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Abstract
Atomics are the fundamental building blocks of concurrent constructs,

such as non-blocking data structures, synchronization techniques such
as Read-Copy-Update, and even concurrent-safe memory reclamation
algorithms. The Partitioned Global Address Space (PGAS) is meant to
bridge the gap between distributed and shared memory in a way that
accessing memory can be performed in a way that is transparent with
regards to where the memory is actually allocated. In this way, it makes
distributed computing all the easier but it does not come without a cost,
as pointers to global memory, such as UPC’s ‘global_pointer’ or Chapel’s
‘wide_ptr_t’, which contains not only the memory address but also the
rank of the compute node that the memory is located on, are larger than
what most architectures can support for atomic operations. A solution to
this problem would not only make porting shared-memory algorithms to
distributed memory possible, but also enable the creation of new algorithms
for high-performance computing.

Project Details

While this problem exists in UPC, I choose Chapel(Chamberlain, Callahan,
and Zima 2007) as my primary focus as it is the most susceptible to accepting
feedback and contributions. In Chapel, there are two types of pointers: pointers
to memory that is proven to be local, or ‘narrow pointers’, which are 32-bit or
64-bit integers representing memory address locations, and pointers to memory
that may not be local, or rather may be hosted on another compute node,
called ‘wide pointers’. Atomics on sizes smaller than 64-bits, or 8-bytes, can be
handled with processor atomics if they are local, but will vary in one of two ways
depending on the configuration of the cluster. If Chapel’s communication layer,
which is the abstraction layer responsible for handling all Remote Direct Memory
Access (RDMA) PUT and GET operations, is GASNet, it will be constrained to
using remote processor atomics, which essentially is a Remote Procedure Call
(RPC) that will use computational resources of the destination compute node to
perform the atomic operation; if the communication layer is uGNI, it will make
use of Cray’s Atomic Memory Operators (AMO) to perform a specialized RDMA
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that is handled directly by the Gemini/Aries Network Interface Controller (NIC).
The difference between remote processor atomics and network atomics can be
shown below as at least an order of magnitude difference at 32 compute nodes
on a Cray XC40 dual-socket Broadwell compute nodes, 22 cores per socket.

Figure 1: Atomic operations to random indices in block distributed array.

In the case of wide pointers, which are ‘widened’ to contain not only the memory
address but the rank of the compute node the memory is hosted on, are generally
considered to be 128-bits wide, twice the size of the native word on all but
the most esoteric machines. Unfortunately, even Cray’s NIC does not support
128-bit operations, and so the obvious way would be to use RPC and perform an
CMPXCHG16B instruction, which is available on modern Intel and AMD processors,
such as the (Intel) Broadwell compute nodes. While this may work, as shown
in Figure 1, remote-execution is not a scalable solution and will easily lead
to a bottleneck in any application. A prototype that I have designed and
implemented over a year ago(“GlobalAtomicObject: chapel-lang/chapel issue
#6663” 2017) that makes use of 64-bit integer descriptors that are indices into a
cyclic-distributed array has defeated the naive approach, even under intense time
constraints. Also compared was an optimization that is safe for up to 2ˆ16 - 1
compute nodes, which makes use of pointer compression, which takes advantage
of the fact that only the lowest 48 bits of the virtual address space is ever used,
leaving the upper 16 bits safe to modify, which directly compresses the size of
pointers down to 64-bits. The comparison can be seen in Figure 2.

There have been multiple improvements to the prototype since then, such as
making the descriptor table concurrent-safe to access while being resized via a
Read-Copy-Update strategy(Jenkins 2018). This is only the beginning, as there
are bound to be many other problems that can be solved on the way.
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Figure 2: Atomic write operations using XCHG128B vs Prototype vs Compres-
sion

Broader Impact

Atomics are fundamental building blocks, and as such having access to these are
necessary for the creation of some innovative new ideas. Having scalable atomics,
whether they are narrow or wide, can lead to the production of more complex
abstractions that make high-performance computing easier. As Information
Technology is pushing more and more towards multi- and many-core, and soon
many-node distributed computing, the problem of scalable atomics will eventually
arise.

Resources

While I currently have access to a Cray XC50 supercomputer, provided by
Cray’s Marketing Partner Network (MPN), having exclusive access to a Cray XC
machine to prevent congestion would be desirable, but continued access to Cray’s
MPN would be the bare-minimum. Cray XC30-AC machines are being sold
for $500,000 to $3,000,000 which would suffice for independent research. Also
required is funding of the independent research itself, which covers cost-of-living
for Rochester, NY and an estimated $10,000 for attending conferences. Total
estimated to be a lumpsum of $3,000,000 for the Cray XC30-AC and $75,000
per fiscal year.
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