CSC 16U
February 27, 2011

The Pi Project

Intent and Purpose

The goal of the Pi Project is to write code for five well-established methods of approximating the
value of pi and analyze the value of each approach. The five methods include Archimedes’ geometric
formula, infinite series devised by Leibniz, Wallis, and Newton that converge to approximately pi, and
the Monte Carlo Dart Simulation. Archimedes’ formula arrives at the value of pi by computing the
perimeter of an inscribed n-gon inside a circle of radius 1. Leibniz’s series is characterized by the

T i [:_1)'!" ﬂ'_ﬁ (2 ny
4 _ §2k+1 2] 2a-02n+1)

Wallis’s formula is: Newton’s formula is:
b W

T= | V3 +24 Vr=xtdx

equation

. The Monte Carlo Dart Simulation uses the ratio between the top right
quarter of a square and the quarter of an inscribed circle. After simulating thousands of random dart
throws, the ratio between the hits inside the circle to the total number of throws approaches pi/4.

| then analyze the results from executing my code to investigate several important aspects of
each method. Aspects include: how long it takes for each to converge to pi, based on the number of
sides, iterations, or darts; the time it takes for the program to execute and return results for each
method based on the number of iterations; the accuracy of each approximation after a certain amount
of time or iterations. | also look for the “fastest” function. Evaluation of each method, with respect to
such characteristics, will allow me to make conjectures about the usefulness and value of each method.

Method

In order to analyze the data, | first had to write the code necessary to employ each method. For
the Archimedes formula, | used a function that received the number of sides, N, as the input. The
function then calculated the measure of the interior angle (360/N degrees), and took the sine of the
interior angle (sin(360/N)). Because the circle has a radius of 1, the length of one half of a side of the
inscribed polygon is sin(360/N). Multiplying this value by 2 gives us one side length. Multiplying this
length by N gives us the perimeter of the N-gon. Using the knowledge that the circumference of a circle
is equivalent to pi*diameter, the diameter is 2*r (r=1, therefore diameter=2) and assuming the
perimeter of the N-gon is approximately equal to the circumference, we can calculate pi to be
approximately equal to the perimeter of the N-gon divided by 2. Higher values of N (in this case,
number of sides) lead to a closer approximation and smaller error due to the increasing similarity
between the circle and the n-gon.

Christopher Brown

Figure 1: The inscribed n-gon becomes closer and

closer to representing the circle as n increases and

the chords formed by equally-spaced points along
the circle become shorter.

The Leibniz series is coded using a for-loop and summation of terms. Each term can be defined
by the expression (4* (-1)*k)/(2k+1). My code evaluates each term for an integer value of k from 1to N
and sums the terms together. The greater the number of iterations (N) the greater the accuracy of the
function, and the longer it takes to calculate. The Leibniz alternating series appears as such:

3. 34
3.2 1 _
| | | 1 | ﬂ ‘| M NOOnooonoo Figure 2: Graphical representation of the
. | | J [JUguooooooott Leibniz series. According to Wikipedia,

3.1 ‘ L | | o Leibniz converges slowly, requiring

| 5,000,000,000 terms to calculate pi to 10

e accurate decimals.
- 10 20 30 40 50

The Wallis series is also coded using a for-loop and summation of terms. Each term in Wallis is
defined by the expression ((2+2k)*2)/((1+2k)*(3+2k)). The code evaluates each term for integer value k
from 1 to N. This expression approaches the asymptote of pi/2 from below, so the product must be
multiplied by 2 in the end. Again, higher values for N result in a closer approximation and more time for
calculation.

Newton’s formula is the most complicated. The form seen in the introduction is represented in
my code by a compounding for-loop. The loop uses the values for each part of the term from the
previous iteration to improve efficiency. Each term to be summed consists of a numerator and 2
denominators. The numerator is defined by the equation a=a*(2k+1), where a is initially 1.
Denominator 1 is defined as b=b*(2k+2), where b is initially 1. Denominator 2 is defined as
c=(c/(2k+1))*4*(2k+3), where c is initially 2. Evaluating for integer values of k from 1 to N leads to a
fairly accurate approximation within just a few iterations, eliminating the need for huge values of N for
accuracy.

side length 2 and an inscribed circle (of radius 1) as the dart board.
Looking at the top right quarter of the square and assigning this as
the first quadrant with the origin at the center of the circle, the
Simulation uses “random dart throws” to assess the ratio between
the quarter circle and the quarter square. If the dart lands within
the circle (that is, the coordinates (x,y) of the dart’s location satisfy Figure 3: "Dart board" used in
the equation x*2+y”2<=1), 1 count is added to the “hits” category. Monte Carlo Dart Simulation.
The ratio of hits to total throws is approximately equivalent to
(pi/4):1, as the area of the quarter circle is (pi*radius”2)/4=(pi*(172))/4=pi/4 and the area of the quarter
square is 1. Multiplying this ratio by 4 provides an approximation of pi.

