Word & Sense Embedding and their Application to Word Sense Induction

Linfeng Song

Outline

- Word Embedding
- Sense Embedding
- Sense Embedding for Word Sense Induction
- Conclusion

Word Embedding

Word Embedding is a set of language techniques in which words from the vocabulary are mapped to vectors of real numbers in a low-dimensional space.

Word Embedding

- Word Embedding is a set of language techniques in which words from the vocabulary are mapped to vectors of real numbers in a low-dimensional space.
- Previous Methods
 - **Build co-occurrence matrix from a corpus**
 - Perform dimension reduction with PCA
 - Learn by counting

Word Embedding

- Word Embedding is a set of language techniques in which words from the vocabulary are mapped to vectors of real numbers in a low-dimensional space.
- Current methods
 - based on a neural network architecture
 - **オ** Learn by predicting

Skip-Gram Model

Skip-Gram Model

$$P(D = 1 | w_i, w_j) = \frac{1}{1 + \bar{e}^{v_i^T v_j}}$$
$$P(D = 0 | w_i, w_j) = 1 - P(D = 1 | w_i, w_j)$$

Skip-Gram Model

Given a document formalized as a list of (w_i, C_i)

$$J = \sum_{i=1}^{T} \left[\sum_{c \in C_i} P(D=1|v_i, v_c) + \sum_{c' \in V-C_i} P(D=0|v_i, v_{c'}) \right]$$

- Ubiquitous polysemous words harm the performance for most NLP systems
- Solution: learn a embedding for each sense instead

- Clustering-based
- ↗ Nonparametric
- Ontology-based

- Clustering-based
- ↗ Nonparametric
- Ontology-based

How sense is defined?

- Clustering-based
- ↗ Nonparametric
- Ontology-based

based on the distributional hypothesis of Harris, (1954): a word sense is reflected by a set of contexts where it appears

based on the sense definition of a sense inventory

clustering-based

non-parametric ontology-based

Iearn co-occurrence vector for each w_i

clustering-based

non-parametric ontology-based

- Iearn co-occurrence vector for each w_i
- cluster all tokens of w_i into K clusters
 - each token is represented by the context vector which is the average of word vectors in the context

clustering-based

non-parametric ontology-based

- Iearn co-occurrence vector for each w_i
- cluster all tokens of w_i into K clusters
 - each token is represented by the context vector which is the average of word vectors in the context
- Iearn one vector for each centroid of w_i
 - averaging all belonging context vectors

clustering-based

non-parametric ontology-based

The similarity functions

$$\begin{aligned} \text{MaxSim}(u,v) &= \max_{1 \le i \le K, 1 \le j \le K} d(\pi_i(u), \pi_j(v)) \\ \text{AvgSim}(u,v) &= \frac{1}{K^2} \sum_{i=1}^K \sum_{j=1}^K d(\pi_i(u), \pi_j(v)) \\ \text{AvgSimC}(u,v) &= \frac{1}{K^2} \sum_{i=1}^K \sum_{j=1}^K d(vec(c), \pi_i(u)) \times d(vec(c'), \pi_j(v)) \times d(\pi_i(u), \pi_j(v)) \end{aligned}$$

Huang et al. (2012b)

clustering-based

non-parametric ontology-based

Huang et al. (2012b)

clustering-based

non-parametric ontology-based

- Iearn word vectors
- → re-label the data by clustering
- Iearn sense vectors via the same neural network

Huang et al. (2012b)

clustering-based

non-parametric ontology-based

- Iearn word vectors
- re-label the data problematic! The pipeline leads to error propagation!
- Iearn sense vectors via the same neural network

clustering-based

non-parametric ontology-based

clustering-based

clustering-based

non-parametric ontology-based

Probability for (not) observing words:

$$p(D = 1 | v_s(w_i, s_i), v_g(c)) = \frac{1}{1 + e^{-v_s(w_i, s_i)^T v_g(c)}}$$
$$p(D = 0 | v_s(w_i, s_i), v_g(c')) = 1 - p(D = 1 | v_s(w_i, s_i), v_g(c'))$$

clustering-based

non-parametric ontology-based

Update as Kmeans

Update as Skip-gram

Context Context Cluster Word Sense Context clustering-based Vectors Vectors Centers Vectors 0 0 $v_{g}(w_{t+2})$ $V_{q}(W_{t+2})$ 0 Average Context 0 0 0 0 Vector 000 µ(w,,1) v(w,,1) 0 0 0 0 0 000 0 0 $v_g(w_{t+1})$ $V_{q}(W_{t+1})$ Q 0 0 0 v(w,,2) **Problematic!** 0 µ(w_t,2) Ó 0 Intuitively, different words should have 0 0 Ó 0 different number of senses $v_{g}(w_{t-1})$ $V_{g}(W_{t-1})$ 0 0 0 0 V_{context}(C_t) µ(w,,3) 0 C 0 00 0 v_g(w_{t-2}) $v_{g}(w_{t-2})$ 0 v(w,,3) Predicted 0 0 Sense s,

Li and Jurafsky (2015)

clustering-based non-parametric ontology-based

- Create a Chinese Restaurant Process for each word
 - a sense corresponds to a table
 - a data point is a customer

Li and Jurafsky (2015)

clustering-based non-parametric ontology-based

- Create a Chinese Restaurant Process for each word
 - a sense corresponds to a table
 - a data point is a customer
- Probability for choosing a sense is defined as:

$$p(s_i = k_t) \propto \begin{cases} N_t p(k_t | c_i), \text{ if } k_t \text{ already exists} \\ \gamma, \text{ if } k_t \text{ is new} \end{cases}$$

