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Abstract—Pose guided synthesis aims to generate a new image
in an arbitrary target pose while preserving the appearance
details from the source image. Existing approaches rely on either
hard-coded spatial transformations or 3D body modeling. They
often overlook complex non-rigid pose deformation or unmatched
occluded regions, thus fail to effectively preserve appearance
information. In this paper, we propose an unsupervised pose
flow learning scheme that learns to transfer the appearance
details from the source image. Based on such learned pose flow,
we proposed GarmentNet and SynthesisNet, both of which use
multi-scale feature-domain alignment for coarse-to-fine synthesis.
Experiments on the DeepFashion, MVC dataset and additional
real-world datasets demonstrate that our approach compares
favorably with the state-of-the-art methods and generalizes to
unseen poses and clothing styles.

Index Terms—Pose guided synthesis, pose correspondence,
unsupervised optical flow.

I. INTRODUCTION

POSE guided synthesis aims to generate a realistic person
image that preserves the appearance details of the source

image given an arbitrary target pose. As a central task in virtual
reality [43], online garment retail [10], and game character
rendering, realistic pose guided synthesis will have a crucial
impact on numerous applications.

Despite the recent successes of conditional image synthesis
[11], [38], pose guided synthesis still faces many unsolved
challenges. Among them, the main challenge is the complex,
part-independent pose deformation, with garment, from the
source pose to an arbitrary target pose. As a result, models
[22], [4], [10], [29] built on the plain U-Net [32] network
structure often fail to generate precise details or textures due
to the lack of a robust spatial alignment component.

Recently, several approaches [34], [28], [42], [3] have been
proposed to address spatial alignment. Specifically, Siarohin et
al. [34] apply deformable skip connections for spatial align-
ment. However, the oversimplified affine transformation on the
predefined rectangles does not necessarily capture the non-
rigid deformation. Different from Siarohin et al., Neverova et
al. [28] and Wu et al. [42] resort to a pretrained pose estimator,
DensePose [1], to perform non-rigid alignment on 3D-model.
Since such model-level alignment is not capable of handling
occluded regions caused by drastic pose changes, inpainting
is then applied to fill the occluded region. Nonetheless, the
results are usually blurry in occluded regions.

A later work [3] relies on the combination of affine transfor-
mation and thin-plate splines (TPS) transformation to perform
spatial alignment. However, the TPS transformation is inflex-
ible to model the highly non-rigid human pose deformation.
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Fig. 1. Images generated by different methods. The first column contains
source images while the second column contains ground truth images with
target poses. We compare our results (last column) with the state-of-the-art
methods (rows 3-7). The odd rows display the entire images and the even
rows display the corresponding texture details. In comparison, our method
clearly produces the most visually plausible and pleasing effects.

In addition, their matching module is trained on simplified
synthetic transformations [31]. Therefore, the human pose
deformation is not properly handled. Most recently, Li et
al. [18] use the 3D human model [21] to generate human
pose flow ground-truth for training a flow estimator. However,
similar to other 3D-modeling approaches [28], [42], the issue
of large occluded regions is not well addressed due to the
lack of correspondence. Moreover, the 3D human modeling
is computationally expensive, and it is not always precise
on loose clothes, as 3D human modeling focus on body
reconstruction rather than the clothes surface reconstruction.

In this paper, we present i) a novel unsupervised pose
flow learning scheme (Stage-I) to tackle the pose guided
transfer task. Next, we propose ii) a coarse-to-fine garment-
to-image synthesis pipeline (Stage-II) using feature domain
alignment based on the learned flow. Without using affine
or TPS transformation [34], [3] or resorting to explicit 3D
human modeling [28], [42], [18] to extract correspondence,
our method utilizes learned pose flow to capture the complex
pose deformation. To address the issue of occlusion caused
by drastic pose changes, we propose an unsupervised pose
flow learning scheme that learns to transfers appearance to
occluded regions. In contrast to [18], our approach avoids the
computationally inefficient flow ground-truth generation step.

To enable such an unsupervised pose flow training scheme,
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Fig. 2. Our two-stage framework for pose-guided person image synthesis. In stage-I, a flow estimator is trained using our proposed texture-preserving
objective. In stage-II, GarmentNet and SynthesisNet use the trained flow estimator to sequentially estimate garment parsing and image output, following a
course-to-fine pipeline.

we propose in Stage-I a novel texture preserving objective to
improve the quality of the learned flow, which is shown to
be crucial for the pose-guided synthesis task. We also propose
augmentation-based self-supervision to stabilize the flow train-
ing. Based on the learned pose flow, we proposed in Stage-
II a coarse-to-fine garment-to-image synthesis pipeline using
our proposed GarmentNet and SynthesisNet. GarmentNet and
SynthesisNet share a unified network structure, which utilizes
the learned pose flow for multi-scale feature domain warping.
Furthermore, we propose a novel gated multiplicative attention
module for misalignment-aware synthesis.

Finally, to synthesize more realistic images, we design
masking layers in GarmentNet and SynthesisNet to preserve
the target image background and person identity for realistic
synthesis. Furthermore, we use DensePose parsing [1] instead
of person keypoints as pose inputs. DensePose parsing con-
tains body segmentation and mesh coordinates, which provide
richer information for realistic pose-guided synthesis.