The functions are compiled in a main script file and are executed for N values of 1, 2, 3, 4, 5, 10,
20, 50, 100, 200, 300, 400, 1000, 5000, 10000, 50000, and 100000. This range of values allows for
analysis on a very small level over the first few terms, and for analysis at a much higher level which some
functions may require in order to achieve higher accuracy. Two further functions serve to display the
results in color-coded graphs. For the purposes of this report, some of these graphs have been resized
to show important sections that are not easily visible on the original scales.

The Monte Carlo Darts Simulation is an interesting approach / 1 1
to approximating the value of pi. The Simulation uses a square of
\ "

Results
The raw data presented by the function shows that all methods do approach a fairly accurate
approximation of pi as N increases, as shown in Figures 4 and 5 below.

Error in Approximation vs M Errar in Approximation ws b
38 T T
Arch Arch
sk Leib || oazsk Leib [
Wall Wyall
Mewt Mewt
250 Darts H oozk Darts |
= =
8 8
= ®
£ 2L g £
= ERTS
= =8
3 <
= 18r 1 =
5 s 001F
i i
1k 4
0005+
0a+- B
OF
0 ; |
0 1 2 3 4 5 5 7 g 9 10] 500 1000 1500 2000 2500
M Representing Mumber of lterations w10t M Representing Mumber of lterations
Figure 4: Full-scale graph of error in all approximations vs N Figure 5: Small scale graph of error in approximation vs N

As shown in Figure 4, all five methods have an error approaching 0 as N approaches 100000.
Figure 5 represents the errors at a smaller scale, only up to about N=3000. At this minute scale, it is
clear that Newton’s method converges for the smallest value of N, as the error approaches 0 most
rapidly in the graphs. Archimedes is the next-quickest to converge, followed by Wallis, then Leibniz, and
finally the Monte Carlo Dart Simulation.

However, being the quickest to converge in terms of iterations or sides does not always guarantee that the
function is the fastest to converge when executed in MATLAB. Figure 6 (below) represents the time elapsed for the

calculation of each function for N iterations, darts, or sides.

0.06

Tirme Elapsed vs N

0oaf

= =

o o

[=
T T

Tirme Elapsed

[=]

o

[
T

0ot

Tirme Elapsed vs N

Faln
25—
Arch
Leib
Wall H 2k
et
Darts

Tirne Elapsed
T

0sr

Figure 6: Full-scale graph of time elapsed for each function to execute vs N

1 2 3 4

a 5 7 & 9

M Representing Accuracy of Approximation

Arch
Leib

M et

Darts

—Wall |4

L L
g 1o 15

Il 1
25 30 35

I Representing Accuracy of Approximation

Figure 7: Smaller scale graph of time elapsed vs N

The full-scale graph clearly shows that Newton’s method is the most time-consuming method at
large values of N, followed by the Dart Simulation, then Leibniz’s method, then Wallis’s, and finally
Archimedes. The smaller-scale graph, however, outlines an important aspect lost in the full-scale graph.
The time elapsed for Newton’s, Wallis’s, and Leibniz’s functions have remote differences at small values
of N, differences that could amount to random processor fluctuations on the part of the computer
running the program. Additionally, all three are significantly faster than Archimedes’s function for low
values of N. The Dart Simulation is so imprecise that even while it is faster than Archimedes at low

values of N, it is impractical.

