
Real-time 3D Neural Facial Animation from Binocular Video

CHEN CAO, Facebook Reality Labs, USA

VASU AGRAWAL, Facebook Reality Labs, USA

FERNANDO DE LA TORRE, Facebook Reality Labs, USA

LELE CHEN, Facebook Reality Labs and Univeristy of Rochester, USA

JASON SARAGIH, Facebook Reality Labs, USA

TOMAS SIMON, Facebook Reality Labs, USA

YASER SHEIKH, Facebook Reality Labs, USA

Offline face model fitting Real-time face animation

(a) Input image (b) Relighted avatar (c) Reconstruction error (d) Avatar (e) Gain & bias map (j) 3D Avatar from different views

(f) (g) (h) (i)

Fig. 1. We present a real-time high-fidelity 3D facial animation method. In the offline face estimation step (a-e), given an input image (a) and a person-specific

deep appearance model (PS-DAM), we estimate the model parameters with an analysis-by-synthesis method and track the avatar (d). We propose a new

illumination model (i.e., gain and bias map (e)) to relight the avatar (b) and to match the input image (a). We show the 𝐿2 error between (a) and (b) as the

reconstruction error in (c). In the online (real-time) facial animation step (f-j), we have a pair of images as input (f,h) and we can accurately track the face and

drive the 3D avatar (g,i). The animated 3D avatar across different views is shown in (j).

We present a method for performing real-time facial animation of a 3D avatar

from binocular video. Existing facial animation methods fail to automati-

cally capture precise and subtle facial motions for driving a photo-realistic

3D avatar "in-the-wild" (i.e., variability in illumination, camera noise). The

novelty of our approach lies in a light-weight process for specializing a

personalized face model to new environments that enables extremely ac-

curate real-time face tracking anywhere. Our method uses a pre-trained

high-fidelity personalized model of the face that we complement with a

novel illumination model to account for variations due to lighting and other

factors often encountered in-the-wild (e.g., facial hair growth, makeup, skin

Authors’ addresses: Chen Cao, zju.caochen@gmail.com, Facebook Reality Labs, Pitts-
burgh, Pennsylvania, USA; Vasu Agrawal, vasuagrawal@fb.com, Facebook Reality Labs,
Pittsburgh, Pennsylvania, USA; Fernando De la Torre, ftorre@cs.cmu.edu, Facebook
Reality Labs, Pittsburgh, Pennsylvania, USA; Lele Chen, lchen63@cs.rochester.edu, Face-
book Reality Labs and Univeristy of Rochester, USA; Jason Saragih, jsaragih@fb.com,
Facebook Reality Labs, Pittsburgh, Pennsylvania, USA; Tomas Simon, tomas.simon@
oculus.com, Facebook Reality Labs, Pittsburgh, Pennsylvania, USA; Yaser Sheikh,
yasers@fb.com, Facebook Reality Labs, Pittsburgh, Pennsylvania, USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).
0730-0301/2021/8-ART87
https://doi.org/10.1145/3450626.3459806

blemishes). Our approach comprises two steps. First, we solve for our illu-

mination model’s parameters by applying analysis-by-synthesis on a short

video recording. Using the pairs of model parameters (rigid, non-rigid) and

the original images, we learn a regression for real-time inference from the

image space to the 3D shape and texture of the avatar. Second, given a

new video, we fine-tune the real-time regression model with a few-shot

learning strategy to adapt the regression model to the new environment. We

demonstrate our system’s ability to precisely capture subtle facial motions in

unconstrained scenarios, in comparison to competing methods, on a diverse

collection of identities, expressions, and real-world environments.

CCS Concepts: · Computing methodologies→Motion capture;Mixed

/ augmented reality.

Additional Key Words and Phrases: Facial animation, Facial modeling, Dif-

ferentiable rendering, Augmented reality

ACM Reference Format:

Chen Cao, Vasu Agrawal, Fernando De la Torre, Lele Chen, Jason Saragih,

Tomas Simon, and Yaser Sheikh. 2021. Real-time 3D Neural Facial Animation

from Binocular Video. ACM Trans. Graph. 40, 4, Article 87 (August 2021),

17 pages. https://doi.org/10.1145/3450626.3459806

1 INTRODUCTION

Markerless facial motion capture has been a long-standing computer

graphics and computer vision problem over the last three decades.

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459806
https://doi.org/10.1145/3450626.3459806

87:2 • Cao, Agrawal, De la Torre, Chen, Saragih, Simon and Sheikh

In many applications, such as animating characters in movies or

systems to promote a sense of social presence in AR/VR, driving

avatars from video with high-degree of photo-realism is required. In

these scenarios, a major challenge is to be able to transfer subtle ex-

pressions (e.g., perfect eye contact, lip-chewing, tongue movement,

blinking) in real-time under a variety of lighting conditions.

There are two main technical challenges: first, we need to cor-

rectly decouple rigid (i.e., 3D head pose) and non-rigid motion (i.e.,

facial expression). Second, we need to render the user’s appearance

in the avatar. To decouple the rigid/non-rigid motion, a necessary

component is a precise facial tracking/alignment mechanism that

achieves sub-pixel accuracy. Precise and dense facial feature track-

ing is challenging in natural scenarios due to sensor noise and

variability in lighting. Lighting changes always dominate the mar-

ginal information for detail facial information. If we try to decouple

the illumination from an image, we usually destroy the information

required for subtle facial motions. To render user’s appearance in

the avatar, in the early days, there were a variety of face tracking

methods that use no-model or only shape model for facial anima-

tion (e.g., [Decarlo and Metaxas 2000]), but these methods failed

catastrophically to recover important facial details such as the inte-

rior of the mouth or blinking of the eyes. Alternatively, parametric

face models such as Active Appearance Models, Morphable Mod-

els, or Deep Appearance Models jointly model the 2D/3D shape

and appearance allowing a more precise registration/alignment be-

tween the image and the model. In addition, these methods perform

tracking by reconstruction with the additional benefit of having a

latent code for reconstructing the appearance, providing an elegant

solution to rendering the subject’s appearance.

Parameterized face models can be learned across users leading

to generic models, or within a subject creating a person-specific

(PS) model. Generic models typically achieve robustness to lighting

or user variability. However, these generic models do not provide

accurate reconstruction for new subjects resulting in a loss of fa-

cial expression detail, making them not suitable for our scenario of

interest. On the other hand, PS models can achieve the necessary

accuracy in tracking and reconstruction. For these reasons, the PS

model is typically used in the movie industry (e.g., The curious

case of Benjamin Button). However, these models are typically run

off-line and not perform well in untrained situations (e.g., different

lighting). In this work, we present a lightweight process for special-

izing a personalized face model to new environments that enables

extremely accurate real-time face tracking anywhere.

Our system performs a robust and efficient recovery of rigid

and non-rigid motion from sequences with challenging illumina-

tion conditions using binocular video. It relies on a person-specific

deep appearance model (PS-DAM) [Lombardi et al. 2018], which

is learned in a multi-camera capture stage with fixed illumination.

Although PS-DAM can generate high fidelity face renderings in real-

time, accurately estimating its parameters in unconstrained settings

remains challenging due to differences in illumination conditions

and facial changes (e.g., facial hair, makeup, glasses). Finally, the

entire system, including inference and rendering, needs to work in

real-time to support interactive applications such as telepresence.

Our method has two main steps; learning and fine-tuning. In the

first step (off-line face estimation in Fig. 1 left), we record several

videos of a user and register their face using analysis-by-synthesis

[Yuille and Kersten 2006]. In order to compensate for illumination

changes and other factors, we introduce a parameterized illumina-

tion model and employ a "coarse-to-fine" fitting strategy to simulta-

neously estimate its parameters along with those of the face model,

to avoid converging to poor local minima effectively. We use the

resulting pairs of images and parameters to learn a real-time direct

regression model. In the second step, we apply this regression model

to estimate 3D shape and texture in real-time for a new environment.

To compensate for differences between this environment and the en-

vironment where the regressor was trained in, we employ few-shot

learning domain-adaptation [Zakharov et al. 2019] which fine-tunes

our model from only a few images completely unsupervised. Our

results show the effectiveness of this approach for driving a hyper-

realistic 3D face model in unconstrained scenarios compared with

competing state-of-the-art techniques (see Fig. 1 right).

In summary, this paper makes the following contributions:

• A real-time system for high-fidelity facial animation from

binocular video. The system can track subtle expressions in

uncontrolled environments (i.e., varying lighting).

• An neural illuminationmodel to compensate from the domain

mismatch between the face model and in-the-wild image. We

use a coarse-to-fine fitting strategy to achieve better visual

minima.

• A few-shot learning approach to fine-tune the pre-trained re-

gression (encoder) to a new environment, in an unsupervised

manner.

2 RELATED WORK
Research on face tracking and facial animation has a long history

in computer vision, graphics and machine learning [Klehm et al.

2015; Zollhöfer et al. 2018]. In the following, we focus on the most

related techniques and categorize the prior work into parametric

face modeling, real-time face tracking, lighting adaptation for face

tracking, and non-parametric avatar animation.

2.1 Parametric face modeling
Active Appearance Models (AAMs) [Cootes et al. 2001; Jing Xiao

et al. 2004; Matthews and Baker 2004; Tzimiropoulos et al. 2013] and

3D morphable models (3DMM) [Blanz et al. 2003; Blanz and Vetter

1999] have been used extensively to model the space of facial ap-

pearance and geometry variation. This family of modeling methods

is used to register faces using analysis-by-synthesis, and are often

complemented with blendshape models to parameterize the space

of expression variation [Lewis et al. 2014]. Extensions have focused

on building multilinear models of identity and expression [Cao et al.

2013b; Vlasic et al. 2005], creating very large datasets to span the

space of identity variation and texture [Booth et al. 2018], region-

based models [Tena et al. 2011], joint shape and motion models [Li

et al. 2017], and others [Gerig et al. 2018; Huber et al. 2016].

Recently, deep networks have been used to increase the modeling

power of linear and multilinear models [Bagautdinov et al. 2018;

Tran et al. 2019; Tran and Liu 2018]. In particular, [Lombardi et al.

2018] propose a Deep Active Appearance (DAM) model based on

variational autoencoders [Kingma and Welling 2013] to capture

photorealistic geometry and view-dependent appearance of human

faces. In this work, we use the DAM model of [Lombardi et al. 2018]

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

Real-time 3D Neural Facial Animation from Binocular Video • 87:3

to represent avatar appearance, and build an encoder suitable for

real-time animation in unconstrained illumination.

