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Abstract—There are many incentives for healthcare providers
to shift their datacenters to the cloud. However, privacy of
patient health information is a major concern when processing
medical data off-site. One possible solution is the use of Fully
Homomorphic Encryption (FHE), but this solution is too slow
for most applications. We present a technique that increases
efficiency and parallelism for certain algorithms under FHE.
Through experiments and simulations, we demonstrate that our
method yields about 20x speedup in a sample application. This
is a significant step towards practical FHE-based medical remote
monitoring.

I. INTRODUCTION

A hospital’s in-house datacenter is unlikely to match the re-
liability, efficiency, and scalability benefits that are achievable
through large cloud service providers [1], [2], [3]. However,
due to privacy risks and HIPAA regulations, it is often imprac-
tical for hospitals make the transition from an on-premises
datacenter to the cloud. We look for a method to alleviate
such privacy concerns, therefore allowing medical centers to
take advantage of cloud computing with confidence that their
patients’ data is safe.

Thorough approaches for preventing a data breach in the
cloud involve encrypting all data with keys held only by the
healthcare provider. These approaches are useful for storage
[4], [5], but prevent medical applications from processing the
data. For example, a program may need to look at a patient’s
ECG recording and report some statistics to their doctor. If
conventional encryption was employed, this processing would
necessarily expose the data on the system performing the
processing.

A novel technique exists which does allow encrypted
data to be processed securely: fully homomorphic encryption
(FHE). Unfortunately, current FHE schemes are overwhelming
computationally, typically requiring megabytes or gigabytes
of space for keys and ciphertexts — even for a relatively
small amount of raw data — and requiring several orders of
magnitude more CPU instructions per mathematical operation
than the equivalent unencrypted operations [6]. However, our
initial research with an FHE library called HElib [7] indicates
that it may be practical for some basic applications. One such
application involves streaming sensor data to the cloud and
comparing the values to a threshold. Increasing the complexity

of this application, though — i.e., introducing a few more
arithmetic operations — quickly makes it unable to complete
processing in a reasonable amount of time.

HElib is based on the Brakerski-Gentry-Vaikuntanathan
(BGV) encryption scheme [8], and requires all algorithms to
be modeled in terms of logic gates. The resulting circuits can
become quite unwieldy as the complexity of the computer pro-
gram increases. In order to expand the usefulness of HElib to
non-trivial applications, we suggest using an alternate method
of computation. Given a boolean algorithm to implement in
HElib, we would typically convert it directly to a circuit. (We
refer to this as the “naive” approach.) Instead, we will first
transform it into a matrix whose determinant is the algorithm’s
output (i.e. 0 or 1) by the process described in Section IV. This
“matrix” approach will prove to be advantageous in several
ways, including efficiency and scalability.

Figure 1 provides a system overview for the type of medical
application where we intend to apply our matrix technique.
Our initial case study involves searching for a specific medical
condition in a stream of sensor data, and is described in
Section III.

II. BACKGROUND

Fully Homomorphic Encryption (FHE) is a sophisticated
encryption scheme that allows for data to be stored and pro-
cessed in an encrypted format. This mechanism gives the cloud
provider a method to host and process your data without even
knowing what the data is. It was not until 2009 that Gentry
showed how to construct the first provably secure FHE scheme
[10]. While the initial work showed how to theoretically
achieve such a primitive, it was far from being practical. In the
past five years, while there has been tremendous progress in
improving the efficiency of FHE schemes [7], [8], [11], there
has been no application where it is economically or practically
viable to use these schemes. One of the main goals of this
project is to demonstrate the feasibility of achieving secure
computation in the cloud for an application where there is a
real need to do so.