Our main contributions are three-fold:

• We propose an unsupervised pose flow learning scheme
for pose-guided synthesis. Our scheme adaptively learns
to transfer appearance from target images. To enable such
a learning scheme, a novel texture preserving objective

and an augmentation-based self-supervision strategy are
proposed, which improve the quality of the transferred
appearance.

• We propose a coarse-to-fine synthesis pipeline based on
GarmentNet and SynthesisNet. GarmentNet and Synthe-
sisNet are based on the learned pose flow for multi-scale
feature domain alignment. Furthermore, a novel gated
multiplicative attention module is proposed to address the
misalignment issue.

• To facilitate more realistic image synthesis, we design
masking layers that preserve target identities and back-
ground information. Furthermore, we use DensePose
parsing as pose representation, which provides richer pose
details for pose-guided synthesis.

The remainder of the paper is organized as follows. Sec. II
introduces related work on (pose guided) image synthesis
and optical flow learning. The proposed approach is detailed
in Sec. III. Experiments are described in Sec. IV. Sec. V
concludes the paper.

II. RELATED WORK

A. Image synthesis
Generative Adversarial Network (GAN) [8] has been widely

used for image synthesis tasks. Conditional GAN [26] aims to
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synthesize an image from an given conditional input content.
Based on conditional GAN, Isola et al. propose Pix2Pix [11]
for image style transfer tasks. Later on, many techniques
have been proposed to improve both the synthesis quality and
resolution of the generated images. Specifically, Johnson et
al. [14] use feature-level distance on the VGG network [35] to
measure the perceptual similarities. The Gram matrix loss [6]
is proposed by Gatys et al. for texture synthesis. To improve
the image synthesis resolution, Zhang et al. [44] propose a
two-stage network for generating images from coarse to fine
scales. PatchGAN discriminator [17] is used by Li et al. to pe-
nalize unrealistic patches. Wang et al. [38] and Chen et al. [2]
propose new generator structures for realistic image synthesis.
In addition, techniques such as Wasserstein distance [9] and
Spectral Normalization [27] are proposed to stabilize GAN
training. Those approaches have improved the synthesized
image quality. However, these approaches are limited to spatial
deformation as their networks are built on local convolution.
In this work, we present a flow-based approach to address the
spatial alignment problem in pose-guided synthesis.

B. Pose Guide Synthesis

Ma et al. [22] use the source image and target pose land-
marks as the conditional input and the UNet [32] structure for
pose guided synthesis. Later, Siarohin et al. [34] utilize skip
connections with hard-coded part-level affine transformation to
transform feature maps for new pose image synthesis. Dong
et al. [3] use the thin-plate spline (TPS) transform trained
on synthetic transformations [31] to warp the source domain
content. Additionally, Han et al. [10] and Wang et al. [37]
use the TPS transformer for virtual try-on. To handle pose
deformations, Neverova et al. [28] use DensePose [1] to trans-
fer appearance patterns and utilize in-painting to fill occluded
regions. In addition, pose guided synthesis is formulated as a
pose-appearance disentanglement problem. Specifically, Esser
et al. [4] use variational autoencoder [16] to capture the latent
space of pose and appearance for appearance manipulation
under given poses. Ma et al. [23] learn disentangled pose-
appearance representation using a multi-branch encoding and
decoding scheme. However, the plain UNet structure [22], [4],
predefined transformation [34], [28] or TPS transformer [3],
[37] are insufficient for handling the complex human pose
deformation and occlusion caused by drastic pose changes.
Recently, Li et al. [18] uses 3D human model [21] to corre-
spondence annotation, then fit a flow estimator to speed up
inference. However, generating the correspondence supervi-
sion is computationally exhausted. Furthermore the ground-
truth correspondence cannot effectively transfer appearance to
occluded regions. In contrast, our unsupervised flow-training
scheme learns to transfer appearance under complex pose de-
formation and occlusion without using explicit correspondence
annotation.

C. Unsupervised Optical Flow Learning

Recently, several approaches have been proposed to learn
optical flow in the absence of the ground-truth annotation.
Specifically, Jason et al. [13] optimize a predictive model using

a combination of photometric loss and smoothness. Meister
et al. [25] utilize left-right consistency to filter out occluded
regions. Wang et al. [39] further propose an occlusion-aware
objective function for unsupervised flow learning. Different
from these works, we focus on learning a flow that better
preserves the appearance information. Furthermore, our optical
flow is estimated using only the source image and pose
information.

III. APPROACH

In this section, we present an unsupervised flow-based ap-
proach to the pose-guided synthesis task. To this end, we adopt
a two-stage pipeline, as illustrated in Fig. 2. In Stage-I, a flow
estimator is unsupervisedly trained using our proposed texture-
preserving objective. In Stage-II, we present GarmentNet and
SynthesisNet to sequentially generate garment parsing and
image output, using the flow obtained from the previous stage.

In Sec. III-A, we first define the notation that are required
by our model. In Sec. III-B, we propose our unsupervised
texture-preserving objective and other details for training flow
estimator for pose-guided alignment. In Sec. III-C, we pro-
pose GarmentNet and SynthesisNet to respectively estimate
garment parsing and image output.