Rothe and Schutze (2015)

Rothe and Schutze (2015)

clustering-based non-parametric ontology-based

Objectives

$$\operatorname{argmin}_{D^{(d)}, E^{(d)}} ||D^{(d)}E^{(d)}w^{(d)} - w^{(d)}|| \quad \forall d$$

 $\operatorname{argmin}_{D^{(d)}, E^{(d)}} ||E^{(d)} diag(w^{(d)}) - D^{(d)} diag(s^{(d)})|| \quad \forall d$

$$\operatorname{argmin}_{E^{(d)}} || RE^{(d)} w^{(d)} || \quad \forall d$$

Evaluating on Word Similarity task

	Model	MaxSim	AvgSim	AvgSimC
al (2012b)	Huang	26.1	62.8	65.7
Huang et al. (MSSG	57.26	67.2	69.3
ntan et al. (20	MSSG-NP	59.80	67.3	69.1
Neelakanta (2015)	CRP	66.4	-	67.0
i and Jurafsky (20	Retro	-	-	41.7
(2015)	$\mathbf{E}\mathbf{M}$	-	-	61.3
Jauhar et al. 15	Retro+EM	-	-	58.7
cohutze (201	⁵ AutoExtend	-	68.9	69.8
Rothe and Suit		· · · · · · · · · · · · · · · · · · ·		

Evaluating on Word Similarity task

Model	MaxSim <	AvgSim	AvgSimC
Huang	26.1	62.8	65.7
MSSG	57.26	67.2	69.3
MSSG-NP	59.80	67.3	69.1
CRP	66.4	-	67.0
Retro	-	-	41.7
$\mathbf{E}\mathbf{M}$	-	-	61.3
Retro+EM	-	-	58.7
AutoExtend	-	68.9	69.8

Evaluating on Word Similarity task

Model	MaxSim	AvgSim	AvgSimC	
Huang	26.1	62.8	65.7	
MSSG	57.26	67.2	69.3 —	
MSSG-NP	59.80	67.3	69.1	-7
CRP	66.4	-	67.0	
Retro	-	-	41.7	
EM	-	-	61.3	
Retro+EM	-	-	58.7	
AutoExtend	-	68.9	69.8	

- Word Sense Induction (WSI)
 - automatically discover senses from unlabeled data without referring to any sense inventory

- Word Sense Induction (WSI)
 - automatically discover senses from unlabeled data without referring to any sense inventory
- Previous methods on WSI
 - learn co-occurrence vectors by counting
 - learn centroids by clustering

- Word Sense Induction (WSI)
 - automatically discover senses from unlabeled data without referring to any sense inventory
- Previous methods on WSI
 - Iearn co-occurrence vectors by counting
 - Iearn centroids by clustering
 - problematic: have to learn a model for each word impractical for real applications

- Compare with existing methods, Sense Embedding:
 - perform joint learning for multiple words
 - Iearn by predicting
 - learn by predicting >> learn by counting

- Compare with existing methods, Sense Embedding:
 - perform joint learning for multiple words
 - **7** learn by predicting
 - Promising for this task!

System	SemEval-2010 WSI	
UoY (2010)	62.4	Best result of the task
NMF _{lib} (2011)	62.6	
NB (2013)	65.4	By Charniak @Brown U
Spectral (2014)	60.7	By CMU
SE-WSI-fix	66.3	
SE-WSI-CRP	61.2	
CRP-PPMI	59.2	
WE-Kmeans	58.6	

System	SemEval-2010 WSI		
UoY (2010)	62.4		
NMF _{lib} (2011)	62.6		
NB (2013)	65.4	Joint learning is	
Spectral (2014)	60.7	better!	
SE-WSI-fix	66.3	Neelakantan et al. (2014)	
SE-WSI-CRP	61.2		
CRP-PPMI	59.2		
WE-Kmeans	58.6	word2vec + Kmeans	

System	SemEval-2010 WSI	
UoY (2010)	62.4	
NMF _{lib} (2011)	62.6	
NB (2013)	65.4	Learn by predicting
Spectral (2014)	60.7	is better!
SE-WSI-fix	66.3	
SE-WSI-CRP	61.2	Li and Jurafsky (2015)
CRP-PPMI	59.2	Co-occur+ CRP
WE-Kmeans	58.6	

Conclusion

- Introduced previous and current techniques for Word Embedding
 - オ Skip-gram
- Describe 3 directions for Sense Embedding
 - Clustering-based
 - Nonparametric
 - Ontology-based
- Sense Embedding for Word Sense Induction
 - Best performance right now!

Recent Publications

- Sense Embedding Learning for Word Sense Induction. Linfeng Song, Zhiguo Wang and Daniel Gildea. In submission.
- A Synchronous Hyperedge Replacement Grammar based approach for AMR parsing. Xiaochang Peng, Linfeng Song and Daniel Gildea. In Proceedings of CoNLL 2015, Beijing, China, 2015.
- Joint Morphological Generation and Syntactic Linearization. Linfeng Song, Yue Zhang, Kai Song and Qun Liu. In Proceedings of AAAI 2014, Quebec City, Canada, July 27-31, 2014.
- Syntactic SMT Using a Discriminative Text Generation Model. Yue Zhang, Kai Song, Linfeng Song, Jingbo Zhu and Qun Liu. In Proceedings of EMNLP 2014, Doha, Qatar, 2014.

Thank you for listeningQuestions?