While our feasibility study will be focused on our particular
application, our results should be interpreted more generally as
demonstrating the feasibility of securely processing streaming



Fig. 1. Overview of an ECG monitoring system. The patch on the patient transmits AES-encrypted ECG data to a nearby Internet-connected device. This
device may be a smartphone or a PC; a PC in this configuration is referred to as a “cloudlet” [9]. The phone or cloudlet then re-encrypts the data and transmits
it to the cloud. The cloud stores the original data for future retrieval, and computes a given function on the FHE-encrypted ECG data. The encrypted result
of this function is transmitted to the doctor. Finally, the doctor’s phone/tablet/PC decrypts and decodes the result, and alerts the doctor to check the ECG if
necessary.

data. Data streaming concerns the scenario where input arrives
in high volume and only limited space is available to store and
process it. Examples include detecting botnets and hackers
from the stream of IP addresses that visit a website, or
preprocessing massive data sets to collect statistics.

The main performance metric of streaming algorithms is
the number of passes it makes on the data under memory
constraints. Since there are effectively no memory or process-
ing constraints in the cloud, relying on streaming algorithms
might look too cautious an approach. However, due to the
large overhead of securing the system, these algorithms will
provide the right tool to make it feasible.

FHE schemes allow arbitrary computations to be performed
on encrypted data. Our approach is to choose a suitable
computational model that is reasonably powerful and then rely
on existing homomorphic encryption schemes or develop new
schemes that allow for both (1) homomorphic computation
of all functions in the chosen computational model and (2)
aggregation of the results collected over a period of time.
Prior to Gentry’s work, we already knew how to construct
HE schemes that satisfied the first requirement for various
(weaker) computational models. The work of Ishai and Paskin
[12] and Sander, Young, and Yung [13] also show how to
perform NC computations (described in Section IV) over
encrypted data. The main challenge is to construct one that
will satisfy the second requirement as well.

III. CASE STUDY : LONG TERM HEALTH MONITORING

There are many medical applications that fit the general
form of Figure 1. Since we have advisors in the cardiol-
ogy department, we chose to implement an ECG-oriented
application: detecting prolongation of the QT interval. This
application is representative of remote-monitoring scenarios,
and our data collection will be simplified by the abundance of
hardware sensors (the Clearbridge VitalSigns CardioLeaf [14],
for example) in this field.

Prolongation of the QT interval (shown in Figure 2) may
be genetic (Long QT syndrome, LQTS) or drug-induced. In
either case, it increases the risk of torsades de pointes (TdP),

an arrhythmia which can lead to serious issues including
fibrillation and death [15]. The QT interval (or the “corrected”
version, QTc) is therefore an important value for cardiologists
to monitor, particularly on patients prescribed with drugs that
are known to prolong it. Monitoring is typically conducted
in the hospital, but this gives an incomplete picture of the
patient’s QT interval since they are not participating in their
normal daily activities. This makes remote QTc surveillance
of an ambulatory patient a good candidate application for our
proof-of-concept.

Our goal is to upload live, FHE-encrypted ECG data from
a patient to the cloud, and have the cloud server(s) calculate
some results and push them to the patient’s doctor in relatively
real-time. The cloud will be receiving two values, QT and
RR, pictured in Figure 2. These values will be generated and
homomorphically-encrypted on the patient’s end, either on the
ECG patch’s microprocessor, or more likely, a nearby PC. (At
first, rather than using live signals, we use recordings from the
THEW database. [16]) The patient’s QTc is then computed
(homomorphically, in the cloud) as QTc = QT

3
√

RR/sec
(Frid-

ericia’s formula [17]). The still-encrypted QTc values then
need to be compared to a threshold value, such as 500ms.

Fig. 2. Normal sinus rhythm. The QT interval represents the time for the
ventricular recovery phase of the heart. Prolongation of QT (relative to the
total duration of a heartbeat) indicates an increased risk for life-threatening
events.



The function we are interested in, then, is:

f(QT,RR) = [QT3 > (500ms)3(RR/sec)], (1)

and this is the equation that will be converted into a matrix by
the process described in the next section. Finally, the results
must be aggregated over several heartbeats, and transmitted to
the doctor.