2.2 Real-time face tracking
Real-time face tracking has been widely studied in the past decades

[Zollhöfer et al. 2018]. Early real-time methods relied on tracking

sparse facial features [Baltrušaitis et al. 2012; Chai et al. 2003; Saragih

et al. 2011] as control signals for the face. Animation fidelity im-

provements have been achieved by increasing the tracking accuracy

and density. For example, [Weise et al. 2011] used an RGBD sensor

to build and track user-specific blendshape model and drive non-

photorealistic avatars via expression retargeting. Subsequent work

[Bouaziz et al. 2013; Chen et al. 2013; Li et al. 2013] using RGBD

sensors showed that generic blendshape models can be adapted,

corrected, or deformed to more accurately track a specific user.

In parallel, monocular RGB-only face tracking performance was

improved by using data-driven regression of face landmarks or 3D

shape [Cao et al. 2014, 2013a; Kazemi and Sullivan 2014; Xiong and

De la Torre 2013] trained on large, annotated face datasets. This

approach is robust to varying lighting conditions and unconstrained

capture conditions. However, this robustness comes at cost to ex-

pression fidelity, and these models are still far from achieving the

quality of offline facial performance capture.

To improve fidelity for face tracking, landmarks are also com-

bined with dense appearance-based energies in optimization frame-

works [Thies et al. 2016, 2018]. Appearance-based alignment via

model fitting has a long history with AAMs and extensions [Jing

Xiao et al. 2004; Kahraman et al. 2007; Matthews and Baker 2004],

but building the AAM training set often requires capturing addi-

tional data in the target environment. Alternatively, [Cao et al. 2015]

add face details by additionally regressing expression-dependent

wrinkles. [Casas et al. 2015] use dynamic textures to improve photo-

realism, and [Nagano et al. 2018] improve realism by using a GAN

network to synthesize dynamic textures from a single input image.

[Cao et al. 2018] add optical flow constraints and a rigidity prior to

stabilize the tracking.

Recent work in monocular face tracking has also explored direct

regression of face model parameters using CNNs. For example, [Kim

et al. 2017] use a large, synthetically generated set of images to train

the CNN regressor. [Tran et al. 2017] use 3DMM fitting to generate

the training data, while [Tewari et al. 2017] use differentiable ren-

dering to train an image encoder that produces expression, albedo,

and lighting parameters using self-supervision. Recent work on face

tracking for VR headsets uses specialized training data generation

methods, but also uses CNN-based regression of face parameters

[Lombardi et al. 2018; Olszewski et al. 2016; Wei et al. 2019]. A re-

lated method to ours is that of [Laine et al. 2017], which achieves

high-quality real-time face tracking using direct CNN image regres-

sion. There, the training data is built using an offline multiview face

tracker, and tracking is limited to the lighting conditions and head

pose observed in the capture stage. Our method combines sparse

face landmark detection with a CNN-based face parameter regressor

in texture-space to estimate detailed expression and pose param-

eters, and the realtime component is adaptable to novel lighting

environments.

Real-time face tracking has also been used for photorealistic face

reenactment [Thies et al. 2015, 2016, 2018], where only the face

portion of a pre-recorded video is controllable. These techniques

were later extended to provide upper-body control by using a 3D

proxy [Thies et al. 2018] or using neural rendering to inpaint the

areas surrounding the face [Kim et al. 2019, 2018]. While producing

photorealistic results, these models can only produce a specific

viewpoint and cannot be rendered from arbitrary directions.

2.3 Lighting adaptation for face trackers
Achieving dense, high-quality face tracking beyond coarse facial

landmarks usually requires estimating or compensating for lighting

conditions at evaluation time. Most existing face tracking methods

use spherical harmonics (SH) lighting due to the speed and low

degrees of freedom required to estimate them [Sengupta et al. 2018;

Tewari et al. 2017; Thies et al. 2016]. [Valgaerts et al. 2012] estimate

a spherical harmonics-based lighting environment for offline facial

performance capture. [Fyffe et al. 2014] assume an HDR probe of the

target environment is available, and use skin reflectance estimates

from a light-stage capture to render and match using optical flow.

[Yoon et al. 2019] achieve in-the-wild face tracking of a DAM model

by training a regressor using self-supervised domain adaptation

while ensuring temporal consistency. [McDonagh et al. 2016] train

a person-specific regressor for facial performance capture to be

robust to lighting changes by synthetically generating a large set

of rendered images with varying synthetic lighting. In contrast,

we learn from a small set of training sequences and use few-shot

learning to adapt the regressor at test time.

2.4 Non-parametric Avatars
Non-parametric approaches rely on more sophisticated sensors to

directly capture and transmit a 3D representation of the capture

volume. Early realtime volumetric approaches, such as [Dou et al.

2017, 2016; Orts-Escolano et al. 2016], use several high-speed RGBD

sensors to reconstruct and transmit full-body 3D avatar as meshes

and textures. Progress in reducing the sensing requirements has

been made by incorporating machine learning techniques to learn

to fill holes produced by incomplete sensing or generate higher

quality textures. In particular, [Martin-Brualla et al. 2018] showed

full-body reconstructions with 16 active stereo cameras, and upper

body reconstructions using a single stereo pair. This method uses a

set of training views to learn a neural re-renderer that takes as input

partial depth reconstructions and renders higher quality images.

This was extended in [Pandey et al. 2019] to allow for full body

volumetric capture using a single RGBD sensor, but requires several

additional viewpoints during training for viewpoint generalization.

3 OVERVIEW
In this section, we introduce the hardware we are using to capture

data (ğ 3.1), and provide an overview of our algorithm in ğ 3.2.

3.1 Hardware and data capture
Hardware Setup. All of the data used in this work was collected

using the setup depicted in Fig. 2 (a). The setup consists of a custom

binocular webcam, which we refer to as Facestar, used to capture

video, a desktop mount for the device, and a PC with custom capture

software to record frames from the Facestar.

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

87:4 • Cao, Agrawal, De la Torre, Chen, Saragih, Simon and Sheikh

Offline face
model fitting

(Sec. 4.2) Training
encoder
(Sec. 5.2)

Encoder

Coarse mesh
tracking
(Sec. 5.1)

Encoder

Test images Tracked mesh & textures 3D avatar

Few-shots learning
(Sec. 5.3)

Training images

Avatar

Gain map

Bias map

Image loss

Data capture setup

Sample stereo images from one participant’s six captures

Participant

Prompt

video

Binocular camera

(Facestar)

Camera mount

(Portal)Capture PC

(Windows)

Relighted
avatar

(c) Real-time facial animation

(b) Offline training(a) Data capture

Fig. 2. Overview of our method. We use the binocular camera Facestar to capture user’s facial performance in different environments (a). We then fit the DAM

to the captured images, to get the groundtruth face parameters for each frame, which are used to train the encoder (b). The pre-trained encoder then can be

used to drive the avatar animation in real-time (c).

We use this custom binocular camera to have better control of the

camera settings, such as exposure time, white balance, resolution

etc. The Facestar device (Fig. 3) has 2x OmniVision OV2312 cameras

with a 100 mm baseline. The selected f/2.0 lenses provide a 35 de-

gree and 43 degree HFOV and VFOV respectively. The lenses were

focused to approximately 0.5m away, which was empirically deter-

mined to be a common desktop-mount distance for our participants.

Fig. 3. Facestar

A custom camera controller is used in-

side the Facestar to simultaneously cap-

ture 2 MP (1300 x 1600) images from

both RGB-IR cameras at 60 FPS and send

them to the connected PC over USB 3.0.

Custom software on the PC is used to

perform debayering of the RGB pixels;

the IR channel is discarded. The debay-

ered images are encoded into a video

using OpenCV. When necessary, single channel audio was recorded

separately using a cell phone, using the built-in camera application.

Data Capture Procedure. Each participant was asked to capture

themselves six times, ideally using two different lighting configura-

tions in each of three different backgrounds. It was recommended

that each participant simply rotate the Facestar twice, in 90 degree

increments, to obtain 3 different backgrounds, and modify the light-

ing configuration by turning lamps on or off on either side of their

face, though participants could choose other configurations if they

were more convenient. One frame from each of the six captures for

a participant is shown in Fig. 2 (a). At each frame we can get a pair

of images {𝐼 𝑣}𝑣∈[0,1] . Each capture lasted about 8 minutes, during

which the participant would follow along with a video showing a

variety of facial expressions and sentences to read aloud, similar to

the procedure in [Lombardi et al. 2018].

3.2 Algorithm overview
Fig. 2 (b)(c) shows the overview of our algorithm that has two stages.

First, given a PS-DAM learned from a multi-camera system [Lom-

bardi et al. 2018], an off-line analysis-by-synthesis method is applied

on each frame to estimate accurate rigid and non-rigid face parame-

ters in novel lighting environments (ğ4.2). The pairs of images and

face parameters are used as training data to train an encoder for

real-time inference (ğ 5.2). Second, in the real-time facial animation

stage, we take a user’s new input video and combine a coarse mesh

tracking algorithm (ğ5.1) with the encoder obtained from the off-line

training step to achieve pixel-precise facial animation in real-time.

The environments and lighting of the testing scenario may be differ-

ent from those in the training data. To accurately recover the facial

motions of testing images with new environments and lighting, we

apply a few-shot learning strategy to adapt the encoder to the test

images (ğ 5.3).

4 FACE ESTIMATION

Our approach assumes the availability of a pre-trained person-

specific parametric face model of mesh and appearance (PS-DAM).

Given this model, this section describes how to produce realistic

avatar animation by fitting the model to a binocular video with

unmatched lighting conditions. Fig. 4 shows the overview of our

proposed face estimation method.

4.1 Illumination Invariant Face Model
Given an input image pair, {𝐼 𝑣}, our goal is to estimate the full state

of the face, comprising the rigid head pose and facial expression

parameters. In this work, we use the Deep AppearanceModel (DAM)

proposed by [Lombardi et al. 2018] as the parametric face model.

DAM generates mesh and view-dependent texture as a function of

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

Real-time 3D Neural Facial Animation from Binocular Video • 87:5

Eq.2

Estimate

Differentiable
rendering Eq.4

Image loss
Eq.5

Eq.3

Eq.1

Input image

Relighted avatar

Fig. 4. Overview of offline face estimation. Given an input image, we esti-

mate the rigid head pose [r, t] and expression code z. z and camera viewpoint

vector v𝑣 are fed into DAM to extract face mesh and texture. The head pose,

viewpoint vector and face mesh are taken as input to the lighting model G𝜙

to generate gain map 𝐺𝑣 and bias map 𝐵𝑣 , which are used to relight the

texture. The face mesh𝑀 and relighted texture𝑇 𝑣 are then rendered into

the original image space to get a relighted avatar. We minimize the image

loss between this relighted avatar and the input image.

a facial expression code z ∈ R256:

𝑀,𝑇 𝑣 ← D
(

z, v𝑣
)

. (1)

Here, 𝑀 ∈ R𝑛×3 is the face mesh comprising 𝑛-vertices and 𝑇 𝑣 ∈

R
3×𝑤×ℎ is the face texture with 3 channels (RGB). The viewing

direction, v𝑣 , is the vector pointing from the center of the head to

the camera 𝑣 , and is used to account for view-dependent appearance

variations such as specularities and texture changes due to imprecise

mesh geometry. Because the face model that defines facial animation

parameters is built in a capture stage with uniform lighting, its

appearance does not typically span the lighting conditions in {𝐼 𝑣},

captured in unconstrained settings.