A. Notations

Given a pair of images Is and It from the source and
target domains respectively, pose-guided synthesis aims to
generate a image Ît that preserves the appearance of Is and
the pose of It. To this end, we respectively generate pose
representation Ps, Pt and garment parsing Gs, Gt from Is and
It, to capture useful information from the source and target
domains. In addition, we extract image residue Irt from It and
garment residues Grt from garment Gt, in the hope to capture
target identity (i.e., face, hair, and background regions). Fig. 3
illustrates (Ps, Pt), (Gs, Gt), (Is, It) and residues (Irt , G

r
t ). In

fact, Pt, Gt and It form an hierarchical structure that gradually
provide richer information of the target person. We leverage
this hierarchical structure in Sec. III-C to design our coarse-
to-fine synthesis pipeline. We note that during training, Is and
It are from the same outfit of the same person. In testing
phase, however, Is and It can be arbitrary person with arbitrary
outfits.

To be more specific, the pose representations Ps and Pt are
the concatenation of the one-hot pose parsing and the mesh
coordinate map from Densepose [1]. Likewise, the garment
representations Gs and Gt are the one-hot garment parsing
generated using the method by Gong et al. [7]. The image
residue rit are generated by first removing person region from
It then perform inpainting []. Then, hair and face regions are
appended on the inpainted results 1. Finally, garment residue
rgt are generated by setting values of one-hot parsing Gt to 0
for background, face and hair channels.

Although our approach can adapt key-point heat maps as
an alternative human pose representation, we argue that sparse

1We use the garment parsing Gt to generate the regions of human body,
hair and face.
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Fig. 3. Notation illustrations for the required data for training and testing. We
use subscripts s and t to represent source and target domains, respectively.
The notions of I , G and P represent images, garment parsing and pose
representation, respectively. (Irt , G

r
t ) denote image residue and garment

residue from the target person. The output of our approach is denoted by
Ît. Please refer to Sec. III-A for more details..
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Fig. 4. The network structure of GarmentNet. Given the generated flow from
Stage-I, GarmentNet encodes information from the source and target domains
using a Source Domain Encoder (yellow) and a Target Domain Encoder (blue),
respectively. After warping-based alignment, the source domain features are
aggregated with the target domain features at multiple scales by our Decoder
(red). Finally, the generated foreground is alpha-blended with the residue
garment to synthesize garment parsing. In testing stage, the source and target
image are from different persons.

key-points do not provide sufficient pose information for accu-
rate person image generation. By contrast, DensePose parsing
and mesh coordinates provide dense, pseudo-3D information,
which is informative to represent pose detail.

B. Stage-I: Unsupervised Texture Preserving Flow

With the extracted pose representations Ps and Pt, we
present an unsupervised flow training scheme to generate
adaptive, texture-preserving alignment without resorting to the
computationally inefficient SMPL model [21] or oversimpli-
fied affine [34] or TPS transformation [37], [3].

As shown in Fig. 2, our flow estimator takes the source
image, pose and target pose as inputs to generate multi-scale
flow-fields to indicate the pose deformation. Formally, let
Flow(·, ·) denote our flow estimator, which takes [Is;Ps] and
Pt from source and target domains as inputs and outputs flow

fields at multiple scales:

{w(0)
t→s,w

(1)
t→s, · · · ,w

(5)
t→s} = Flow([Is;Ps], Pt). (1)

where notation w
(l)
t→s denotes flow field from the target image

to the source images at scale l ∈ {0, · · · , 5}.
We employ FlowNetS [5] as the baseline structure to

implement Flow([Is;Ps], Pt). Note that, unlike a normal flow
estimator, Flow(·, ·) leverages pose information for flow es-
timation. Meanwhile, we have also modified FlowNetS to
improve the flow-field definition and to reduce memory usage.
Please refer to Appendix A for more details.

Unsupervised flow training on natural images has been
explored in several recent works. These approaches mainly
rely on the photometric loss [13]

Lp(Is, It,w(0)
t→s) =

∣∣∣∣∣∣ρ(It − warp(Is;w
(0)
t→s)

)∣∣∣∣∣∣
1

(2)

to measure the difference between the target image and the
inversely warped source image using the predicted flow. Here,
warp(·; ·) denotes the inverse warping operation [12] and
ρ(x) = (x2 + ε2)

α is a robust loss function [36]. Furthermore,
total variation-based (TV) spatial smoothness loss is also
utilized to regularize the flow prediction [30]:

LTV (w(l)
t→s) =

∣∣∣∣∣∣∣∣ ∂∂xw(l)
t→s

∣∣∣∣∣∣∣∣
1

+

∣∣∣∣∣∣∣∣ ∂∂yw(l)
t→s

∣∣∣∣∣∣∣∣
1

. (3)

Due to the complexity of person images and the large displace-
ment from source pose to target pose, the warping-based pho-
tometric term is highly non-convex. As as result, the gradient
descendent training with the naive photometric loss and spatial
smoothness loss will lead to difficulty in convergence. To
solve this issue, we use multi-scale strategy, where photometric
losses and spatial smoothness losses summed at multiple scales
l ∈ {0,· · · , 5}.