IV. PROPOSED SOLUTION

Fully homomorphic encryption schemes allow a server to
perform any (polynomial-time) computation on encrypted data
without revealing either the input or the output of the operation
to the server. In essence, most schemes provide a mechanism
to encrypt data into a format that allows addition and multi-
plication of ciphertexts. Since any arbitrary computation can
be modeled as a sequence of add and multiply operations, we
can perform any computation homomorphically.

In this work we are interested in performing simple com-
putational tasks that are very useful. In the context of cloud
computing, there are many operations that involve performing
the same simple operation on many data points, then somehow
aggregating the results and returning them to the client, such
as searching a database, or collecting statistics.

A. Our Approach

In a streaming algorithm, we have a stream of data
x1, x2, x3, . . . arriving at the processing center and the goal
is to compute a function of the stream. In our motivating case
study, we want to detect if there exists an element xi such that
f(xi) = 1 for the simple function f described in Equation 1,
where xi = (QTi,RRi) (encrypted under an FHE scheme).

Concisely, we wish to compute
N∨
i=1

f(xi).

Since FHE allows for computing over encrypted data, the
obvious approach is to send encryptions of the data elements
to the cloud, homomorphically evaluate f on each element in
the incoming stream, and then compute the “OR” of the result
of the computations (again, homomorphically). As we show
in our experimental results, this solution is computationally
costly. This is because homomorphic operations are inherently
incredibly expensive. In fact, the known FHE schemes have
a different cost model where performing a multiplication
operation homomorphically is typically far more expensive
than an addition operation and the cost of multiplication grows
exponentially with the multiplication-depth.1

A simple calculation will show that in order to do this
following the naive approach we need a depth d = DEPTHf +
log n to process n data elements, where DEPTHf is the
multiplication-depth of f . The main contribution of our work
is to show how we can significantly improve the computa-
tional efficiency by relying on an alternative representation
of the computation that will significantly reduce the depth of

1The multiplication-depth of any input wire in a circuit is the maximum
number of multiplication operations we need to perform from that input wire
to obtain any output of the circuit.

the computation. In addition, our method will be inherently
parallelizable and have small input locality.

Most FHE implementations show how to compute any
circuit C over encrypted data. Our starting point deviates from
this by first representing the function f as a branching program
instead of a circuit. A branching program is a directed acyclic
graph with a special start node s and final node t where each
edge is labeled with either an input bit or its negation. The
result of the computation is true if there is a path from the
start to the final node traversing only edges for which the
assignment sets the value on the edge true.

Next, we show how to use an FHE scheme to evalu-
ate a branching program and aggregate the results of the
computation over streaming data. Using elementary linear
algebra we can show that evaluating a branching program is
equivalent to evaluating the determinant of a particular matrix.
More precisely, the detereminant will be f(x) for the matrix
corresponding to input x. Given the matrix representation
of two inputs x1 and x2, computing the “AND” of f(x1)
and f(x2) now reduces to simply multiplying the matrices
corresponding to the inputs, since det(AB) = det(A)det(B).

On a high level, our idea is to compute the elements of the
matrix for each element homomorphically and then multiply
the matrices corresponding to all elements in the data stream.
We can already see the benefit of our approach from observing
that matrix multiplication is inherently parallelizable. The
main benefit, however, will result from the low multiplicative
depth of our computation. In fact, the depth of our computation
will be log n.

An overview of the process we’ve just described is shown in
Figure 3. We will now explain our approach in detail. We first
describe the matrix representation of computing a branching
program, and then describe our system.

B. Path Counting in Directed Acyclic Graphs

Let P be a branching program of size n + 1. Let G be
the corresponding directed acyclic graph and A(G) denote the
adjacency matrix corresponding to G. By the definition of a
branching program, each entry in A is either 0, 1, xi or ¬xi

for some input bit xi. Given a matrix M , denote by Mi,j

the matrix obtained by removing the ith column and jth row
(i.e. the cofactor matrix corresponding to element (i, j)). The
required matrix representation is (I − A(G))s,t where s and
t are the indices corresponding to the start and terminal node
in G, and I is the identity matrix of size (n− 1)× (n− 1).