To compensate for these illumination differences, we build on

recent work in domain transfer, and augment DAM with a color

transformation applied to the texture 𝑇 𝑣 :

𝑇 𝑣 = 𝑇 𝑣 ⊙ 𝐺𝑣 + 𝐵𝑣, (2)

where 𝐺𝑣 ∈ R3×𝑤×ℎ and 𝐵𝑣 ∈ R3×𝑤×ℎ are gain and bias maps, and

⊙ is the element-wise product operator, 𝑇 𝑣 is the relighted texture.

To fully describe the appearance effects brought by illumination

differences, these gain and bias maps depend on the specific illu-

mination condition, rigid head pose, facial expression and viewing

direction. Thus, we parameterize these maps using a neural net-

work, that takes rigid head pose [r, t], the face mesh𝑀 and camera

viewpoint vector v𝑣 as input:

𝐺𝑣, 𝐵𝑣 ← G𝜙
(

r, t, 𝑀, v𝑣
)

, (3)

where 𝜙 are the network parameters, and r ∈ R3, t ∈ R3 are the

head rotation and the translation respectively. This construction,

assumes that the illumination conditions are fixed during a capture

session and that the camera is not moving in the environment.

To adapt to new environments, the lighting model, G𝜙 , is learned

from scratch for every new environment from a small collection of

calibration frames. This is performed jointly with the registration

process to infer the face parameters in those frames as described in

the ğ4.2. Given the capacity of the illuminationmodel, the neural net-

work can easily overfit to these frames and exhibit cheating behavior,

where the lighting model also compensates for miss-registration

instead of illumination effects only. This phenomenon has been

observed previously in other works that use neural networks for

domain adaptation [Schwartz et al. 2020; Wei et al. 2019]. In our

work, we found that simply restricting the resolution of the net-

work outputs and using the coarse mesh as input, instead of the full

expression code, largely avoids overfitting when sufficiently good

initialization is provided, as described next.

4.2 Off-line Face Model fitting
Given the rigid head pose [r, t], the generated mesh 𝑀 and trans-

formed texture 𝑇 𝑣 , we can project the face mesh to the original

image space using the intrinsic camera parameters Π𝑣 , and rasterize

it to render a relighted avatar:

𝑀𝑣
= P (𝑀, r, t | Π𝑣) ,

𝐼 𝑣 = R
(

𝑀𝑣,𝑇 𝑣
)

,
(4)

where PΠ𝑣
is the projection operator based on the camera intrinsic

matrix Π𝑣 , R is the rasterization operator and𝑀𝑣 is the projected

face mesh in screen space. In this way we can render the relighted

avatar 𝐼 𝑣 in the original image space, and formulate the analysis-

by-synthesis image loss:

L𝑖𝑚 (p, 𝜙) =
∑

𝑣

(

𝐼 𝑣 − 𝐼 𝑣

1 + 𝜆𝑙𝑎𝑝

Δ𝐼 𝑣 − Δ𝐼 𝑣

1

)

, (5)

where p = [r, t, z] corresponds to the vector of face parameters, Δ

is the image Laplacian operator and 𝜆𝑙𝑎𝑝 is the weight of image

Laplacian loss, and we choose 𝜆𝑙𝑎𝑝 = 0.2 in our experiments.

The previous cost function, Eq. 5, defines a non-linear optimiza-

tion problem that is prone to local minima. To provide a good ini-

tialization for the optimization, for each input image 𝐼 𝑣 , we detect

96 2D face landmarks {𝐿𝑣
𝑘
}, that correspond to face features such as

mouth corner, nose tip or face contour. For each landmark, 𝑘 , we

can find its corresponding vertex index on the face mesh denoted

as ℓ𝑘 , and calculate the 𝐿2 distance between 2D face landmark and

its corresponding mesh vertex projection:

L𝑙𝑎𝑛𝑑 (p) =
∑

𝑣,𝑘

𝐿𝑣𝑘 −𝑀
𝑣
ℓ𝑘

2
, (6)

where𝑀𝑣 is the projected face mesh in screen space calculated by

Eq.4.

At each step during the optimization, given the current estimated

face parameters p𝑐 and a lighting model G𝜙 , we can render the

relighted avatar as 𝐼 𝑣𝑐 using Eq. 4. We then calculate the dense optical

flow between 𝐼 𝑣𝑐 and input image 𝐼 𝑣 , and map the dense optical flow

to the projected mesh vertices𝑀𝑣
𝑐 in screen space through bilinear

interpolation, annotated by𝐷𝑣 = {d𝑣𝑖 }. We can formulate the optical

flow loss as the 𝐿2 distance between the current projection of the

face mesh𝑀𝑣 and the flow-predicted location𝑀𝑣
𝑐 + 𝐷

𝑣 :

L𝑓 𝑙𝑜𝑤 (p) =
∑

𝑣

𝑀𝑣 −𝑀𝑣
𝑐 − 𝐷

𝑣

2
. (7)

With these formulated losses Eq. 5 - 7, we can optimize the face

parameters of all frames and the lighting model parameters by

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

87:6 • Cao, Agrawal, De la Torre, Chen, Saragih, Simon and Sheikh

Algorithm 1 Off-line face model fitting

Input: captured images {𝐼 𝑣}, detected 2D face landmarks {𝐿𝑣
𝑘
},

intrinsic camera parameters Π𝑣 .

Output: face parameters p = [r, t, z], network parameters 𝜙 of

the lighting model G𝜙 .

Process:

• Step 1: p← argminp L𝑙𝑎𝑛𝑑
• Step 2: Fix p, then: 𝜙𝑙 ← argmin𝜙 L𝑖𝑚
• Step 3: Calculate the optical flow, fix 𝜙𝑙 then:

p← argminp L𝑖𝑚 + 𝜆𝑙𝑎𝑛𝑑L𝑙𝑎𝑛𝑑 + 𝜆𝑓 𝑙𝑜𝑤L𝑓 𝑙𝑜𝑤

• Step 4: Calculate the optical flow, then:

p, 𝜙𝑙 ← argminp,𝜙𝑙 L𝑖𝑚 + 𝜆𝑙𝑎𝑛𝑑L𝑙𝑎𝑛𝑑 + 𝜆𝑓 𝑙𝑜𝑤L𝑓 𝑙𝑜𝑤

• Step 5: Calculate the optical flow, fix 𝜙𝑙 , then:

p, 𝜙ℎ ← argminp,𝜙ℎ L𝑖𝑚 + 𝜆𝑙𝑎𝑛𝑑L𝑙𝑎𝑛𝑑 + 𝜆𝑓 𝑙𝑜𝑤L𝑓 𝑙𝑜𝑤

solving the following problem:

min
{p𝑡 },𝜙

∑

𝑡

L𝑖𝑚 + 𝜆𝑙𝑎𝑛𝑑L𝑙𝑎𝑛𝑑 + 𝜆𝑓 𝑙𝑜𝑤L𝑓 𝑙𝑜𝑤 , (8)

where p𝑡 is the face parameter vector at frame 𝑡 . 𝜆𝑙𝑎𝑛𝑑 and 𝜆𝑓 𝑙𝑜𝑤 are

used to control the weights of landmark loss and optical flow loss

and are chosen as 𝜆𝑙𝑎𝑛𝑑 = 1.0 and 𝜆𝑓 𝑙𝑜𝑤 = 3.0 in our experiments.

These optimized face parameters, are regarded as the groundtruth

parameters in training the encoder for ğ5, and are denoted as p★ =

[r★, t★, z★]. The implementation details in solving the problem Eq. 8

will be discussed in ğ4.3.

4.3 Implementation details
Off-line fitting steps. We solve the optimization problem in Eq. 8

in several steps, which are listed in Algorithm 1. At Step 1, we only

minimize the landmark loss formulated by Eq. 6 to obtain the face

parameter p of each frame. Then we fix p and optimize the lighting

model parameters at Step 2. We use a coarse-to-fine scheme to avoid

overfitting. That is, we first optimize a low-resolution version of

the lighting model parameters 𝜙𝑙 at this step, by minimizing the

image loss described as Eq. 5. Then at Step 3, with the optimized p

from Step 1 and 𝜙𝑙 from Step 2, we can render the relighted avatar

𝐼 𝑣𝑐 using Eq. 4, and calculate the dense optical flow between 𝐼 𝑣𝑐 and

input image 𝐼 𝑣 . We then formulate the optical flow loss as Eq. 7. We

fix the lighting model, and optimize the per-frame face parameters

p, by minimizing the image loss, landmark loss and optical flow

loss. At Step 4, we jointly optimize 𝜙𝑙 and p to further minimize the

loss. Finally, at Step 5, we fix the low-resolution lighting model’s

parameters 𝜙𝑙 , and jointly optimize p and high-resolution lighting

model parameters 𝜙ℎ , to refine the results. At Step 4 and Step 5, we

similarly render the relighted avatar, calculate dense optical flow

and formulate the optical flow loss.

Coarse-to-fine lighting model. Our lighting model is designed

to describe the appearance effects brought by illumination differ-

ences between the DAM and the real data. However in practice,

the lighting model can easily be overfitted to reconstruct the facial

expressions from the captured images, which causes the "cheating"

effects. For example, in Algorithm 1, as the estimated face param-

eters based on 2D face landmarks from Step 1 are not accurate,

optimizing the lighting model in Step 2 can easily overfit the model

to reconstruct the relighted avatar 𝐼 𝑣 matching input image 𝐼 𝑣 , but

with wrong facial expressions. To mitigate this problem, we pro-

pose a coarse-to-fine lighting model, shown in Fig. 5. At Step 2, we

only optimize the low-resolution lighting modelG𝜙𝑙 , which outputs

32 × 32 gain and bias maps. We then up-sample them using bicubic

interpolation to match the texture resolution, 1024 × 1024. The out-

put low-resolution gian and bias maps help to avoid overfitting, and

obtain accurate facial expression codes in Step 3 and Step 4. Then,

at Step 5, given the current estimate of face parameters, we fix the

low-resolution lighting model but optimize another high-resolution

lighting model G𝜙ℎ , which outputs a 256 × 256 gain and bias maps,

to refine the details of the face. The experiments (Fig. 10) show that

this coarse-to-fine lighting model helps to recover correct facial

expression, while also reconstructing the captured lighting well.