In our experiment, we found that the multi-scale training
will still suffer from damaged local textures for the warped
images warp(Is;w

(0)
t→s), and the learned flow fails to transfer

realistic details from source images (see Fig. 8 for details). We
attribute this deficiency to the poor ability of Lp and LTV in
preserving the high-frequency texture. In order to preserve re-
alistic details and textures for better pose-guided synthesis, we
propose a texture-preserving objective L(l)

texture that enforces
texture similarity between the It and warp(Is;w

(0)
t→s) at scale

l:

L(l)
texture(It, Is,w

(0)
t→s)

=
∣∣∣∣∣∣G(f (l)vgg(It))−G

(
f (l)vgg(warp(Is;w

(0)
t→s))

)∣∣∣∣∣∣
1
,

(4)

where f
(l)
vgg(·) represents the l’th VGG [35] feature map

from layer {relu1_2, relu2_2, relu3_2, relu4_2,
relu4_3} of the given input image, and G(·) denotes the
Gram matrix [6] to capture the second-order statistic of the
given feature map. Although the objective L(l)

texture is widely
used in style transfer tasks, we are the first to show that the
texture loss is crucial for learning a reasonable flow estimator
for pose-guided synthesis tasks (see Fig. 8 for details).

Finally, we use a multi-scale version of the three losses,
which are then weighted summed to compute the final loss.
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Fig. 5. The network structure of SynthesisNet. Given the generated flow
from Stage-I and the synthesized garment parsing, GarmentNet encodes
information from the source and target domains using a Source Domain
Encoder (yellow) and a Target Domain Encoder (blue), respectively. After
warping-based alignment, the source domain features are aggregated with the
target domain features at multiple scales by the Decoder (red). Finally, the
generated foreground is alpha blended with the residue image to synthesize
image output. In testing stage, the source and target image are from different
persons.

Let I(l)s and I
(l)
t denote the resized images of Is and It at

scale l ∈ {0,· · · , 5}, the overall objective is given by:

LStageI

=

5∑
l=0

sl(Lp(I(l)s , I
(l)
t ,w

(l)
t→s)

+ βlL(l)
texture(It, Is,w

(0)
t→s)

+ γlLTV (w(l)
t→s)),

(5)

with (s0, s1, s2, s3, s4) = (1, 1, 0.5, 0.25, 0.125), (β0, β1, β2,
β3, β4) = (0.002, 0.002, 0.002, 0.002, 0), (γ0, γ1, γ2, γ3, γ4)
= (0.1, 0.1, 0.1, 0.1, 0).

To further stabilize the training, an augmentation-based self-
supervision is employed to regularize the learned flow. Specif-
ically, let Aug(·, θ) denote an augmentation transformation
based on cropping, affine transformation and flipping with
a random control parameter θ, the augmented source pose
and source image are treated as target pose and target image,
respectively. More precisely, we use the following update rules
to transform the original data before one iteration of flow
estimator training:

ε ∼ U(0, 1),

Pt ← Aug(Ps, θ), if ε < 0.25

It ← Aug(Is, θ), if ε < 0.25.

(6)

During training, 25% percent of the training samples are first
generated using such a synthetic random transformation to
help the flow estimator to learn from simple transformations.

C. Stage-II: Coarse-to-Fine Synthesis

Based on the learned flow estimator in Stage-I, we pro-
pose GarmentNet and SynthesisNet to sequentially synthesize

garment parsing and image output following a coarse-to-
fine pipeline (Fig. 2 bottom). As illustrated in Fig. 4 and
Fig. 5, GarmentNet and SynthesisNet share a unified network
structure, which utilize the learned flow in stage-I for feature
alignment. Afterwards, U-Net decoder serves to fuse infor-
mation from both the source and target domains. On top of
the decoder, an alpha blending layer is applied to preserve
background information and to generate final outputs.

Formally, GarmentNet utilizes [Gs, Ps] to encode source
domain information, Pt to encode target domain information,
{w(0)

t→s,w
(1)
t→s, · · · ,w

(5)
t→s} from stage-I for alignment, and Grt

to keep the shape of target hair and face. The notation [·, ·]
denotes channal-wise concatenation. The output target garment
of GarmentNet is denoted by Ĝt:

Ĝt = GarmentNet([Gs, Ps], Pt,

{w(0)
t→s,w

(1)
t→s, · · · ,w

(5)
t→s}, Irt ).

(7)

Similarly, SynthesisNet (see Eq. 8) utilizes [Is, Ps] to
encode source domain information, [Ĝt, Pt] to encode target
domain information, {w(0)

t→s,w
(1)
t→s, · · · ,w

(5)
t→s} from stage-I

for alignment, and Irt to keep the background, hair and face of
target image. The output of SynthesisNet is the synthesized
image Ît:

Ît = SynthesisNet([Is, Ps], [Ĝt, Pt],

{w(0)
t→s,w

(1)
t→s, · · · ,w

(5)
t→s}, Irt ).

(8)

Since the two networks share the similar inputs format and
network structure, we elaborate the shared network structure
below.

