<Z) being N, My, M2, respectively.

c,1’



Spatial Attention.  Given feature maps FJE %, F(Q) of the
exemplar scene, the module first computes a spat1a1 atten-

tion tensor o) € [0, 1]K'H‘W:
a(i) = Softman)g,((b(i) * [Fgggv FC(,ZZ)])’ S

with ¢() € R(N+M2)-K denoting a 1 x 1 convolutional
filter and softmaxs 3 denoting a 2D softmax function on
spatial dimensions {2,3}. The output tensor contains K
attention maps of resolution H x W, which serve to attend
K different spatial regions on image feature ng

Spatial Aggregation.  Then, the module aggregates K
feature vectors from Fé% using the K spatial attention maps
of o) from Eq. 4. Specifically, a matrix dot product is
performed:

v = F) (a7, 5)
[0, 1] HW and F.") € ROHW denoting the

reshaped versions of a(*) and Fagg, respectively. The output

with a(® €

V(@ e REK stores feature vectors spatially aggregated
from the K independent regions of Fég

Feature Masking.  The exemplar scene x5 may contain
irrelevant semantics to the label map ¢y, and conversely, ¢y
may contain semantics that are unrelated to z5. To address
this issue, we apply feature masking on the output of Eq. 5
by multiplying V' (¥ with a length-K gating vector at each
row:

VO = (vinHT mlp([gap(Fc(fl)), gap(F(f,iQ))])v (6)

where mlp(-) denotes a 2-layer MLP followed by a sigmoid
function, gap denotes a global average pooling layer, o de-
notes broadcast element-wise multiplication, and V@ de-
notes the masked features. The design of feature masking in
Eq. 6 resembles to Squeeze-and-Excitation [14]. Using the
integration of global information from label maps ¢; and cg,
features are filtered.
Channel Attention.

a channel attention tensor 3(*) € [0, 1]
as follows:

Given feature F (1) of label map c;,

K-HW .
is generated

B = softmax; (w(i) * Fc(ll))a O

with 1)) € RM"K denoting a 1 x 1 convolutional filter and
softmax; denoting a softmax function on channel dimen-
sion. The output B serves to dynamically reuse features
from V().

Channel Aggregation.  With channel attention 3(*) com-
puted in Eq. 7, feature vectors at HW spatial locations are
aggregated again from V(® via matrix dot product:

F=VOEO)T, ®)

Cropped
Patches

Synthesized Patch-based
Outputs  Supervision

Original
Resolution
Figure 4. Our patch-based self-supervision scheme performs self-
reconstruction and cross-reconstruction for two-patches from the
same image.

where (9 € RE-HW denotes the reshaped version of 5(*).

The output Fé? € RNV-HW represents the aggregated fea-
tures at W locations. The output feature map F;’{ is gen-
erated by reshaping Féli tosize N x H x W.

Remarks. Spatial attention (Eq. 4) and aggregation

(Eq. 5) attend to K independent regions from feature Fgg %,

then store the K features into V(*). After feature mask-
ing, given a new label map c;, channel attention (Eq. 4)
and aggregation (Eq. 8) combine V(@ at each location to
compute a output feature map. As results, each output loca-
tion finds its correspondent regional features or ignored via
feature masking. In this way, the feature of example scene
is aligned. Note that when K = 1 and o¥) is constant, the
above operations is essentially a global average pooling. We
show in experiment that K = 8 is sufficient to dynamically
capture visually significant scene regions for alignment.

Multi-scaling. Both global color tone and local ap-
pearances are informative for the style-constraint synthe-
sis. Therefore, we apply MSCA modules at all scales

i €{0,..., L} to generate global and local features Fy%

3.3. Image Synthesis

The extracted features F(l) in Sec. 3.1 capture the se-

mantic structure of c;, whereas the aligned features F;% in

Sec. 3.2 capture the appearance style of the example scene.

In this section, we leverage F, (Z) and F( i as control signals

to generate output images w1th desned structures and styles.