5 REAL-TIME FACE ANIMATION
In the previous section, we proposed an offline method to fit a DAM

model to arbitrary input video. In this section, we describe a direct

regressor that allows real-time inference, based on the training data

generated by the offline method. Fig. 6 shows the pipeline for real-

time face animation. We first run a coarse mesh tracking algorithm

on the input images (ğ5.1). These tracked meshes, and the unwarped

textures are taken as input of an encoder to regress the target face

parameters (ğ5.2). The regressed expression code, together with

the camera view vector, are fed into the DAM to extract the face

mesh and texture. Finally, the mesh, texture and rigid head pose are

used to render the 3D avatar. In order to compensate for different

illuminations in test videos, we use a few-shot learning strategy to

adapt our pre-trained encoder (ğ5.3).

5.1 Coarse mesh tracking
To enable a real-time coarse mesh tracking, we build a linear PCA

(Principal Components Analysis) model based on the trackedmeshes

from [Lombardi et al. 2018], annotated by {𝐴,𝐴1, 𝐴2, ..., 𝐴𝑚}, where

𝐴 is the average face and𝐴1, 𝐴2, ..., 𝐴𝑚 are the principal components

basis. Denoting a PCA coefficient vector as a = {𝑎1, 𝑎2, ..., 𝑎𝑚} we

can generate coarse face mesh as the linear combination of the PCA

basis:M = 𝐴 +
∑

𝑗 𝑎 𝑗𝐴 𝑗 .

At each frame, for each image 𝐼 𝑣 from Facestar, we firstly detect

2D face landmarks {𝐿𝑣
𝑘
} using a real-time generic detector [Xiong

and De la Torre 2013]. Similar to the landmark loss defined in Eq. 6,

we can transform the face mesh M using rigid head pose [r, t]

and project it to image space using the camera intrinsic matrix Π𝑣 ,

and penalize the 𝐿2 distance between the 2D landmarks and their

corresponding mesh vertices’ projection:

M𝑣
= P (M, r, t | Π𝑣) ,

L𝑡𝑟𝑎𝑐𝑘 (r, t, a) =
∑

𝑣,𝑘

𝐿𝑣𝑘 −M
𝑣
ℓ𝑘

2
.

(9)

We use non-linear least squares minimization following [Cao et al.

2018] to optimize L𝑡𝑟𝑎𝑐𝑘 , and obtain the coarse mesh parameters

[r, t, a] of each frame. We implement the optimization using the

Ceres solver [Agarwal et al. 2010] to achieve the real-time perfor-

mance at runtime.

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

Real-time 3D Neural Facial Animation from Binocular Video • 87:7

2
5
6

16
4

8
16

3
32

16
8

3
1024

4
0
9
6

256
4

256
8

128
16

64
32

32
64

8
128

3
256

3
1024

3
1024

: Fully connected layer + LeakyReLU

L
e
a
k
y
R

e
L
U

T
ra

n
s
p
o
s
e

C
o
n
v
o
lu

tio
n

: Concatenation

: Up-sample

: Reshape

:

: Add

3
3

8
3
4

3

8
8

2
4

8

4
8

3
3

8
3
4

3

8
8

2
4

8

4
8

Low-resolution lighting model

High-resolution lighting model

Fig. 5. Network architecture of the lighting model G𝜙 . We use a coarse-to-fine structure. The low-resolution lighting model (upper branch) outputs a 32 × 32

map, which is then up-sampled to 1024 × 1024. The lower branch, high-resolution lighting model outputs 256 × 256 map, which is up-sampled to 1024 × 1024

and added to output of the upper branch, to produce the final map.

Coarse mesh

tracking

3D Avatar

Rendering
Eq.4

Eq.1 Eq.10

Fig. 6. The pipeline of real-time face animation. With input image pair

{𝐼 𝑣 }, we first run coarse mesh tracking to obtain the head pose [r, t] and

coarse meshM, which are used to unwarp texture {T𝑣 }.M and {T𝑣 } are

then fed into the encoder, to regress the head pose increments [𝛿r, 𝛿t] and

expression code z. z and the camera viewpoint vector v𝑣 are taken as input

of DAM to extract face mesh and texture. Finally, we add the increments to

the initial rigid head pose estimates, and render the 3D avatar.

5.2 Encoder training
For each input image pair {𝐼 𝑣}, with the tracked coarse mesh from

ğ5.1 and the corresponding groundtruth face parameters p★ from

ğ4.2, we can now train an encoder.

We firstly unwarp the input image 𝐼 𝑣 into the texture space with

the projected coarse mesh M𝑣 , to get the captured textures T 𝑣 .

We then define the encoder, which takes the coarse meshM and

unwarped texture {T 𝑣} as input, and outputs the expression code

and rigid head pose increments:

𝛿r, 𝛿t, z← E𝜓
(

M, {T 𝑣}
)

, (10)

where𝜓 are the network parameters of the encoder. The rigid head

pose increments are simply applied to the estimated head pose

from coarse mesh tracking: r + 𝛿r, t + 𝛿t. We expect these refined

head pose and regressed expression codes to match the groundtruth

parameters, thus we define a parameter loss by calculating the 𝐿2
distance between the regressed results and the groundtruth:

L𝑝𝑎𝑟𝑎𝑚 (𝜓) = 𝜆r∥r+𝛿r−r
★∥2 +𝜆t∥t+𝛿t− t

★∥2 +𝜆z∥z−z
★∥2, (11)

where 𝜆r, 𝜆t and 𝜆z are weights to balance the units of rotation,

translation and expression code, and we choose 𝜆r = 1𝑒3, 𝜆t = 1𝑒−2

and 𝜆z = 10 in our experiments.

Additionally, with the regressed face parameters and the lighting

model G𝜙 obtained from ğ4.2, we can render the relighted avatar

into the images based on Eq. 1-4, and define a loss directly in image

space as Eq. 5. In our experiments, we firstly optimize𝜓 with 200

epochs by minimizing the parameter loss Eq. 11, and then further

optimize𝜓 with 50 epochs by minimizing the image loss Eq. 5.

5.3 Few-shots learning adaptation
The environments and the lighting of the test scenarios may be

different from the one of training data, thus directly applying the

pre-trained encoder to data from new environments may lead to

biased results. This section describes a few-shot learning strategy

to adapt the encoder to new environments.

Fig. 7 shows the network architecture of the encoder, which con-

sists of three branches. The first branch is a mesh branch, which

takes the coarse meshM as input. We sample 274 vertices from

meshM and construct a position vector using the 3D locations of

these vertices, which is transformed using several fully-connected

layers to get the latent vector. The second branch is a texture branch,

which takes the unwarped textures {T 𝑣} as input, down-samples it

to 256 × 256, and encodes it using seven convolutional layers, with

each layer followed by a BlurPooling layer [Zhang 2019]. The output

is reshaped to a 4096 dimensional vector, and passed to several fully-

connected layers to get a latent vector. This vector is concatenated

with the latent vector from the mesh branch, from which the expres-

sion code z is regressed. Rigid head pose increments 𝛿r and 𝛿t are

similarly regressed from the texture branch. To allow for few-shot

learning of new environments in the encoder, inspired by [Zakharov

et al. 2019], we add an embedder branch. The embedder branch also

takes unwarped textures {T 𝑣} as input. We use similar convolution

layers in the texture branch, followed by two fully-connected layers

to get adaptive parameters {𝜇, 𝜎}, which are applied to adaptive

instance normalization layers in the texture branch. In general, we

aim to learn the embedder branch such that the output vector {𝜇, 𝜎}

contains the video specific lighting information.

At runtime, with input test video of a novel lighting environment,

we first uniformly sample 𝐾 frames from the first 30 seconds of the

test video. We use the off-line face estimation methods described in

ğ4.2 to estimate the face parameters for these frames. To prevent

the lighting model 𝐺𝜙 from overfitting on these limited frames, we

select a pre-trained lighting model trained on one of this user’s

training video, and fine-tune it in Step 2 and Step 5 in Algorithm 1,

instead of starting from scratch. We then define the parameter loss

as Eq. 11 and image loss as Eq. 5, and adapt the pre-trained encoder.

Experiments show that after 50 epochs, the adapted encoder can

work well on the remaining frames of the test video.

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

87:8 • Cao, Agrawal, De la Torre, Chen, Saragih, Simon and Sheikh

256
6

64
16

32 32
16 64

8 128
4

2
0
4
8

2
5

6

2
5

6

256
4

4
0
9
6

2
5
6

2
5

6

6
4

6
4

3
3

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

: Fully connected layer + LeakyReLU

C
o
n
v
o

lu
tio

n

A
d
a
IN

N
o
rm

C
o
n
v
o

lu
tio

n

L
e
a
k
y
R

e
L
U

: Down-sample

: Reshape

256
32

128
64

64
128

32 128
16 256

8 256
4

L
e
a
k
y
R

e
L
U

C
o
n
v
o
lu

tio
n

B
lu

rP
o
o
lin

g

8
3
4

6

6

:

:

Embedder branch

Texture branch

Mesh branch

Fig. 7. The network architecture of encoder. We have three branches in encoder. From top to bottom: mesh branch, texture branch and embedder branch. The

output of embedder branch, 𝜇 and 𝜎 are used as parameters for the adaptive instance normalization (AdaIn Norm) in the last convolution layer in texture

branch.

6 RESULTS

In this section we describe the experiment setup and the timing

of the system in ğ6.1, and presents a qualitative evaluation of the

off-line face model fitting and real-time facial animation inğ6.2.

ğ6.3 describes an ablation study on different components of our

algorithms. Finally, we compare our methods with state-of-the-art

methods in ğ6.4.

6.1 Experiment setup

To build a user’s PS-DAM, following [Lombardi et al. 2018], we use

a large multi-camera capture apparatus which contains 40 machine

vision cameras synchronously capturing images at 1334 × 2048 /

90 fps, and 460 white LED lights to promote uniform illumination.

The user is asked to make a predefined set of 122 facial expressions

and recites a set of 50 phonetically balanced sentences. This whole

capture process takes about 1 hour to complete.

Facestar is then used to capture user’s facial performance under

six different in-the-wild environmental conditions. In each capture

the user is asked to follow a video demonstrating a variety of facial

expressions and sentences to recite. Each capture takes about 8

minutes to complete, for a total recording time of 48 minutes.