Network Structure As shown in Fig. 4 and 5, our model
relies on a source encoder Encs(·) and a target encoder
Enct(·) to respectively generate multi-scale feature maps from
source and target domains inputs IN s, IN t:

{f (0)s , · · · , f (5)s } = Encs(IN s),

{f (0)t , · · · , f (5)t } = Enct(IN t).
(9)

For GarmentNet, inputs are set to IN s = [Gs, Ps], IN t = Pt.
For SynthesisNet, inputs are set to IN s = [Is, Ps], IN t =
[Ĝt, Pt].

We use six stacked strided convolutional layers to imple-
ment Enct(·) and six stacked strided convolutional layers
following seven residue blocks to implement Encs(·). The ad-
ditional residue blocks serve to increase feature representation
capacity.

To perform spatial alignment, the source domain features
f (l) at all scales l ∈ {0,· · · , 5} are inversely warped [12] to
target domain using f

(l)
s and w

(l)
t→s for layers l ∈ {1, · · · , 5},

formally:

f
(l)
s→t = warp(f (l)s ;w

(l)
t→s). (10)

After spatial alignment, a U-Net fusion decoder is used
for feature aggregation. However, instead of directly con-
catenating feature maps for aggregation, we propose a gated
multiplicative attention module to filter the misaligned source



6

domain features. Specifically, the gated multiplicative attention
filtering at scale l is defined as:

f
(l)′
s→t = f

(l)
s→t � σ(f

(l)>
s→tW

(l)f
(l)
t ), (11)

where σ(·) represents the sigmoid function, � represents
element-wise multiplication and W(l) is a learnable matrix
that measures dot product similarities between f

(l)
s and f

(l)
t on

to-be-learned linear space. The gated multiplicative attention
filtering can be efficiently implemented on the 2-D feature
maps using 1×1 convolution, element-wise multiplication and
summation. Please refer to Appendix B for details. Building
on top of the gated multiplicative attention filtering operation,
our decoder uses the following equations to generate the
aggregated feature maps f

(l)
dec:

f
(0)
dec = Deconv([f

(0)′
s→t; f

(0)
t ]),

f
(l)
dec = Deconv([f

(l−1)
dec ; f

(l)′
s→t; f

(l)
t ]), l ∈ {1, · · · , 5}.

(12)

Afterwards, our network simultaneously generates fore-
ground content fg along with a mask M that ranges from
0 to 1 to avoid changing the residue content of the target rt.
Specifically,f (5)dec is passed to two independent convolutional
layers to respectively generate foreground content fg and a
corresponding foreground mask M :

fg = Conv(f
(5)
dec),

M = Conv(f
(5)
dec).

(13)

Finally, the output content out is generated by alpha-
blending the foreground content fg with the residue content
r:

out = M � fg + (1−M )� r. (14)

For GarmentNet, softmax function is applied after out to
generate the garment parsing, i.e. Ĝs = softmax(out). For
SynthesisNet, tanh function is applied after out to generate
the normalized image, i.e. Îs = tanh(out).
Training Objective For GarmentNet training, we use the
cross entropy loss between the target garment Gt and predic-
tion Ĝt:

LGarmentNet = −
∑
i,j

∑
n

(Gt)i,j,n log((Ĝt)i,j,n), (15)

where i, j enumerate pixel positions and n enumerates chan-
nals of garment parsing.

For SynthesisNet training, we use a combination of `1 pixel
domain loss, VGG feature loss, texture loss, and GAN loss.
The training objective is represented as:

LSynthesisNet =λ1L1 + λ2LVGG

+ λ3Ltexture + λ4LGAN, (16)

where L1 =
∣∣∣∣∣∣Ît − It∣∣∣∣∣∣

1
computes the `1 differences be-

tween the synthesized image and the ground-truth, LVGG =∣∣∣∣∣∣fVGG(Ît)− fVGG(It)
∣∣∣∣∣∣
1

computes feature map differences on
the relu4_2 layer of the VGG network of the two image.
Similar to Eq. 4, Ltexture =

∣∣∣∣∣∣G(fVGG(Ît)
)
−G (fVGG(It))

∣∣∣∣∣∣
1

(Eq. 4) computes the texture-level differences of the two

images, and LGAN = (D(It)− 1)
2
+ D(Ît)

2
measures how

well the synthetic image can fool a trained discriminator D(·).
Similar to CycleGAN [46], we use least-square distance [24]
rather than negative log likelihood to compute the LGAN,
whereas the discriminator is implemented using the PatchGAN
architecture [11] with spectrum normalization [27]. The hyper-
parameters λ1, λ2, λ3, λ4 are set to λ1 = 1.0, λ2 = 0.1, λ3 =
0.002, λ4 = 0.5 respectively in our experiments.

Additionally, we use a similar augmentation-based self-
supervision strategy as described in Sec. III-B to regularize
SynthesisNet. During training, 25% percent of the source
domain samples come from the augmented target domain
samples to help SynthesisNet to learn from simple tasks first.

IV. EXPERIMENTS

A. Dataset

We train and evaluate our method on the DeepFashion [20]
dataset, which contains 52,712 person images of sizes 256×
256. Images that only contain trousers are removed using
DensePose [1], resulting in 40,906 valid images. We randomly
divide the dataset into 68,944 training pairs and 1,000 test-
ing pairs. Additionally, we evaluate our DeepFashion trained
model on other datasets to understand how well our model can
generalize to unseen poses, clothing styles or background.