Specifically, we adopt a recent synthesis model,
SPADE [36], and feed the concatenation of F( i and F(Zl)

c
to the spatially-adaptive denormalization layer 'of SPADE
at each scale. By taking the style and structure signal as in-
puts, spatially-controllable image synthesis is achieved. We
refer readers to appendix for more network details of the

synthesis module.
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Figure 5. Visual comparisons with SPADE_VAE, and ours ablation models. Example-guided scene synthesis is performed between two
retrieved scenes (rows 1,2) and two arbitrary scenes (rows 3,4). Columns 1 to 3 (blue) depict depict the target label maps, exemplar label
maps and the associated images, respectively. Columns 4 to 8 in (red) depict different methods and our model (Columns 8). Columns 9 and
10 (green) respectively depict original images from target label map and synthesized ground truth using [40] in the retrieved dataset (top
of Table 1). In comparison, our method clearly produces the most style-consistent (with the exemplar!) and visually plausible images.

3.4. Patch-Based Self-Supervision

Training a synthesis model requires style-consistent
scene pairs. However, paired scenes are hard to acquire.
To overcome the issue, we propose a patch-based self-
supervision scheme which enables training.

Our basic assumption is that if patches x, and x, come
from the same scene, they share the same style. Con-
sequently, using patch x, as exemplar, both z, and the
other patch x, can be reconstructed, i.e. self-reconstruction
and cross-reconstruction. More formally, we sample non-
overlapping patches (z,, ¢,) and (x4, ¢,) at locations p and
¢ from a same scene (z, ¢). To enable training, four images
are synthesized in one training step:

Epop = Glep, Tp, ¢p),
‘%P—’q = G(anxpacp s ©)

)
Zgop = Gcp, 245 ¢q),
)

Eqog = Glep, Tp, p),

and compared against groundtruths x,,, x4, Tp, T4. Anillus-
trative example is shown in Fig. 4. Note that patches x,,, 7,
do not necessary share the same semantics and our model
is required to complete example-missing regions with rea-
sonable content through learning. Our training objective is
adopted from to [36]. However, we apply pixel domain ¢,
loss to encourage color consistency. In our implementation,
the generation processes in Eq. 9 share the same feature ex-
traction, spatial attention, channel attention computation to
reduce memory footprint during training.

4. Experiments

Dataset  Our model is trained on the COCO-stuff
dataset [3]. It contains densely annotated images captured
from various scenes. We remove indoor images and images
of random objects from the training/validation set, resulting
in 21, 648/499 scene images for training/testing.

During training, we resize images to 512 x 512 then crop
two non-overlapping 256 x 256 patches to facilitate patch-
based self-supervision. The two patches are cropped either
in the left and right halves of the 512 x 512 image, or alter-
natively in the top and bottom halves.

The COCO-stuff dataset does not provide ground-truth
for example-guided scene synthesis, i.e. two scene images
with the exact same styles. To qualitatively evaluate model
performances, we require a model to transfer the style from
T9 to x1, wWhere xo is the test image and x; is the gener-
ated image, in three ways: 1) duplicating: we use the test
image itself to test self-reconstruction, ii) mirroring: xi is
generated by horizontally mirroring x5, iii) retrieving: 1 is
generated by finding the best match from the larger image
pool. Specifically, we generate 20 candidate images from
the training set with the smallest label histogram intersec-
tions. Out of the 20 images, the best-matching image x; is
generated using SIFT Flow [28]. Finally, since the color of
x1 and x4 are not the same, we apply [46] on image z; for
color correction. Examples of the retrieving pairs are shown
in Fig. 5, in columns 3 and 10.

Implementation Details The number of attention maps



Segmentation

Figure 6. Style interpolation and traverse at test stage. We perform style traverse along path grass — dessert — forest — night.

Please refer to the Interpolation part in Sec. 4 for details.