We then build PS-DAM based on the captured data in the multi-

camera apparatus and estimate the face parameters in each Facestar

captured video. We used the parameters of four video sequences

for training the encoder. The entire preprocessing step takes about

3 days to finish on a GPU cluster. Once the PS-DAM and encoder

are trained, a short sequence (less than 30 seconds) of the user’s

face performance is collected in a new target environment, which

is used to fine-tune the encoder. In under 1 hour processing on 4

GPUs (Table 3) the user can drive her/his avatar in real-time in the

new target environment.

6.2 Qualitative Evaluation
We used Facestar to capture seven users’ facial performance under

six different environmental conditions (42 videos in total). For each

video sequence, we estimate the face parameters using the method

described in ğ4.2, that provides our ground-truth. We then used the

parameters of four video sequences of an user as training data to

train the encoder, and the remaining two videos for testing.

Off-line face model fitting . Fig. 1 and Fig. 17 shows the offline face

model fitting on different users under different environments. Our

method can estimate accurate face parameters, including the rigid

head pose and non-rigid facial expression code, which can animate

the avatar (b) with the same facial expression as the input image (a),

demonstrating the quality of the facial expression transfer, including

eyelids, gaze, lip shape, wrinkles, teeth and tongue. Our proposed

lighting model effectively generates gain and bias maps (e) which

models the illumination changes due to different lighting conditions,

head pose and facial expressions, which help to relight the avatar (b)

to pixel-wise match the input image. Though the PS-DAM does not

model glasses, our methods can still handle the case with glasses

on (Fig. 17 3rd row), by encoding the glasses into the gain and bias

map.

Our method can also be applied to other consumer RGBD cameras

(i.e. Intel RealSense, iPhoneXS etc.) to achieve a fitted face model

with similar quality as with using Facestar. In Fig. 8 we show the

results of estimating the face parameters from RGBD images from an

iPhoneXS. Besides the losses defined in Eq. 8, we also compute the

𝐿1 error between the rendered depth map (Fig. 8 (g)) and captured

depth map (Fig. 8 (f)), which helps to achieve stable rigid alignment

in place of the multi-view images in Facestar.

Real-time facial animation . For each user, we took her/his four

videos sequences to train the encoder (Fig. 7). The other two video

sequences are used as test data. We uniformly sampled 𝐾 frames

from the first 30 seconds of the test videos, and adapt the encoder

following a few-shot learning strategy described in ğ5.3. We then

applied this adapted encoder to other frames of the test videos.

The output of this process is shown in Fig. 1 and Fig. 18. With

the input image from the binocular camera, each person can drive

her/his own avatar to generate the photo-realistic avatar animation,

covering wide range of facial motions. With the view-conditioned

DAM representation [Lombardi et al. 2018], we can also visualize

the 3D avatars from different views, which allows our methods to be

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

Real-time 3D Neural Facial Animation from Binocular Video • 87:9

(a) Input image (b) Relighted avatar (c) Reconstruction error (d) Avatar
(g) Gain &

bias map
(h) 3D avatar from different views(e) Input depth (f) Rendered depth

Fig. 8. Off-line face model fitting on iPhoneXS data. With input image (a) and depth (f) from iPhoneXS, our algorithm estimates accurate face parameters to

animate the avatar with the closely matching facial expression and motion (b, d, g).

Fig. 9. Using a robust loss function without a lighting model in off-line face

model fitting. From top to bottom: input images, fitted avatars using robust

loss function without a lighting model, our fitted avatars.

used in AR/VR applications. We implemented the facial animation

methods on a Windows machine with 64 cores CPU and 2 Nvidia

GTX 2080 GPUs, which allows us to drive the avatar at 45 fps. Please

see our supplementary video for a live demo.

6.3 Ablation Study
This section performs an ablation study of different components of

the algorithms.

Robust loss function without a lighting model. We proposed a

novel lighting model to fill the domain mismatch between DAM and

in-the-wild video. Can we ignore this domain mismatch and define

a robust loss function to fit the face model parameters directly? In

this ablation study, we defined a domain-independent perceptual

loss in addition to other losses defined in Eq. 5 - Eq. 7. We passed

both the rendered avatar and input image into the VGG19 network

([Simonyan and Zisserman 2014]), got the output features, and

calculated the 𝐿1 loss of the corresponding features. Fig. 9 shows

the results of face model fitting by optimizing these losses. While

the perceptual loss help to recover the sematic expression to some

extent, the facial motions of the fitted avatar (Fig. 9 middle row) have

a clear gap to the input image (Fig. 9 top row). As a comparison, our

method used the pixel-wise image loss, which can help to recover

precise facial expressions (Fig. 9 bottom row).

Coarse-to-fine lighting models. The key component of the off-line

face model fitting is the lighting model. A good lighting model

is critical to recover the illumination differences between DAM

and in-the-wild image, and have an accurate estimate of the face

parameters. We choose a coarse-to-fine network architecture as the

lighting model (Fig. 5), and compared with other architectures.

To get the ground-truth face parameters, we recorded facial per-

formance data in a calibrated multi-view light-stage consisting of

40 vision cameras synchronously capturing images at 1334 × 2048

/ 90 fps and a total of 460 white LED lights. We flash a group of

LEDs (at most 10) at each frame, and turn on all LEDs every 3rd

frame to get fully lit images. These full-lit images have the same

lighting conditions as the DAM, so we can directly define the image

loss without applying any lighting adaptation and get ground-truth

face parameters on these full-lit images. These face parameters are

then interpolated to in-between frames, to get the ground-truth face

parameters for frames with non-uniform lighting conditions.

For testing, we choose frames with one particular lighting con-

dition, and run our off-line face model fitting pipeline to fit the

face parameters and reconstruct the input image. We will compare

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

87:10 • Cao, Agrawal, De la Torre, Chen, Saragih, Simon and Sheikh

Groudtruth avatar

Input image

R
el

ig
h

te
d

 a
va

ta
r

R
ec

o
n

st
ru

ct
io

n
 e

rr
o

r
Fi

tt
ed

 a
va

ta
r

A
va

ta
r

er
ro

r

0.0

10.0

0.0

10.0

Single value Single map 8 X 8 32 X 32 (Ours-Step4) 128 X 128 512 X 512 Ours-Step5

Fig. 10. Comparisons of different lighting models in off-line face model fitting. Our coarse-to-fine lighting model uses a low-resolution model with 32 × 32

output first, plus a high-resolution model with 256 × 256 output, which generates the most accurate avatar while gives the best reconstruction.

Table 1. Comparisons of off-line face model fitting using different lighting

models.

Methods Reconstruction Error Avatar Error

Single value 7.79 10.00

Single map 3.01 7.90

8 × 8 3.91 5.08

32 × 32 (Ours-Step4) 2.53 4.60

128 × 128 2.09 6.04

512 × 512 2.21 7.83

Ours-Step5 1.79 4.42

the 𝐿2 image loss between the relighted avatar and input image

(Reconstruction Error), and the 𝐿2 loss between the avatar rendered

using estimated parameters, and the ground-truth rendered avatar

(Avatar Error). This avatar loss reflects the accuracy of the fitted

face parameters.

The simplest lighting model is a single gain and bias value. The

lighting model takes rigid head pose, face mesh and camera view-

point vector as input, outputs single gain and bias value, which are

then expanded to the gain and bias maps (Single value). We also

try to optimize a single, frame-independent gain and bias maps at

1024 × 1024 resolution (Single map). On the other hand, we tested

lighting models similar to our low-resolution lighting model, but

with different output resolution: 8×8, 128×128, 512×512. The output

of these lighting models are up-sampled to 1024 × 1024 resolution.

Tab. 1 shows the errors using different lighting models in our

pipeline, and Fig. 10 shows one example frame using different light-

ing models. The input face image has non-uniform lighting. Single

gain/bias values are insufficient to model this lighting change, which

results in both wrong reconstructed avatar (large avatar error) and

poor reconstruction (large reconstruction error). The single map

lighting model can lower the reconstruction loss as it has different

gain/bias values at different pixels. However, as the lighting will

change due to different head pose and facial expressions, single

map cannot model the lighting variability across different frames.

For lighting models with different output resolutions, the one with

larger resolution (128 × 128 or 512 × 512) has too much capac-

ity, which will get good reconstruction (smaller reconstruction er-

rors), but it fails to estimate accurate face parameters, and results in

wrong reconstructed avatar (large avatar error). We call this effect

as "Cheating" effect. As a comparison, in our strategy, we first used

a low-resolution lighting model with 32 × 32 resolution output, to

estimate the face parameters in Step 2 - 4 of Algorithm 1. Then in

Step 5, we add another high-resolution lighting model with 256×256

output, to refine the face details. Our coarse-to-fine lighting model

gives the most accurate face parameters (lowest avatar error) and

the best reconstruction (lowest reconstruction error).

Two views vs. single view. Weused Facestar, the binocular cameras

to simultaneously capture an image pair from two different views

at each frame, which are taken as input in all our experiments in

this paper. To evaluate the importance of these two views input,

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

Real-time 3D Neural Facial Animation from Binocular Video • 87:11

(a) Groudtruth avatar

& Input image

(b) Pre-trained encoder

w/o embedder
(c) Pre-trained encoder =64 =1024

0

10

=512=256=128

Fig. 11. Ablation study on few-shots adaptation. Directly apply the pre-trained encoder to the test video will fail in tracking accurate facial motions. With

more frames from test video in adapting the encoder will help to get more accurate avatars, but brings more computation time. In our experiments, we find

𝐾 = 256 can already give satisfying results.

R
ef

er
en

ce
 i

m
a
g
e

O
n

e
vi

ew
T
w

o
 v

ie
w

s

(a) Input images (b) Estimated avatar

(c) Avatar projected to other views

(a) Input image (b) Estimated avatar

Fig. 12. Face model fitting with one view input and two views input. The

estimated model has a clear offset from the face in reference image based

on one view input due to the depth ambiguity, while two views input can

resolve this.

we evaluated our method on single view input of Facestar. Fig. 12

shows the comparisons. We put a Facestar in the light-stage system

with multiple cameras, which are calibrated with the two cameras

of Facestar. We then trigger the Facestar camera and light-stage

cameras at the same time to capture the synchronized face images.

We took the image captured from Facestar’s left camera as input,

estimated the face model parameters using methods of ğ4.2, and

projected the estimated avatar to other view images captured by

light-stage cameras via the calibrated matrices. As shown in the top

row of Fig. 12, though the estimated avatar aligns well in the input

image, the projected avatar has a clear offset from the face in other

view images. The reason is that the estimated depth from the single

view input has a large ambiguity. Using two views from Facestar

can help to resolve this ambiguity, and obtain the aligned avatar in

other view images (Middle row of Fig. 12).

Table 2. Ablation study on using different lighting conditions in training

data, and embedder branch.