As detailed in Section III-A, pose representation are gen-
erated using DensePose, while garment representation are
generated using the method of [7]. Finally, we additionally
uses keypoint heatmap [22] as pose representation to test our
algorithm.

B. Implementation Details

In Stage-I and Stage-II, we set the learning rate to 0.0001
for the flow estimator and the generator. Following [27],
the learning rate for the discriminator is 0.0004. We adopt
Adam [15] optimizer (β1 = 0.9 and β2 = 0.999) in all exper-
iments. Random cropping, affine transformation and flipping
are used to augment data. The flow estimator, GarmentNet
and SynthesisNet are trained for 20, 20 and 40 epochs,
respectively.

Since our approach can adopt keypoint heatmap [22] as
pose representation by simply altering Ps, Pt, we additionally
train our model using the key point representation while
maintaining other inputs unchanged.

C. Quantitative Evaluation

To quantitatively evaluate the synthesis results, low-level
metrics like Structural Similarity (SSIM) [40], Multi-scale
Structural Similarity (MS-SSIM) [41] and perceptual-level
metrices like Inception Score (IS) [33] and the Perceptual
Image Patch Similarity Distance (LPIPS) [45] are measured
on different approaches, including PG2 [22], BodyROI [23],
Vunet [4], DSCF [34], Soft-gated GAN (Soft-gate) [3] and
Intrinsic Flow (IF) [18]. For LPIPS, we use the linearly cali-
brated Alex model, please refer to [45] for details. Since our
approach relies on the background information, we report the
masked version of all the metrices for fair comparisons. The
masks are generated by running [7] to exclude background,
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TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS IN TERMS OF BOTH THE MASKED SSIM/MSSSIM/INCEPTION SCORE (IS) AND THE LEARNED

PERCEPTUAL IMAGE PATCH SIMILARITY (LPIPS) AT 256× 256 AND 128× 128 RESOLUTION. HIGHER SCORES ARE BETTER FOR METRICS WITH
UPARROW (↑), AND VICE VERSA.

Methods SSIM-128↑ msSSIM-128↑ SSIM↑ msSSIM↑ IS-128↑ IS↑ LPIPS↓ LPIPS-128↓
PG2 [22] 0.864 0.911 0.857 0.891 3.455 ± 0.226 4.266 ± 0.371 0.192 0.190
BodyROI7 [23] 0.842 0.882 0.837 0.865 3.282 ± 0.173 3.855 ± 0.158 0.193 0.201
DSCF [34] 0.856 0.902 0.851 0.884 3.458 ± 0.198 4.226 ± 0.326 0.159 0.157
Vunet [4] 0.822 0.830 0.827 0.827 3.424 ± 0.143 4.176 ± 0.320 0.226 0.258
Soft-gate [3] 0.860 0.908 0.853 0.888 3.270 ± 0.219 3.868 ± 0.387 0.140 0.135
IF [18] 0.877 0.926 0.865 0.906 3.262 ± 0.293 3.809 ± 0.360 0.128 0.128
Ours 0.854 0.905 0.848 0.884 3.540 ± 0.294 4.197 ± 0.291 0.124 0.124
Ours-kp 0.831 0.870 0.831 0.852 3.646 ± 0.285 4.295 ± 0.296 0.163 0.169

Source GT Pg2 BodyROI Vunet DSCF Soft-gated Stage-I
warping

Stage-II
foreground

Stage-II
mask

OursIF

Fig. 6. Comparison with the state-of-the-art approaches. The last four columns depict the warped source image, fore ground prediction in stage-II, mask
prediction in stage-II, and our final output. In comparison, our method clearly produces the most visually plausible and pleasing effects.

Vunet PG2 Soft-gateBodyROI7  DSCF Ours

Best
Very good
Good
Fair
Not good
Worst

Fig. 7. Subjective quality assessment of different algorithms. For each
algorithm, the bar depicts the number of occurrences of scores, while blue to
yellow colors represent the scores from the best to the worst.

hair, and face region. We additionally test all the metrics at
resolution 128× 128 to measure similarities at a global scale.

From Table I, our method (ours) substantially outperforms
the remaining methods in IS-based measurements and LPIPS
distances, as our texture-preserving flow is able to preserve
texture patterns form source images. In terms of the low-level
SSIM-based measurements, our method achieves competitive
performance in comparison with the other approaches. When
trained using keypoint heatmap (ours-kp), we observe similar
high IS scores for both models and better LPIPS scores for
our model. It suggests both models (ours and ours-kp) preserve
realistic texture. However, with the help of the DensePose pose
representation, our model (ours) generates better global shape.

D. Qualitative Evaluation

We conduct a subjective assessment to evaluate our method
qualitatively. Specifically, we ask 15 subjects to rank image
qualities among the 6 algorithms ([4], [22], [23], [34], [3]
and ours). The subjects are instructed to rank the six images,
based on the realism of the generated garments as well as
global garment structures. The subjects are then asked to
provide a score from 1 to 6 for each image, representing
best quality to worst quality, respectively. We plot the ranking
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histogram of different algorithms in Fig. 7. From the figure,
our method is most frequently chosen as the best due to
structurally consistent texture. DSCF [34] achieves the second
place due to its ability to maintain texture structure from
the source image using rigid transformations. The qualitative
results of different approaches as well as the warped source
image and foreground/mask prediction from stage-II are shown
in Fig. 6. It can be noticed that the existed approaches generate
blurry results or incorrect textures. By contrast, our method
can preserve texture details from source images. Notably, our
approach generates better warping results in comparison with
IF, especially under large pose changes.