Methods PSNRT | SSIMT | LPIPS| | FIDJ
retrieving

SPADE_VAE [36] 15.62 0.39 0.480 89.77
ours GAP 15.77 0.39 0.456 89.55

ours MSCA w/o att 11.76 0.27 0.524 98.35
ours MSCA w/o fm 15.64 0.40 0.455 89.58

our full 15.98 0.40 0.449 85.87
mirroring

SPADE_VAE [36] 15.72 0.39 0.478 89.58
ours GAP 16.06 0.39 0.446 89.54

ours MSCA w/o att 12.13 0.28 0.512 98.02
ours MSCA w/o fm | 16.52 0.42 0.442 88.40

our full 16.95 0.42 0.425 83.20
duplicating

SPADE_VAE [36] 15.35 0.38 0.476 90.69
ours GAP 15.70 0.38 0.438 88.51

ours MSCA w/o att 11.92 0.28 0.508 102.24
ours MSCA w/o fm | 15.91 0.40 0.437 89.44
our full 16.50 0.40 0.420 84.93
Table 1. Quantitative comparisons of different methods in terms
of PSNR, SSIM, LPIPS [49] and Frchet Inception Distance
(FID) [13]. Higher scores are better for metrics with uparrow (1),
and vice versa.

K for MSCA modules are set to 8,16, 16, 16, 16 from scale
0 to 4. The learning rate is set to 0.0002 for the genera-
tor and the discriminator. The weights of generator are up-
dated every 5 iterations. We adopt the Adam [24] optimizer
(B1 = 0.9 and B3 = 0.999) in all experiments. Our syn-
thesis model and all comparative models are trained for 20
epochs to generate the results in the experiments.

During implementation, we pretrain the spatial-channel
attention with a lightweight feature decoder to avoid the in-
effective but extremely slow updating of SPADE parame-
ters. Specifically, at each scale, the concatenation of Féli

and Fc(zl) in Sec. 3.3 at each scale is fed into a 1 x 1 convo-
lutional layer to reconstruct the ground-truth VGG feature
at the corresponding scale. The pretraining takes around
4% of the total training time to converge. More details of

the pretraining procedure is provided in the appendix.
Quantitative Evaluation = We compare our approach with
an example-guided synthesis approach: variational autoen-
coding SPADE (SPADE_VAE) [36] which is based on a
self-reconstruction loss for training. Therefore, we directly
use the resized 256 x 256 images to train the model. We also
attempt to train two example-guided synthesis models [27]
and [41] ([41] is trained using patch-based self-supervision)
but cannot achieve visually good results. We leave the re-
sult of [27, 41] in the appendix. In addition, three ablation
models are evaluated (see Ablation Study).

For quantitative evaluation, we apply low-level metrics
including PSNR and SSIM [45], and perceptual-level met-
rics including Perceptual Image Patch Similarity Distance
(LPIPS) [49] and Frchet Inception Distance (FID) [13] on
different models. For LPIPS, we use the linearly calibrated
VGG model (see [49] for details).

As shown in Table 1, our method clearly outperforms
the remaining methods. Improvements in low-level and
perceptual-level measurements suggest that our model bet-
ter preserves color and texture appearances. We observe
that the performances of various approaches on the retriev-
ing dataset are worse and less differentiated than their coun-
terparts on the mirroring and duplicating datasets. It sug-
gests that the retrieving dataset is harder and noisier, as
one cannot retrieve images that have the exact same styles.
On retrieving dataset, our approach achieves a moderate
+0.36 PSNR gain over SPADE_VAE (from 15.62 to 15.98).
By contrast, our approach achieves visually superior results
over SPADE_VAE on duplicating and mirroring, e.g. +1.15
PSNR gain (from 15.35 to 16.50) on duplicating and +1.23
PSNR gain (from 15.72 to 16.95) in PSNR on mirroring.

Qualitative Evaluation Fig. 5 qualitatively compares
our model against the remaining models on two retrieved
scenes (rows 1-2) and two arbitrary scenes (rows 3-4). Our
model achieves better style-consistent example-guided syn-
thesis. Remarkably, in rows 3-4, even though the two scenes
have very different semantics (indicated by the different col-
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Figure 7. Right: the learned spatial attention and channel attention. Left: inputs and outputs of our model. Each spatial and channel
attention attends to a specific region in the reference image and segmentation, respectively. By examining the segmentation semantics, we
observe the following transformation patterns: sky_other — clouds, tree — {tree, hill} forrow 1, and clouds — clouds,

snow — sand, other — {surfboard, other} for row 2.

ors of the corresponding label maps), our model can still
maintain the styles of the exemplars while maintaining the
correct semantics of the target label maps, e.g. generating
“snow” rather than “grass” in row 4.