Methods Avatar Error Decrease

2 lightings w/o embedder 5.24 NA

2 lightings 4.19 20.0%

4 lightings w/o embedder 3.16 NA

4 lightings 2.74 13.3%

Table 3. Using different numbers of frames to adapt the pre-trained encoder.

Methods Avatar Error Adaptation Time

Pre-trained encoder 4.19 NA

𝐾 = 64 3.11 4 mins

𝐾 = 128 2.92 8 mins

𝐾 = 256 2.78 15 mins

𝐾 = 512 2.69 31 mins

𝐾 = 1024 2.68 59 mins

Different lightings in training data. We used training data with

different lighting conditions to train the encoders, and apply the

encoder to test video with another lighting condition, and compute

the 𝐿2 avatar error. Tab. 2 shows the comparisons between two

lighting conditions and four lighting conditions. As expected, the

more variability that we have in the training data, in general, the

better the model will be able to generalized.

Embedder branch in encoder. To evaluate the embedded branch

in our encoder architecture, we removed the last convolution layer

in the texture branch from the original encoder, and train it using

the same training data. We then applied this encoder to another test

video sequence and compared the 𝐿2 avatar errors. Tab. 2 shows the

comparisons with/without the embedded branch in the encoder. For

the encoder trained using data with 2 lighting conditions, adding

the embedded will help to decrease the avatar error by 20.0%, and

13.3% for the case with 4 lighting conditions. Fig. 11 (b)(c) show

one example frame of animated avatar from the input image. Our

encoder with the embedded branch (c) help to recover better mouth

shape than the one without the embedded branch (b).

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

87:12 • Cao, Agrawal, De la Torre, Chen, Saragih, Simon and Sheikh

(a) Input image #1

(b) Input image #2

(c) Referenece image

(d) Estimated RGBD

(e) Avatar (Lookingood) (g) Avatar (Ours)

(f) Error (Lookingood) (h) Error (Ours)

(a) Input image #1 (c) Referenece image (e) Avatar (Lookingood) (g) Avatar (Ours)

(b) Input image #2 (d) Estimated RGBD (f) Error (Lookingood) (h) Error (Ours) 0

10.0

Fig. 13. Comparisons with Lookingood [Martin-Brualla et al. 2018] on data captured in light-stage. With input image pair (b) from Facestar, we estimate the

depth using vision stereo algorithm, and construct the RGBD data (d). Lookingood takes this RGBD as input, infer the dense, complete volumetric avatar

representation (e). Avatar generated by our method (g) contains more face details, and has lower reconstruction error (h) than Lookingood (f). Please notice

that our methods only replies on the input images (a-b), not the RGBD input (d).

(a) Input image (b) Estimated RGBD (c) Avatar (Lookingood) (d) Avatar (Ours)

Fig. 14. Comparisons with Lookingood [Martin-Brualla et al. 2018] on in-

the-wild video. The re-rendering network of Lookingood is trained on light-

stage data, which can not be generalized well to in-the-wild video (c). Our

method gives satisfying results (d) thanks to the proposed lighting model.

Selection of 𝐾 in adapting the encoder. At runtime, the more

frames we used from the test data to fine-tune the pre-trained en-

coder the better we are able to adapt the encoder to test video;

however, the more frames we select the more expensive is the com-

putation. To study the selection of𝐾 , we first used two videos of one

user to train an encoder. Then we uniformly sample 𝐾 frames from

the first 30 seconds of the test video, estimated the face parameters

usingmethod from ğ4.2, and adapted the encoder. Finally, we applied

the adapted encoder to other frames of the test video, and compared

the 𝐿2 avatar error to the ground-truth avatars. Tab. 3 shows the

Table 4. Reconstruction error of Lookingood [Martin-Brualla et al. 2018]

and our method on light-stage data.

Methods Reconstruction Error

Lookingood 5.86

Ours 2.65

avatar errors and adaptation times with different 𝐾 . When 𝐾 is

increased from 512 to 1024, the avatar errors are very close already.

Fig. 11 shows one example frame which is not used to adapt the

encoder. Though the error is decreased a little bit, but it is hard to

tell the differences from the visual results after𝐾 = 256. Considering

the performance, we choose 𝐾 = 256 in all our experiments.

6.4 Comparisons
This section compares our methods with other state-of-the-art facial

animation methods.

Non-parametric avatars. First, we compared our method to a re-

cently non-parametric avatar method "Lookingood" [Martin-Brualla

et al. 2018]. Their system takes real-time, low-quality RGBD data of

user facial performance as input, which may suffer from artifacts

such as holes and noise in the rendering, and use a deep architecture

to perform completion, super resolution and denoising in real-time.

To collect the training data to train this system, similar to what we

do in ablation study, we put the Facestar in a light-stage containing

multiple cameras, to capture user’s facial performance from Faces-

tar and light-stage cameras. The images captured by light-stage

cameras are used to build a volumetric avatar of the user. With an

input image pair from the Facestar, at each frame, we find the pixel

correspondence between the paired images, and estimate the depth

using vision stereo algorithm. Based on these data, we can train a

machine learning framework called neural re-rendering, to infer the

dense, complete volumetric representation (Fig. 13 (e)) from noisy,

low-quality RGBD data (Fig. 13(d)). As a comparison, we used the

images captured by light-stage cameras to build the DAM [Lombardi

et al. 2018], and used our method to drive the avatar animation from

Facestar images (Fig. 13(g)).

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

Real-time 3D Neural Facial Animation from Binocular Video • 87:13

(a) Input image (b) [Cao et al. 2018] (c) Ours (a) Input image (b) [Cao et al. 2018] (c) Ours

Frame #1 Frame #2 Frame #3

Frame #4 Frame #5 Frame #6

(a) Input image (b) [Cao et al. 2018] (c) Ours

Fig. 15. Comparisons with landmark and optical flow based face tracking methods [Cao et al. 2018]. The sparse landmark and optical flow are not able to

describe the complete and subtle facial expressions, results in avatar missing many expression details.

Fig. 13 shows two example frames from the test video comparing

Lookingood [Martin-Brualla et al. 2018] with our method. From

the visual avatar results (e-g), both methods can reconstruct an

accurate 3D avatar from input images (a-b). However, our results

contain more facial details such as the face pores, while Lookingood

gives over smoothed results. We take the image captured from one

light-stage camera as the reference image, project the avatar into

the image, and calculate the 𝐿2 reconstruction error inside the face

region, shown as (f-h). We can see our method produces lower

reconstruction error. We calculated the reconstruction error on

the whole video sequence with ∼7K frames, and get the average

reconstruction error shown as Table 4, which shows that our method

can give lower reconstruction error than Lookingood.

Our proposed lighting model helps to fit the face model to data

captured under different environments, so that we can not only

reconstruct avatars for video captured inside the light-stage, but

in-the-wild video. Fig. 14 shows examples of our method being

applied to the in-the-wild input images (a), and reconstruct avatar

with accurate rigid head pose and facial expressions (d). Directly

applying the Looking-Good model, trained on light-stage data, on

these in-the-wild image and the estimated RGBD data (b) cannot

get satisfied results (c).

Real-time landmark-based facial animation. In recent years, marker-

less, real-time face tracking methods based on 2D images are widely

explored and used in many gaming and AR applications. A major

approach is to detect the 2D face landmarks, then use these 2D land-

marks to track the 3D face. To enhance the temporal coherence and

rigid stability, [Cao et al. 2018] also used optical flow as constraints

during optimization. We extend their method to binocular cameras

input, using 2D facial landmarks and optical flow as constraints to

optimize the rigid head pose and expression code of DAM. Fig. 15 (b)

shows several example frames. These sparse landmarks and optical

flow are not able to describe complete and subtle facial expressions.

While [Cao et al. 2018] can recover right expression in specific ex-

pressions with distinctive face geometry (Frame #3), their method

cannot reconstruct correct expression for other frames, especially

the details on eyes (Frame #1), teeth (Frame #2) and lip shape (Frame

#3,#4) and gazes (Frame #6).

Table 5. Comparisons with [Yoon et al. 2019] and [Li et al. 2018]

Methods Reconstruction Error

[Yoon et al. 2019] 6.81

[Li et al. 2018] 7.44

Ours 2.69

Other lighting adaptation for face tracking. We compared our

method to other methods that use different lighting adaptation

schemes for face tracking. [Yoon et al. 2019] proposed I2ZNet, which

tracks the DAM by training a regressor using self-supervised do-

main adaptation. I2ZNet learns a single 1-by-1 convolution layer

at the output texture of DAM as the color transformation, which

helps to correct the white-balance between the two domains. We

first trained the I2ZNet on the light-stage data which are used to

construct DAM, and adapted the model on in-the-wild data in a

self-supervised way. Fig. 16 (b) shows the results. Their proposed

lighting adaptation model (i.e. the 1-by-1 convolution layer) fails

when using challenging lighting conditions, which results in poor

quality avatars with artifacts.

On the other hand, we also compared our method with the com-

mon lighting model used in previous work, spherical harmonics

(SH). We replaced the lighting model with SH in our system. We

followed the environment map prediction methods proposed by [Li

et al. 2018], to train a network to predict the first nine SH coefficients

for each color channel from the input texture. These SH coefficients,

together with the normal map of face mesh extracted from DAM,

are used to relight the face texture. We then render the relighted

avatar using these relighted texture, and calculate the image loss

between the relighted avatar with input image. This image loss can

be minimized to obtain the optimal rigid head pose and expression

code. Fig. 16 (c) shows the results. The SH lighting model can only

recover the low-frequency lighting differences, thus the optimized

avatar based on this lighting model contain mismatch facial details,

such as blur mouth lip and wrong eye lids. Our methods can re-

construct an avatar with precise facial expressions, and get lower

reconstruction error (Fig. 16(d)) thanks to our coarse-to-fine lighting

model. Table 5 also shows the reconstruction error using different

lighting adaptation methods, while our method can give the lowest

reconstruction error.

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

87:14 • Cao, Agrawal, De la Torre, Chen, Saragih, Simon and Sheikh

(a) Input image

(b) [Yoon et al. 2019] (c) [Li et al. 2018] (d) Ours

0

10

(b) [Yoon et al. 2019] (c) [Li et al. 2018] (d) Ours

(a) Input image

R
el

ig
h

te
d

 a
va

ta
r

R
ec

o
n

st
ru

ct
io

n
 e

rr
o

r
A

va
ta

r

R
el

ig
h

te
d

 a
va

ta
r

R
ec

o
n

st
ru

ct
io

n
 e

rr
o

r
A

va
ta

r

0

10

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Fig. 16. Comparisons with [Yoon et al. 2019] and [Li et al. 2018]. Neither the 1-by-1 convolution layer from [Yoon et al. 2019] nor spherical harmonics from [Li

et al. 2018] can describe the complex illumination difference, result in blur and inaccurate face details in reconstructed avatar. While our lighting model can

model the lighting well, and gives satisfying avatar results.