To see why this is true we start with the following simple
observation. If there is an unique path from s to t in G, then
the (s, t)th entry of

∑∞
j=1 A

j when performed in GF(2) will
be 1. Since

∑∞
j=1 A

j = (I − A)−1 it suffices to obtain the
(i, j)th entry of (I−A)−1. By Cramer’s rule, this is given by
det(Mi,j)/det(M) where M = I −A.

C. Proposed System

There are three phases in our proposed system: pre-
computation, cloud computation, and post computation. In the
pre-computation phase, the input data elements are encrypted



under an FHE scheme and streamed to the cloud. In the cloud-
computation phase, for each data element, the cloud generates
the matrix representing the computation and aggregates the
values via matrix multiplication. The final matrix that is the
product of all matrices is downloaded and decrypted at the
client. To compute the result of the computation in the post-
computation phase, the client evaluates the determinant of the
decrypted matrix.

D. Using HElib

The HELib library we will use relies on the BGV FHE
encryption scheme [8]. An important optimization in HELib is
that it considers packed ciphertexts. This extension of the BGV
scheme allows for a vector of input bits to be encrypted/packed
in a single ciphertext. A homomorphic operation on two
packed ciphertexts simply returns the ciphertext corresponding
to applying the operation coordinate-wise on the correspond-
ing vectors encrypted in the ciphertexts.

In our approach, we show how the packed ciphertext allows
for efficient matrix representation and multiplication. We pack
the entries of a matrix diagonally. More precisely, given a
n × n matrix, we encrypt it into n packed-ciphertexts where
the ith ciphertext ci encodes the entries with indices (0, i mod
n), (1, i + 1 mod n), ..., (n − 1, i + n − 1 mod n). For any
matrix A, let A{i} denote the ith diagonal as described above.
Then for any two matrices A and B, we can compute the ith

diagonal of C = AB using the following fomula

C{i} =
n−1∑
j=0

A{j}B{i− j mod n}j (2)

where M{i}j denotes the rotation of the vector M{i} by j
positions to the right. This approach not only allows us to
harness the packed representation of the input, but it also
outputs a matrix with the same representation; this means we
can repeately multiply several matrices.

E. Optimizations and Scalability

Our proposed approach works for any boolean function that
can be represented as a branching program. A branching pro-
gram can compute any boolean function by simply branching
on all n input bits so that each of 2n inputs result in a unique
path. The size of this program is exponential in n. However,
we are interested in what functions are representable by
polynomial-size branching programs. From complexity theory,
we know that any logspace computation can be represented as
a branching program, and logspace computations encompass
a wide variety of problems. Therefore, our approach can be
used for any logspace computable boolean functions. The size
of the matrix corresponds to the size of the graph. For the
equation in our case study, we construct a branching program
of size ∼ 600.

We observe that if the matrix representing the function
is sparse, then we need less than n packed ciphertexts to
encode it. Since we employ the diagonal packing, we need the
elements to be concentrated in the diagonals; such matrices
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Fig. 3. Converting an algorithm (i.e. a circuit) to matrix form.

are known as band matrices. A band matrix of width w
has non-zero entries only in the diagonals A{−w}, A{−w +
1}, . . . , A{w}. Furthermore, multiplying two band matrices
with width w results in a band matrix of width at most w+1.
Moreover, each diagonal of the resulting matrix will depend
on at most w ciphertexts of each input matrix.

However, to utilize this optimization there are two issues.
First, we need to understand what kind of branching programs
translate into small-width band matrices. Second, what func-
tions are computable by such branching programs?

The first issue is relatively simpler to answer since there
is a corresponding notion of a width of a branching program
which will translate to the width of the corresponding matrix.
A branching program is said to have width w if for all i ∈
[n], the number of vertices reachable in exactly i steps from
the start node is at most w. In the literature, such branching
programs are described as layered branching programs where
there are only w nodes in each layer and edges go across only
from each layer to the next layer. Now, given any width w
branching program, the corresponding matrix representing the
program will have width at most w + 1.