Also notice that sometimes our results are more style-
consistent than the synthesized ground truths (last col-
umn). This further shows that the existing style transfer
approach [9, 46, 31] cannot be directly applied to exemplar-
guided scene synthesis for satisfactory results.

Ablation Study To evaluate the effectiveness of our de-
sign, we separately train three variants of our model: i) our
GAP that replaces the MSCA module with global average
pooling, ii) our MSCA w/o att that keeps MSCA modu-
els but replaces spatial and channel attention of MSCA by
one-hot label maps from source and target domains, respec-
tively. In such way, alignment is performed on regions with
the same semantic labeling, and iii) our MSCA w/o fim that
keeps MSCA modules but removes the feature masking pro-
cedures. In Table | and Fig. 5, our model clearly achieves
the best quantitative and qualitative results. In comparison,
in Fig. 5, our GAP produces similar appearances in each re-
gion, as GAP cannot distinguish local appearances. Our w/o
att is less stable in training and cannot generate plausible
results. We hypothesize that the label-level alignment will
generate more misaligned and noisier feature maps, thus
hurts training. our MSCA w/o fm cannot perform correct
appearance transformation, for instance, transferring “sky”
to “snow” (Fig. 5, last row).

The Effect of Attention To understand the effect of
spatial-channel attention, we visualize the learned spatial
and channel attention in Fig. 7. We observe that: a) spa-
tial attention can attend to multiple regions of the refer-

Example
Image

o - —

Figure 8. Spatially interpolate two styles in a single image at
test stage. The styles of the synthesized images are deliberately
changed from left to right.

ence image. For each reference region, channel atten-
tion finds the corresponding target region. b) spatial-
channel attention can detect and utilize the semantic sim-
ilarities between segments to transfer visual features. In
the top row of Fig. 7, attention in channels 1,4 respec-
tively perform transformations: sky_other — clouds,
tree — {tree, hill}. In the bottom row, atten-
tion in channels 1,2,7 respectively perform transforma-
tions: clouds — clouds, snow — sand and other —
{surfboard, other}.

Interpolation  We can easily control the synthesized
styles in the test stage by manipulating attentions. Here,
we show how to interpolate between two styles using our
trained model: given two example images o and z3, we



Figure 9. Given a scene patch at center, our model can generate
Scene extrapolation based on patch.

first compute their image features F;g, ng and the spatial-

attention maps aéi)7aéi). Given an interpolating factor

a € [0,1] where @ = 1 means ignoring the example scene
T3, the spatial attention map of the first scene is modified by

aéi) = aéi) + log(

ol
1704&1)

). Afterwards, both feature maps
F;Z%, Fég and spatial attention ol o} are concatenated
along the horizontal axis. In addition, the masking score
(output of the 2-layer MLP in Eq. 6) is also interpolated.
With the remaining procedures unchanged, i.e., same spatial
aggregation, feature masking, channel aggregation and syn-
thesis, interpolation results are readily generated. As shown
in Fig. 6, with slight modifications, our model can perform
effective style interpolation. Specifically, the style traverses
along the path grass — dessert — forest — night
is achieved in Fig. 6.

Likewise, by manipulating the channel attention at each
spatial location, it is possible to adaptively mix style to syn-
thesize an output image, i.e. spatial styles interpolation. As
shown in Figure 8, using the previous input, we interpolate
between styles from left to right in a single image.
Extrapolation  Given a scene patch at the center, our
model can achieve scene extrapolation, i.e. generating
beyond-the-border image content according to the semantic
map guidance. A 512 x 512 extrapolated images is gener-
ated by weighted combining synthesized 256 x 256 patches
at 4 corners and 10 other random locations. As shown in
Fig. 9, our model generates visually plausible extrapolated
images, showing the promise of our proposed framework
for guided scene panorama generation.