Data for Error in Pi Approximation (difference between MATLAB built-in value of pi and calculated approximation)

Archimedes Leibniz Wallis Newton Monte Carlo
N=20 0.012903352785176 | 0.047592128687803 | 0.036315330756439 | 0.000000000000000 | 0.258407346410207
N=100000 0.000000000516772 | 0.000009999899927 | 0.000007853854235 | - 0.002927346410207
Data for Time EIapsed (time for execution of function for value of N, in seconds)
Archimedes Leibniz Wallis Newton Monte Carlo
N=20 0.000016767086688 | 0.000002737483541 | 0.000002395298098 | 0.000001710927213 | 0.000007870265180
N=100000 | 0.000016767086688 | 0.006079608758852 | 0.001345473160343 | 0.056567702074191 | 0.034594263876988

Archimedes

Archimedes is a rather good approximation of pi because it converges quickly and has a curious property that
allows large values of N to be calculated quickly.

T Error in Approximation vs N: Archimedes «10° Time Elapsed vs M: Archimedes
B B 2
7 7 195
B] 19

Error in Approximation
=
L
Tirne Elapsed

171 1
1, |

155—_\—//ﬁ
U_

1 I ! I 1 I I I I 1 !
0 500 1000 1500 2000 2500 0 2000 4000 6000 8000 10000 12000

N Representing Number of terations M Representing Accuracy of Approximation
Figure 8: Error in Archimedes vs N, small scale Figure 9: Time elapsed for Archimedes vs N, small scale

Archimedes presents an interesting case, as it is the only method that does not employ a for-
loop in its construction. The for-loops require further time to calculate due to the numerous iterations;
whereas Archimedes runs its lines of code only once, the other functions must run the loop lines N
number of times, dramatically increasing the time elapsed. Instead, Archimedes’s method is simply a
series of algebraic and trigonometric calculations. Due to its simple design, this method requires a
nearly-constant amount of time to execute, virtually regardless of the number of sides. Slight variations
occur, specifically near N=0, but for large values of N where Archimedes has proven to be most accurate,
this holds fairly true, as is shown in the graphs. Data collected from the program verifies that the time
elapsed for N=20 is the same as the time elapsed for N=100000 (both are 0.000016767086688 seconds).
This fact gives Archimedes an advantage over the other functions, as it can become increasingly
accurate without increasing the time it takes to execute. Unfortunately, Archimedes’s method does
have a limit. At insanely high precisions, the interior angle used in the Archimedes function approaches
0, as the “interior angle” of a circle is non-existent for the smooth curve when the chords are no longer
present. Without an interior angle, the sine function cannot be applied, making the Archimedes method
inapplicable.

Leibniz

The Leibniz function is a rather average approximation tool. At high values of N, it takes the third longest to
execute, and it has the second highest error.

T Errar in Approximation vs N: Leibniz w10 Time Elapsed vs M: Leibniz

Error in Approximation
£
Time Elapsed

I I 1 1 1 T 1 1 1
0 a00 1000 1800 2000 2800 0 a00 1000 1500 2000 2800

N Representing MNumber of lterations N Representing Accuracy of Approximation
Figure 10: Error in Leibniz, small scale Figure 11: Time Elapsed vs N, Leibniz, small scale

The Leibniz function converges at a fairly slow rate (compared to better functions such as
Archimedes or Newton), and it takes a fairly long time to do so. As Figure 11 shows, after the initial few
terms, the time elapsed becomes fairly linear and increases as N increases. Leibniz is a rather
unremarkable function, as there are better options for both quickness to convergence and speed of
execution.

Wallis

The Wallis function is similar to Leibniz in its rather unremarkable nature. At high values of N, it takes the
second longest to execute, and it has the third highest error.

T Error in Approximation vs M: Wallis 10 Time Elapsed ws N: Wallis
T T T T T T = T T T T T —

Error in Approxirmation
Tirne Elapsed

1 1 I I 1 il 1 1 I I I 1
o 500 1000 1500 2000 2500 o 500 1000 1500 2000 2600 3000

N Representing Mumber of lterations N Representing Accuracy of Approximation
Figure 12: Error in Wallis, small scale Figure 13: Time Elapsed vs N, Wallis, small scale

The Wallis approximation is better than the Leibniz method, as it both converges and executes
faster (as shown by Figures 12 and 13, at approximately the same scale as Figures 10 and 11). Wallis
still, however, is neither as fast nor as accurate as Archimedes or Newton, although it may be applicable

at such high values of N where Archimedes cannot be used. Newton may still be more accurate,

however, as the Newton function evaluates to an indeterminably small error at N=20.