Next — and the more important question — is what func-
tions can be computed by small-width branching programs.
Towards answering this, we recall a fundamental theorem
due to Barrington [18], from complexity theory. Barrington’s
theorem states that the complexity of functions computable by
constant-width branching programs is exactly the set of cir-
cuits with depth O(log n), referred to in the literature as NC1.
The class NC1 is sufficiently rich and in particular includes
all polynomial equations. The branching program we construct
for our case study has width 10, and the corresponding band
matrix has width 9.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Since the HELib library is not thread-safe, to compare the
performance of the two approaches we must simulate the
computation to estimate the time taken on parallel machines.
To accomplish this, we first perform real benchmarks of
each individual operation on a single thread, and then use
that time to estimate the computational costs for our parallel
experiments. In our estimate we assume that each parallel
machine has instantaneous access to the input encryptions and
results of computations from other machines. (In essence, we
ignore the data transfer and sharing costs.)

a) Naive method: To compute Equation 1, we need to
compute QT 3 and (1/2)3RR and then compare the two



results. To evaluate QT 3 we first generate the n addends in
computing QT 2 by multiplying each bit of QT with QT and
then shifting the result. More precisely, Qi = (QT×QTi) <<
i. Then QT 3 is obtained by computing Qi ×QT for every i
and summing them up. Towards this, we again expand each
of these multiplications into n addends each to get a total
of n2 addends. We put − 1

23RR as another addend, which is
computed by left shifting and taking 2’s complement. To sum
the n2 + 1 addends, we repeatedly use the 3-2 compressor
circuit that replaces 3 addends by 2 addends. This reduces
n2 + 1 addends to 2 addends which we finally add using the
carry-lookahead adder circuit.

b) Matrix method: For every input, we generate the
packed ciphertexts homomorphically. This simply uses the
rotate and select operations, and we need to generate only
10 packed ciphertexts for our branching program. Then we
evaluate the product of the matrices by using the formula in
Equation 2. Computing each diagonal of the resulting matrix
requires at most 10 rotate operations, 10 multiply operations
and 10 additions.

B. Experimental Results

To evaluate our approach we considered processing and
aggregating several different numbers of samples. In Figure 4,
we provide our results for processing 10 and 10240 samples.
We can see that both approaches improve exponentially with
the number of processors. However, the matrix approach is
consistently better than the naive approach by a factor of
20. The main reason for this is that the cost of computation
increases exponentially with the depth of the computation and
the depth of the naive approach is significantly higher than
that of the matrix approach.

One tradeoff that is not represented in the graph is the
amount of network bandwidth used. The communication from
the patient’s end will be the same for both approaches, but at
the doctor’s end, an entire matrix (i.e. roughly 20 ciphertexts
will have to be downloaded in our approach while only 1
ciphertext will need to be downloaded in the naive approach.
However, in our application, this will only be done once
every day (or few hours), so this should not be a significant
problem. Another difference with the matrix approach is that
the doctor’s computer must compute the determinant of the
decrypted matrix in order to get the result; in the naive
approach, the result will be directly available (or be a simple
“OR” of the decrypted bits).

VI. CONCLUSIONS AND FUTURE WORK

The advent of small, low-power sensors and embedded
microprocessors has cleared many of the hurdles for medical
remote monitoring. Serious privacy issues remain, though,
which conventional techniques fail to address. In theory,
FHE is a solution, but in practice it is too slow. We have
presented a technique that improves computational efficiency
and scalability of FHE for a large set of applications, resulting
in 20x speedup for a representative application. The next stage
of our research will focus on creating a true parallel/GPU

Fig. 4. Simulated computation time for matrix method vs. naive method of
Long QT detection. The matrix method is consistently about 20x faster.

implementation of this technique, and will most likely involve
modifying HElib to use a thread-safe number theory library.
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