7 CONCLUSION
We propose a real-time method to drive hyper-realistic avatars from

a binocular RGB camera. Given the input video and a pre-trained

DAM, we fit the face model to a video, decoupling the rigid head

pose from facial expressions. We propose a novel coarse-to-fine

lighting model to fill the domain gap between DAM and in-the-wild

video with unconstrained lighting condition. To drive the high-

fidelity avatar animation in real-time, we design a few-shot learning

based regressor, which can be quickly adapted to test scenario by

observing a few frames of new environments.

There exists some limitations of our method. First, we assume the

lighting conditions during user’s capture will not change dramati-

cally, which is not true in some cases. In the future, we will explore

an online adaptation strategy to adapt the encoder. Second, we now

only model the face animation, but not the hair, neck or shoulder.

We may extend our method to upper body animation in the future

work. Finally, our method is still a person specific solution. To make

our systemmore practical to users, we will explore a general method

to drive the high-fidelity avatar animation.

REFERENCES
Sameer Agarwal, Keir Mierle, and Others. 2010. Ceres Solver. http://ceres-solver.org.
Timur Bagautdinov, Chenglei Wu, Jason Saragih, Pascal Fua, and Yaser Sheikh. 2018.

Modeling Facial Geometry Using Compositional VAEs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

T. Baltrušaitis, P. Robinson, and L. Morency. 2012. 3D Constrained Local Model for
rigid and non-rigid facial tracking. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition. 2610ś2617. https://doi.org/10.1109/CVPR.2012.6247980

Volker Blanz, Curzio Basso, Tomaso Poggio, and Thomas Vetter. 2003. Reanimating
Faces in Images and Video. Comput. Graph. Forum 22 (09 2003), 641ś650. https:
//doi.org/10.1111/1467-8659.t01-1-00712

Volker Blanz and Thomas Vetter. 1999. A morphable model for the synthesis of 3D faces.
In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques. 187ś194.

James Booth, Anastasios Roussos, Allan Ponniah, David Dunaway, and Stefanos
Zafeiriou. 2018. Large scale 3D morphable models. International Journal of Computer
Vision 126, 2-4 (2018), 233ś254.

Sofien Bouaziz, Yangang Wang, and Mark Pauly. 2013. Online Modeling for Realtime
Facial Animation. ACM Transactions on Graphics (TOG) 32, 4 (July 2013), 10.

Chen Cao, Derek Bradley, Kun Zhou, and Thabo Beeler. 2015. Real-Time High-Fidelity
Facial Performance Capture. ACM Trans. Graph. 34, 4, Article 46 (July 2015), 9 pages.
https://doi.org/10.1145/2766943

Chen Cao, Menglei Chai, Oliver Woodford, and Linjie Luo. 2018. Stabilized Real-Time
Face Tracking via a Learned Dynamic Rigidity Prior. ACM Trans. Graph. 37, 6,
Article 233 (Dec. 2018), 11 pages.

Chen Cao, Qiming Hou, and Kun Zhou. 2014. Displaced Dynamic Expression Regression
for Real-time Facial Tracking and Animation. ACM Transactions on Graphics (TOG)
33, 4 (July 2014), 43:1ś43:10.

Chen Cao, Yanlin Weng, Stephen Lin, and Kun Zhou. 2013a. 3D Shape Regression for
Real-time Facial Animation. ACM Transactions on Graphics (TOG) 32, 4, Article 41
(July 2013), 10 pages.

Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. 2013b. Faceware-
house: A 3d facial expression database for visual computing. IEEE Transactions on
Visualization and Computer Graphics 20, 3 (2013), 413ś425.

Dan Casas, Oleg Alexander, Andrew W. Feng, Graham Fyffe, Ryosuke Ichikari, Paul
Debevec, Rhuizhe Wang, Evan Suma, and Ari Shapiro. 2015. Rapid Photorealistic
Blendshapes from Commodity RGB-D Sensors. In Proceedings of the 19th Sympo-
sium on Interactive 3D Graphics and Games (i3D ’15). Association for Computing
Machinery, New York, NY, USA, 134. https://doi.org/10.1145/2699276.2721398

Jin-xiang Chai, Jing Xiao, and Jessica Hodgins. 2003. Vision-Based Control of 3D Facial
Animation. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (San Diego, California) (SCA ’03). Eurographics Association,
Goslar, DEU, 193ś206.

Y. Chen, H. Wu, F. Shi, X. Tong, and J. Chai. 2013. Accurate and Robust 3D Facial
Capture Using a Single RGBD Camera. In 2013 IEEE International Conference on
Computer Vision. 3615ś3622. https://doi.org/10.1109/ICCV.2013.449

Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. 2001. Active appear-
ance models. IEEE Transactions on pattern analysis and machine intelligence 23, 6
(2001), 681ś685.

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

http://ceres-solver.org
https://doi.org/10.1109/CVPR.2012.6247980
https://doi.org/10.1111/1467-8659.t01-1-00712
https://doi.org/10.1111/1467-8659.t01-1-00712
https://doi.org/10.1145/2766943
https://doi.org/10.1145/2699276.2721398
https://doi.org/10.1109/ICCV.2013.449

Real-time 3D Neural Facial Animation from Binocular Video • 87:15

(a) Input image (b) Rendered image
(c) Reconstruction

error
(d) Avatar

(e) Gain &

bias map
(a) Input image (b) Rendered image

(c) Reconstruction

error
(d) Avatar

(e) Gain &

bias map

Fig. 17. Examples of off-line face model fitting on different users under different lighting conditions. With input image (a), our algorithm can decouple the

accurate rigid head pose and non-rigid facial expression, and reconstruct the avatar with the same facial motions (d). The proposed lighting model can produce

the gain and bias map (e), which reflects the lighting condition, head pose and facial expressions. These gain and bias map help to relight the avatar (b) which

is pixel-wise matching the input image. We visualize the 𝐿2 error between (a) and (b) as the reconstruction error in (c). Our method can handle different head

poses or different lighting conditions, and well reconstruct both exaggerated and subtle facial expressions.

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

87:16 • Cao, Agrawal, De la Torre, Chen, Saragih, Simon and Sheikh

(a) Input image (b) Avatar (c) Avatar from different views (a) Input image (b) Avatar (c) Avatar from different views

Fig. 18. Examples of real-time facial animations for different persons. With input image (a) our method can track 3D face and drive the avatar animation (b).

Thanks to the view-dependent DAM representation, we can visualize the 3D avatar from different views (c). Our real-time facial animation method can handle

different lighting conditions, recover expression to a wide range of motions. Our methods can well handle user with glasses on (bottom row).

Douglas Decarlo and Dimitris Metaxas. 2000. Optical flow constraints on deformable
models with applications to face tracking. International Journal of Computer Vision
38, 2 (2000), 99ś127.

Mingsong Dou, Philip Davidson, Sean Ryan Fanello, Sameh Khamis, Adarsh Kowdle,
Christoph Rhemann, Vladimir Tankovich, and Shahram Izadi. 2017. Motion2Fusion:
Real-time Volumetric Performance Capture. SIGGRAPH Asia (2017).

Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan Fanello,
Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim, Jonathan
Taylor, Pushmeet Kohli, Vladimir Tankovich, and Shahram Izadi. 2016. Fusion4D:

Real-time Performance Capture of Challenging Scenes. SIGGRAPH (2016).
Graham Fyffe, Andrew Jones, Oleg Alexander, Ryosuke Ichikari, and Paul Debevec.

2014. Driving High-Resolution Facial Scans with Video Performance Capture. ACM
Transactions on Graphics (TOG) 34, 1, Article 8 (Dec. 2014), 8:1ś8:14 pages.

Thomas Gerig, Andreas Morel-Forster, Clemens Blumer, Bernhard Egger, Marcel Luthi,
Sandro Schönborn, and Thomas Vetter. 2018. Morphable face models-an open
framework. In 2018 13th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2018). IEEE, 75ś82.

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

Real-time 3D Neural Facial Animation from Binocular Video • 87:17

Patrik Huber, Guosheng Hu, Rafael Tena, Pouria Mortazavian, P Koppen, William J
Christmas, Matthias Ratsch, and Josef Kittler. 2016. A multiresolution 3d mor-
phable face model and fitting framework. In Proceedings of the 11th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications.

Jing Xiao, S. Baker, I. Matthews, and T. Kanade. 2004. Real-time combined 2D+3D active
appearance models. In Proceedings of the 2004 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2004. CVPR 2004., Vol. 2. IIśII. https:
//doi.org/10.1109/CVPR.2004.1315210

F. Kahraman, M. Gokmen, S. Darkner, and R. Larsen. 2007. An Active Illumination and
Appearance (AIA) Model for Face Alignment. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition. 1ś7. https://doi.org/10.1109/CVPR.2007.383399

Vahid Kazemi and Josephine Sullivan. 2014. One Millisecond Face Alignment with an
Ensemble of Regression Trees. In IEEE International Conference on Computer Vision
and Pattern Recognition.

Hyeongwoo Kim,Mohamed Elgharib, Hans-Peter Zollöfer, Michael Seidel, Thabo Beeler,
Christian Richardt, and Christian Theobalt. 2019. Neural Style-Preserving Visual
Dubbing. ACM Transactions on Graphics (TOG) 38, 6 (2019), 178:1ś13.

Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies, Matthias
Nießner, Patrick Pérez, Christian Richardt, Michael Zollöfer, and Christian Theobalt.
2018. Deep Video Portraits. ACM Transactions on Graphics (TOG) 37, 4 (2018), 163.

HyeongwooKim,Michael Zollhöfer, Ayush Tewari, Justus Thies, Christian Richardt, and
Christian Theobalt. 2017. InverseFaceNet: Deep Single-Shot Inverse Face Rendering
From A Single Image. CoRR abs/1703.10956 (2017). arXiv:1703.10956 http://arxiv.
org/abs/1703.10956

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

Oliver Klehm, Fabrice Rousselle, Marios Papas, Derek Bradley, Christophe Hery, Bernd
Bickel, Wojciech Jarosz, and Thabo Beeler. 2015. Recent Advances in Facial Appear-
ance Capture. Computer Graphics Forum (Proceedings of Eurographics - State of the
Art Reports) 34, 2 (May 2015), 709ś733. https://doi.org/10/f7mb4b

Samuli Laine, Tero Karras, Timo Aila, Antti Herva, Shunsuke Saito, Ronald Yu, Hao Li,
and Jaakko Lehtinen. 2017. Production-level Facial Performance Capture Using Deep
Convolutional Neural Networks. In Proceedings of the ACM SIGGRAPH / Eurographics
Symposium on Computer Animation. Article 10, 10 pages.