Newton

The Newton function appears to be one of the better methods tested, as it has the greatest

precision, and it executes the fastest at the value of N for which is has the greatest precision (that is,
N=20).

Error in Approximation
m

.
10 20 30 40 50 60 70 a0 90
N Representing Mumber of ferations

Figure 14: Error in Newton, small scale

L
100

w10° Time Elapsed vs M: Newton
16 T T T T T

Tirne Elapsed

.
] 20 40 60 80 100 120 140
N Representing Accuracy of Approximation

5
160

Figure 15: Time Elapsed vs N, Newton, small scale

The Newton method is very peculiar in that it reaches a precision of .000000000000000 in only

20 iterations (N=20). This is the quickest convergence of any function by far, and it also takes a very

short amount of time (quicker than Archimedes at highest precision) to execute. Thus, although Newton

takes the longest to execute at high values of N, this is irrelevant, as the greatest precision is achieved at

N=20, where Newton is very fast in its execution.

Monte Carlo Dart Simulation

The Monte Carlo Dart Simulation is an intriguing idea, but it is completely impractical for

approximating pi, as it is the second slowest at high values of N and is wildly inaccurate throughout.

09

Errar in Approximation
]]]] =]]
r o = m o - o

o

[=]

Errar in Approximation vs MN: Mante Carlo Darts

(=]

1 2 3 4 5 B 7 8
M Representing Murmber of lterations

Figure 16: Error in Monte Carlo, full scale

Time Elapsed

Tirne Elapsed vs N Monte Carlo Darts
0.035 T T T T T

0oz q

002 q

0otsr q

001 F q

0.00s - q

i L L L L L L L L L
0 1 2 3 4 5 B 7 3 a 10

N Representing Accuracy of Approximation

Figure 17: Time Elapsed vs N, Monte Carlo, full scale

Even seen at full scale, the graphs of the Monte Carlo Dart Simulation data show that the
approximation takes a very high value of N to even begin to approach any precision similar to the other
functions, and the time elapsed is greater than any other function, save Newton’s method. The Monte
Carlo Dart Simulation should not be used to accurately or quickly approximate pi.

Conclusion

Newton’s method has an error that MATLAB calculates as 0.000000000000000 (using the long
format) after only 20 iterations. The greatest precision achieved by any other method is an error of
0.000000000516772. This precision requires a 100000-sided polygon using Archimedes method in order
to be calculated. For comparison, the greatest precision achieved (both after 100000 iterations) by
Leibniz’s method is 0.000009999899927, and the greatest precision for Wallis’s method is
0.000007853854235. Analysis of Monte Carlo Dart Simulation reveals that it is impractical, as its
precision at N=100000 is only 0.002927346410207.

Newton’s method takes 0.000001710927213 seconds to calculate at N=20, where its precision is
highest. The Archimedes method takes 0.000016767086688 seconds to execute at its highest precision
(N=100000), and indeed for most values of N. Leibniz and Wallis take 0.006079608758852 and
0.001345473160343 seconds, respectively, to calculate at their highest precisions. The Monte Carlo
Dart Simulation takes 0.034594263876988 seconds to calculate at highest precision, although seeing as
how this precision is barely as accurate as the Newton function after only 1 iteration, it is fairly useless.

The data shows that the Newton function evaluates the fastest and provides the most precise
approximation of pi; therefore, the Newton method is the most practical method available. Although
the Archimedes method has a wonderful ability to evaluate at a constant speed regardless of the size of
N, it reaches a limit at incredibly high precision, and it is also not as precise as Newton, even at high
values of N. Leibniz and Wallis provide fine approximations of pi, but they cannot compete with Newton
or Archimedes when it comes to speed or precision. However, Wallis may be useful if you find Newton
and Archimedes to fail at insanely high values of N. The Monte Carlo Dart Simulation, as stated before,
is interesting but ultimately useless compared to the other functions.

References
Figure 1: http://delphiforfun.org/Programs/Math_Topics/Archimedes_Pl.htm
Figure 2, Newton Formula: http://mathworld.wolfram.com/PiFormulas.html
Wallis Formula: http://mathworld.wolfram.com/WallisFormula.html
Leibniz Formula: http://en.wikipedia.org/wiki/Leibniz_formula_for_pi
Figure 3: http://www.cs.rochester.edu/u/brown/160/assts/Pi/Pi.html

All other figures and data created using MATLAB and code written by Sam Butler