E. Ablation Study

Unsupervised Flow Training To evaluate the effectiveness
of each component in the unsupervised flow training scheme,
we separately train three variants of the proposed flow estima-
tors: i) w/o multi-scale, only computing loss at the finest scale,
ii) w/o texture, removing texture loss Ltexture, and iii) w/o
semi, removing the augmentation-based self supervision. Table
II compares the three models with our full model by computing
the SSIM, IS, and LPIPS-based scores of the inversely warped
images using the trained flow at the finest scale. The inversely
warped image is also visualized in Fig.8. It is observed that our
full model outperforms w/o semi and w/o multi-scale in terms
of LPIPS scores. It is consistent with the visualization from
Fig. 8, showing that our full model can generate flow with
more visually plausible and pleasing details. The w/o multi-
scale performs well in IS scores, and it is possibly because w/o
multi-scale tends to retain the realistic original source image.
However, w/o multi-scale does not preserve the semantics of
the target pose. In terms of SSIM-based measurement, the
full flow training scheme achieves the best ms-SSIM scores,
suggesting that the full model is better at preserving global
structures.

SynthesisNet Design To evaluate the effectiveness of dif-
ferent components in training SynthesisNet, an ablation study
is performed in the following ways: i) we remove the flow
estimator for alignment, resulting in w/o flow, a UNet-like
structure that does not perform feature alignment, ii) we
replace the gated multiplicative attentive fusion modules with
concatenation operations, which is called w/o att, iii) we
replace the semi-supervised data generation scheme with only
the supervised data, which is called w/o semi. Table II com-
pares the qualitative scores in terms of SSIM, ms-SSIM, IS
and their masked versions. From the table, we observe that
the SSIM-based performances substantially deteriorate with-
out the flow-based alignment module. Meanwhile, the gated
multiplicative attentive fusion helps to improve the inception
scores of the generated images. Also, semi-supervised training
improves performance marginally. Visualization is also shown
in Fig. 9. From the figure, we observe that our full model is
able to retain the global structure due to flow-based alignment.
Comparing w/o att and full, we see that with the gated
multiplicative attention module, our model generates globally
consistent texture details.

Source

Target

w/o 
multi-scale

w/o
texture

w/o
semi

Full

Source

Target

w/o 
multi-scale

w/o
texture

w/o
semi

Full
objective

Fig. 8. Comparisons of different unsupervised flow training schemes. Our full
flow training objective (Eq. 5) generates more visually plausible and pleasing
textures and more consistent flow.

Source Target w/o flow w/o att w/o
semi

Full

Fig. 9. Visual comparisons of different SynthesisNet training schemes. Our
full model generates more visually plausible and pleasing texture details with
more coherent global structures.
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TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT FLOW TRAINING SCHEMES AND SYNTHESISNET TRAINING SCHEMES IN TERMS OF BOTH THE MASKED

SSIM/MSSSIM/INCEPTION SCORE (IS) AND THE LEARNED PERCEPTUAL IMAGE PATCH SIMILARITY (LPIPS) AT 256× 256 AND 128× 128
RESOLUTION. HIGHER SCORES ARE BETTER FOR METRICS WITH UP ARROWS (↑), AND VICE VERSA.

Flow training schemes SSIM-128↑ msSSIM-128↑ SSIM↑ msSSIM↑ IS-128↑ IS↑ LPIPS↓ LPIPS-128↓
w/o multi-scale 0.822 0.853 0.825 0.839 4.115 ± 0.211 4.689 ± 0.327 0.240 0.240
w/o texture 0.837 0.880 0.837 0.861 3.843 ± 0.246 4.204 ± 0.245 0.217 0.217
w/o semi 0.835 0.880 0.834 0.861 3.978 ± 0.348 4.412 ± 0.223 0.196 0.196
full training scheme 0.836 0.882 0.835 0.863 3.934 ± 0.274 4.404 ± 0.331 0.193 0.193
SynthesisNet training schemes SSIM-128↑ msSSIM-128↑ SSIM↑ msSSIM↑ IS-128↑ IS↑ LPIPS↓ LPIPS-128↓
w/o flow 0.849 0.898 0.844 0.877 3.421 ± 0.177 3.952 ± 0.291 0.141 0.141
w/o att 0.853 0.904 0.848 0.883 3.391 ± 0.161 3.946 ± 0.374 0.128 0.128
w/o semi 0.851 0.903 0.846 0.882 3.480 ± 0.273 3.995 ± 0.333 0.128 0.128
full model 0.854 0.905 0.848 0.884 3.540 ± 0.294 4.197 ± 0.291 0.124 0.124