Swapping Style Fig. 10 shows reference-guided style

Figure 10. Style-structure swapping on 6 semantically unaligned
arbitrary scenes at resolution 256 x 256. Our model can generalize
across very different scene semantics and synthesize images with
reasonable and consistent styles. Note that the images along the
diagonal (red boxes) are self-reconstruction, which are generally
quite good. Please zoom in for details.

swapping on six distinctively different scenes. For the
same segmentation mask, we generate multiple outputs us-
ing different reference images. Our approach can reason-
ably transfer styles among multiple scenes, including grass-
land, dessert, ocean view, ice land, etc. More results are
included in the appendix.

5. Conclusion

We propose to address a challenging example-guided
scene image synthesis task. To propagate information be-
tween structurally uncorrelated and semantically unaligned
scenes, we propose an MSCA module that leverages decou-
pled cross-attention for adaptive correspondence modeling.
With MSCA, we propose a unified model for joint global-
local alignment and image synthesis. We further propose a
patch-based self-supervision scheme that enables training.
Experiments on the COCO-stuff dataset show significant
improvements over the existing methods. Furthermore, our
approach provides interpretability and can be extended to
other content manipulation tasks.
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Appendix A. The Synthesis Module

As shown in Fig. 11, our image synthesis module (the dash

block on the right) takes the image features map Fé? and

segmentation features map Fc(il) as inputs to output a new
image #5_,. Specifically, at each scale, a SPADE residue
block [36] with upsampling layer takes the concatenation
of Féq and Fc(Tl) as input to generate an upsampled feature
map or image.

Appendix B. MSCA Pretraining

As shown in Fig. 12, an auxiliary feature decoder (the dash
block on the right) is used to pretrain the feature extrac-
tors and the MSCA modules. Specifically, at each scale,
the concatenation of Féfl and Fp(ll) at each scale is fed into
a 1 x 1 convolutional layer to reconstruct the ground-truth
VGG feature of x; at the corresponding scale. We weighted
sum the L1 losses between predictions and ground-truth at
each scales, then apply backpropagation to update weights
of the whole model. We pretrain the model for 20 epochs.
Because of the light-weight design of the feature decoder,
the pretraining step only takes around 12 hours, and around
4% of the total training time.

Appendix C. Results of [27, 41]

We provide additional results of conditional image-to-
image translation (Conditional 121) [27] and style-guided
synthesis [41] in Fig. 13, column 9 and 10. To train the
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Figure 12. The details of the auxiliary feature decoder for feature extractor and MSCA pretraining (dash block on the right). At each scale

i, the image features map Fili and the segmentation features map Fc(ll) are concatenated and feed to a 1 X 1 convolution layer to predict

the VGG-19 features map of x;.

model of [27], we resize images and semantic label maps
to 64, the original resolution used in [27]. We test different
learning rates and early stopping strategies to prevent the
generator from model collapse. To implement [4 1], we train
the model of [41] using our patch-based self-supervision.
We test multiple learning rates and channel sizes of the gen-
erator. However, we could not achieves good results for
[27] and [41]. We believe the disentanglement strategy of
[27] is too challenging for the highly diversified COCO-
stuff dataset. Meanwhile, input domain concatenation used
in [41] may not be sufficient to capture and fuse the style
information for the more challenging scene image dataset.

In addition, spatially-adaptive normalization [36] might be
required for [41] to better utilize the captured style coding.

Appendix D. More Style Swapping Results

We show style swapping results on 12 diversified scenes
in Fig. 14. As shown in the figure, our model can transfer
styles to very different scene semantics and generate style
consistent outputs given exemplar images.
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Figure 13. More visual comparisons to [27] and [41] (at columns 9 and 10, respectively). Example-guided scene synthesis is performed
on retrieved scenes (top) and arbitrary scenes (buttom). Columns 1 to 3 (blue) depict the target label maps, exemplar label maps and the
associated images, respectively. Columns 4 to 8 in (red) depict different methods and our model (Columns 8). Columns 13 and 14 (green)
respectively depict original images from target label map and synthesized ground truth using [46] in the retrieved dataset. Our method
clearly produces the most style-consistent and visually plausible images.
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Figure 14. Style-structure swapping on 12 semantically unaligned and arbitrary scenes at resolution 256 x 256. Our model can generalize
across very different scene semantics and synthesize images with reasonable and consistent styles. Note that the images along the diagonal
(red boxes) are self-reconstruction, which are generally quite good. Please zoom in for details.



