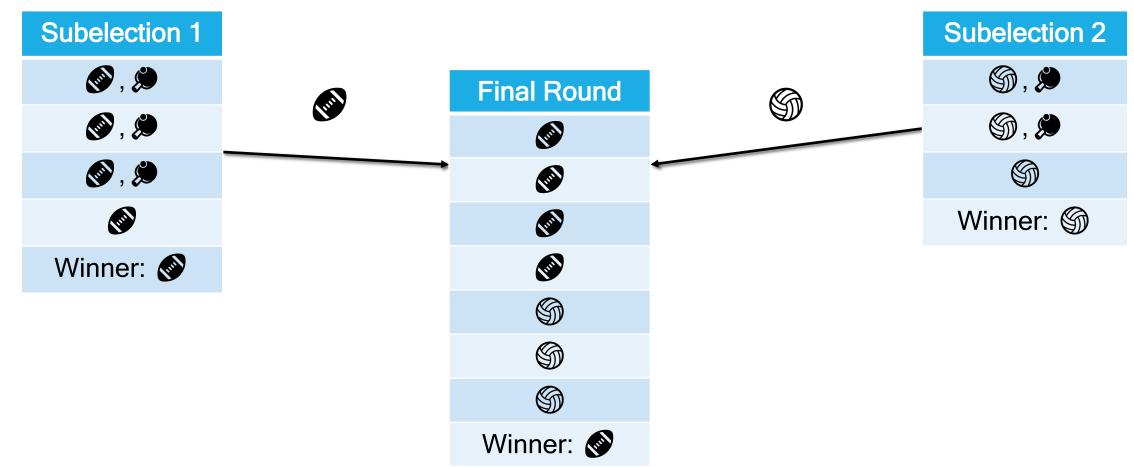


Separating & Collapsing Electoral Control Types

Talk by Michael C. Chavrimootoo at AAMAS 2023 June 2^{ND} , 2023; Poster #29


JOINT WORK WITH B. CARLETON, L. HEMASPAANDRA, D. NARVÁEZ, C. TALIANCICH, AND H. WELLES

Example: Picking a Favorite Sport

Control by Partition of Voters (using Approval)

Electoral (Partition) Control Types

End-Goal	 Constructive (CC) Destructive (DC) 	
Action	 Partition of Voters (PV) Partition of Candidates (PC) Run-off Partition of Candidates (RPC) 	24 different
Tie-Handling	 Ties Eliminate (TE) Ties Promote (TP) 	partition control types!
Winner Model	 Unique Winner (UW) Nonunique Winner (NUW) 	

The Other Electoral Control Types

End-Goal	 Constructive (CC) Destructive (DC) 	
Action	 Unlimited Adding Candidates (UAC) Adding Candidates (AC) Adding Votes (AV) Deleting Candidates (DC) Deleting Votes (DV) 	20 other control types!
Winner Model	 Unique Winner (UW) Nonunique Winner (NUW) 	

Are Control Types Inherently Different?

When are two control types equal (collapse) and when are they different (separate)?

Our model

Decision Model

•For control type Approval-CC-PV-TP-UW

- Inputs: set of candidates *C*, set of votes *V*, distinguished candidate *p*.
- Question: Is there a partition (V_1, V_2) of V such that p is a winner of the two-stage election where the winners^{*} of (C, V_1) compete against the winners^{*} (C, V_2) (using votes V)?

•Using our toy example, $(C, V, \otimes) \in \text{Approval-CC-PV-TP-UW}$.

Why Does it Matter?

Provably Less Work

New Research Landscape

Deepens Understanding of Control

Applicable to Multiple Models

General Collapses

•Hemaspaandra et al. (2020) showed that for any election system \mathcal{E}

- \mathcal{E} -DC-RPC-TE-UW = \mathcal{E} -DC-PC-TE-UW = \mathcal{E} -DC-RPC-TE-NUW = \mathcal{E} -DC-PC-TE-NUW
- \mathcal{E} -DC-RPC-TP-NUW = \mathcal{E} -DC-PC-TP-NUW

- •We ask: Are there more collapses?
 - In the general case, no.
 - But if we look at concrete systems, yes.

Our Results

Election System	Collapses	Separations	Open
General	7	1 + 314	0
Plurality	7	315	0
Veto	7+1	314	0
Approval	7+14	301	0

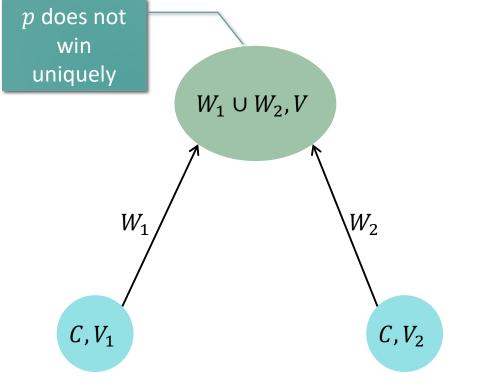
For Reference: Plurality: Each candidate gets 1 point per vote that ranks them first.

Veto: Each candidate receives 1 point for each vote, unless they're ranked last.

Approval: Each candidate gets 1 point for each vote that approves them.

Key

Prior work (Hemaspaandra et al., 2020) Our work (Carleton et al., 2022)


How Do We Show Separations?

- $C = \{a, b, c, d, e, f, g, h\}$ and
- $V = \{\{a, c, d, e, f\}, \{a, c, d, e, f\}, \{a, b, c\}, \{b, h\}, \{b, h\}, \{d, h\}, \{e, g, h\}, \{f, g, h\}, \{a, c, d, e, f, g\}, \{a, b, d, e, f, g\}\}$
- $(C, V, a) \in \text{Approval}-\text{CC}-\text{PV}-\text{TP}-\text{UW}$
- Also, $(C, V, a) \notin \text{Approval}-\text{CC}-\text{PV}-\text{TE}-\text{UW}$
- ∴ For approval, CC-PV-TP-UW ≠ CC-PV-TE-UW
 More precisely, "⊈"

How do we show collapses?

Claim: In approval, DC-PV-TE-UW = DC-PV-TE-NUW.

Proof Sketch: Let $(C, V, p) \in DC-PV-TE-UW$ via partition (V_1, V_2) .

General Idea: Construct partition that demonstrates that p is not a final-round winner, i.e., $(C, V, p) \in DC-PV-TE-NUW$.

Case 1: $p \notin W_1 \cup W_2 \rightarrow$ Done

Case 2: $p \in W_1 \cup W_2$, then there is $d \in W_1 \cup W_2$ and $score_V(p) \leq score_V(d)$. So, use partition (V, \emptyset) .

This shows \subseteq , and \supseteq is trivial

But can we be more general?

Yes!

We give some axiomatic-sufficient conditions of the form: If election system \mathcal{E} satisfies Unique-WARP, then $\mathcal{T}_1 = \mathcal{T}_2$.

A first step towards characterizing collapses; helps us deepen our understanding of control types.

Other Contributions

Immunity results	General-case containments	Programs to automatically find separations
---------------------	------------------------------	--

Hierarchy of incomparability

Explicit solution conversions

Future work & Open Directions

Additional Model Extensions

Study Additional Election Systems

Axiomatic Characterizations

Further Refinements

Thank You

Location: Le Morne, Mauritius

Poster #29