F. Generalization

To understand the generalization ability of our trained model
and how well our model can perform on real-world datasets,
we evaluate our trained model on three additional datasets:
Multi-view Clothing dataset The Multi-view Clothing
dataset (MVC) [19] contains 161,260 person images and
645,040 pairs in total. We report the results on the MVC
dataset using various models that are trained on the DeepFash-
ion dataset. We also report the performance of our finetuned
model using 120,000 pairs selected from the MVC training set.
Table III shows the evaluation of our approach in comparison
to other approaches. The generated new-person images are
visualized in Fig. 10.
Amazon Fashion Video Data We evaluate our approach
on a set of online video data. Specifically, we crawl clothing
item demo videos from the Amazon Fashion website. The
initial frame from various source video is used as the source
images to synthesize each frame from the target video. The
synthesized videos are shown in the supplementary materials.
In Fig. 11, the top row shows the target video, while the resting
rows show the synthesized video with different clothing styles
from source images. As demonstrated in Fig. 11, our approach
generates temporal-consistent frames with distinctive texture
details, suggesting that our method can effectively generalize
to unseen poses and clothing styles.
Garment transfer to real person To examine the ap-
plicability of our approach in real-world scenes, we collect
videos of people in real scenes with various poses using a
typical smartphone. Fig. 12 visualizes consecutive frames of
our captured video and our transferred video, showing that
our approach can generate visually plausible and pleasing new
clothing styles under challenging real-world environments.

V. CONCLUSION

To better model person appearance transformation for pose-
guided synthesis, we propose an unsupervised pose flow
learning scheme that learns to transfer appearance from target
images. Furthermore, we propose a texture preserving objec-
tive and an augmentation-based self-supervision scheme which
are shown to be effective for learning appearance-preserving
pose flow. Based on the learned pose flow, we propose a
coarse-to-fine synthesis pipeline using a carefully designed
network structure for multi-scale feature domain alignment.

To address the misalignment issue, we propose a gated mul-
tiplicative attention module. In addition, masking layers are
used to preserve target identities and background information.
Experiments on the DeepFasion, MVC, and other real-world
datasets have validated the effectiveness and robustness of our
approach.

APPENDIX A
ADAPTATION OF FLOWNETS

To implement the flow estimator function Flow() from
Eq. 1, we use the FlowNetS network structure. However,
several adaptations are made. First, we reduce the channel
of each convolution/deconvolution layer to 64 for memory
efficiency. Second, to improve the flow definition at scale 0,
the ×4 bilinear upsampling layer at the end of the original
FlowNetS is replaced by two ×2 U-Net upsampling modules.

APPENDIX B
CODE FOR GATED MULTIPLICATIVE ATTENTION FILTERING

We show that the gated multiplicative attention filtering

f
(l)′
s→t = f

(l)
s→t � σ(f

(l)>
s→tW

(l)f
(l)
t ),

from Eq. 11 can be implemented using 3 lines of code in
PyTorch:

Algorithm 1 Gated multiplicative attention filtering

Input: f
(l)′
s→t, f

(l)
t

Output: f
(l)′
s→t

compute filter σ(f (l)>s→tW
(l)f

(l)
t ) :

1: att = torch.sum(conv_W(f (l)s→t) *f
(l)
t , 1)

2: att = torch.sigmoid(att)
perform filtering :

3: f
(l)′
s→t = torch.mul(f (l)s→t, att)

4: return f
(l)′
s→t

where function conv_W() defines a 1 × 1 convolutional
operation with its trainable parameters W(l).
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TABLE III
QUANTITATIVE COMPARISON OF VARIOUS APPROACHES ON THE MVC DATASET USING THE MODELS TRAINED ON THE DEEPFASHION DATASET.

PERFORMANCES ARE MEASURED IN TERMS OF THE MASKED SSIM/MSSSIM/IS SCORES AT 256× 256 RESOLUTION AND 128× 128 RESOLUTION.
HIGHER SCORES ARE BETTER FOR METRICS WITH UP ARROWS (↑), AND VICE VERSA. TOP TWO SCORES ARE IN BOLD.

Methods SSIM↑ SSIM-128↑ msSSIM↑ msSSIM-128↑ IS↑ IS-128↑
PG2 [22] 0.817 0.806 0.851 0.840 3.401 ± 0.269 3.662 ± 0.361
BodyROI7 [23] 0.798 0.792 0.828 0.823 3.043 ± 0.250 3.039 ± 0.152
DSCF [34] 0.816 0.810 0.846 0.841 3.358 ± 0.229 3.151 ± 0.229
Vunet [4] 0.806 0.794 0.840 0.833 3.294 ± 0.190 2.871 ± 0.222
Ours 0.836 0.839 0.857 0.853 3.603 ± 0.300 3.451 ± 0.426
Ours-Finetuned 0.839 0.840 0.863 0.859 3.737 ± 0.415 3.365 ± 0.273

Source GT Pg2 BodyROI7 Vunet DSCF Ours
(trained on

DeepFashion)

Ours
(finetuned on

 MVC)

Fig. 10. Comparison with the state-of-the-art approaches on the MVC dataset. Patches are zoomed in to visualize detailed textures. The last two columns
depict our DeepFashion trained model and our MVC finetuned model.
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frames. The horizontal axis represents the time step. Our approach can generate temporally consistent frames with distinctive texture details.
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