J. P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang Deng.
2014. Practice and Theory of Blendshape Facial Models. In Eurographics 2014 - State
of the Art Reports, Sylvain Lefebvre and Michela Spagnuolo (Eds.). The Eurographics
Association. https://doi.org/10.2312/egst.20141042

Hao Li, Jihun Yu, Yuting Ye, and Chris Bregler. 2013. Realtime Facial Animation with
On-the-Fly Correctives. ACM Trans. Graph. 32, 4, Article 42 (July 2013), 10 pages.
https://doi.org/10.1145/2461912.2462019

Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier Romero. 2017. Learning a
model of facial shape and expression from 4D scans. ACM Trans. Graph. 36, 6 (2017),
194ś1.

Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan
Chandraker. 2018. Learning to reconstruct shape and spatially-varying reflectance
from a single image. In SIGGRAPH Asia 2018 Technical Papers. ACM, 269.

Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. 2018. Deep Appear-
ance Models for Face Rendering. ACM Trans. Graph. 37, 4, Article 68 (July 2018),
13 pages.

Ricardo Martin-Brualla, Rohit Pandey, Shuoran Yang, Pavel Pidlypenskyi, Jonathan
Taylor, Julien Valentin, Sameh Khamis, Philip Davidson, Anastasia Tkach, Peter
Lincoln, et al. 2018. Lookingood: Enhancing performance capture with real-time
neural re-rendering. arXiv preprint arXiv:1811.05029 (2018).

Iain Matthews and Simon Baker. 2004. Active appearance models revisited. International
journal of computer vision 60, 2 (2004), 135ś164.

S. McDonagh, M. Klaudiny, D. Bradley, T. Beeler, I. Matthews, and K. Mitchell. 2016.
Synthetic Prior Design for Real-Time Face Tracking. In International Conference on
3D Vision (3DV). 639ś648.

Koki Nagano, Jaewoo Seo, Jun Xing, Lingyu Wei, Zimo Li, Shunsuke Saito, Aviral
Agarwal, Jens Fursund, and Hao Li. 2018. PaGAN: Real-Time Avatars Using Dynamic
Textures. ACM Trans. Graph. 37, 6, Article 258 (Dec. 2018), 12 pages. https://doi.
org/10.1145/3272127.3275075

Kyle Olszewski, Joseph J. Lim, Shunsuke Saito, and Hao Li. 2016. High-fidelity Facial
and Speech Animation for VR HMDs. ACM Transactions on Graphics (TOG) 35, 6,
Article 221 (Nov. 2016), 14 pages.

Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang, Adarsh Kowdle,
Yury Degtyarev, David Kim, Philip L. Davidson, Sameh Khamis, Mingsong Dou,
Vladimir Tankovich, Charles Loop, Qin Cai, Philip A. Chou, Sarah Mennicken,
Julien Valentin, Vivek Pradeep, Shenlong Wang, Sing Bing Kang, Pushmeet Kohli,
Yuliya Lutchyn, Cem Keskin, and Shahram Izadi. 2016. Holoportation: Virtual 3D
Teleportation in Real-time. In UIST.

Rohit Pandey, Anastasia Tkach, Shuoran Yang, Pavel Pidlypenskyi, Jonathan Taylor,
Ricardo Martin-Brualla, Andrea Tagliasacchi, George Papandreou, Philip Davidson,
Cem Keskin, et al. 2019. Volumetric capture of humans with a single rgbd camera

via semi-parametric learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 9709ś9718.

J. M. Saragih, S. Lucey, and J. F. Cohn. 2011. Real-time avatar animation from a single
image. In 2011 IEEE International Conference on Automatic Face Gesture Recognition
(FG). 213ś220. https://doi.org/10.1109/FG.2011.5771400

Gabriel Schwartz, Shih-En Wei, Te-Li Wang, Stephen Lombardi, Tomas Simon, Jason
Saragih, and Yaser Sheikh. 2020. The Eyes Have It: An Integrated Eye and Face
Model for Photorealistic Facial Animation. ACM Trans. Graph. 39, 4, Article 91 (July
2020), 15 pages.

Soumyadip Sengupta, Angjoo Kanazawa, Carlos D Castillo, and David W Jacobs. 2018.
SfSNet: Learning Shape, Reflectance and Illuminance of Facesin theWild’. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 6296ś6305.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

J. Rafael Tena, Fernando De la Torre, and Iain Matthews. 2011. Interactive Region-Based
Linear 3D Face Models. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/1964921.1964971

Ayush Tewari, Michael Zollöfer, Hyeongwoo Kim, Pablo Garrido, Florian Bernard,
Patrick Perez, and Christian Theobalt. 2017. MoFA:Model-based Deep Convolutional
Face Autoencoder for UnsupervisedMonocular Reconstruction. In IEEE International
Conference on Computer Vision (ICCV).

J. Thies, M. Zollhöfer, M. Nießner, L. Valgaerts, M. Stamminger, and C. Theobalt. 2015.
Real-time Expression Transfer for Facial Reenactment. ACMTransactions on Graphics
(TOG) 34, 6 (2015).

Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt, and Matthias
Nießner. 2016. Face2Face: Real-time Face Capture and Reenactment of RGB Videos.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Justus Thies, Michael Zollhöfer, Christian Theobalt, Marc Stamminger, and Matthias
Niessner. 2018. HeadOn: Real-Time Reenactment of Human Portrait Videos. ACM
Trans. Graph. 37, 4, Article 164 (July 2018), 13 pages. https://doi.org/10.1145/3197517.
3201350

Anh Tuan Tran, Tal Hassner, Iacopo Masi, and Gerard Medioni. 2017. Regressing Robust
and Discriminative 3D Morphable Models with a very Deep Neural Network. In
Computer Vision and Pattern Recognition (CVPR).

Luan Tran, Feng Liu, and Xiaoming Liu. 2019. Towards High-fidelity Nonlinear 3D Face
Morphable Model. In In Proceeding of IEEE Computer Vision and Pattern Recognition.
Long Beach, CA.

Luan Tran and Xiaoming Liu. 2018. Nonlinear 3D Face Morphable Model. In In Pro-
ceeding of IEEE Computer Vision and Pattern Recognition. Salt Lake City, UT.

Georgios Tzimiropoulos, Joan Alabort-i Medina, Stefanos Zafeiriou, and Maja Pantic.
2013. Generic Active Appearance Models Revisited. Springer Berlin Heidelberg, Berlin,
Heidelberg, 650ś663.

Levi Valgaerts, Chenglei Wu, Andrés Bruhn, Hans-Peter Seidel, and Christian Theobalt.
2012. Lightweight Binocular Facial Performance Capture under Uncontrolled Light-
ing. In ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2012), Vol. 31.
187:1ś187:11. https://doi.org/10.1145/2366145.2366206

Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popović. 2005. Face Transfer
with Multilinear Models. ACM Trans. Graph. 24, 3 (July 2005), 426ś433. https:
//doi.org/10.1145/1073204.1073209

Shih-En Wei, Jason Saragih, Tomas Simon, Adam W. Harley, Stephen Lombardi, Michal
Perdoch, Alexander Hypes, Dawei Wang, Hernan Badino, and Yaser Sheikh. 2019.
VR Facial Animation via Multiview Image Translation. ACM Trans. Graph. 38, 4,
Article 67 (July 2019), 16 pages. https://doi.org/10.1145/3306346.3323030

Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly. 2011. Realtime Performance-
Based Facial Animation. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/1964921.1964972

Xuehan Xiong and Fernando De la Torre. 2013. Supervised Descent Method and Its
Applications to Face Alignment. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Jae Shin Yoon, Takaaki Shiratori, Shoou-I Yu, and Hyun Soo Park. 2019. Self-supervised
adaptation of high-fidelity face models for monocular performance tracking. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4601ś4609.

Alan Yuille and Daniel Kersten. 2006. Vision as Bayesian inference: analysis by synthe-
sis? Trends in cognitive sciences 10, 7 (2006), 301ś308.

Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and Victor Lempitsky. 2019. Few-
shot adversarial learning of realistic neural talking head models. In Proceedings of
the IEEE International Conference on Computer Vision. 9459ś9468.

Richard Zhang. 2019. Making convolutional networks shift-invariant again. arXiv
preprint arXiv:1904.11486 (2019).

Michael Zollhöfer, Justus Thies, Pablo Garrido, Derek Bradley, Thabo Beeler, Patrick
Pérez, Marc Stamminger, Matthias Nießner, and Christian Theobalt. 2018. State of
the Art onMonocular 3D Face Reconstruction, Tracking, and Applications. Computer
Graphics Forum (2018). https://doi.org/10.1111/cgf.13382

ACM Trans. Graph., Vol. 40, No. 4, Article 87. Publication date: August 2021.

https://doi.org/10.1109/CVPR.2004.1315210
https://doi.org/10.1109/CVPR.2004.1315210
https://doi.org/10.1109/CVPR.2007.383399
https://arxiv.org/abs/1703.10956
http://arxiv.org/abs/1703.10956
http://arxiv.org/abs/1703.10956
https://doi.org/10/f7mb4b
https://doi.org/10.2312/egst.20141042
https://doi.org/10.1145/2461912.2462019
https://doi.org/10.1145/3272127.3275075
https://doi.org/10.1145/3272127.3275075
https://doi.org/10.1109/FG.2011.5771400
https://doi.org/10.1145/1964921.1964971
https://doi.org/10.1145/3197517.3201350
https://doi.org/10.1145/3197517.3201350
https://doi.org/10.1145/2366145.2366206
https://doi.org/10.1145/1073204.1073209
https://doi.org/10.1145/1073204.1073209
https://doi.org/10.1145/3306346.3323030
https://doi.org/10.1145/1964921.1964972
https://doi.org/10.1111/cgf.13382

	Abstract
	1 Introduction
	2 Related Work
	2.1 Parametric face modeling
	2.2 Real-time face tracking
	2.3 Lighting adaptation for face trackers
	2.4 Non-parametric Avatars

	3 Overview
	3.1 Hardware and data capture
	3.2 Algorithm overview

	4 Face estimation
	4.1 Illumination Invariant Face Model
	4.2 Off-line Face Model fitting
	4.3 Implementation details

	5 Real-time face animation
	5.1 Coarse mesh tracking
	5.2 Encoder training
	5.3 Few-shots learning adaptation

	6 Results
	6.1 Experiment setup
	6.2 Qualitative Evaluation
	6.3 Ablation Study
	6.4 Comparisons

	7 Conclusion
	References

