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Abstract

Nearly all previous work on geo-locating latent states and
activities from social media confounds general discussions
about activities, self-reports of users participating in those ac-
tivities at times in the past or future, and self-reports made at
the immediate time and place the activity occurs. Activities,
such as alcohol consumption, may occur at different places
and types of places, and it is important not only to detect
the local regions where these activities occur, but also to ana-
lyze the degree of participation in them by local residents. In
this paper, we develop new machine learning based methods
for fine-grained localization of activities and home locations
from Twitter data. We apply these methods to discover and
compare alcohol consumption patterns in a large urban area,
New York City, and a more suburban and rural area, Mon-
roe County. We find positive correlations between the rate of
alcohol consumption reported among a community’s Twitter
users and the density of alcohol outlets, demonstrating that
the degree of correlation varies significantly between urban
and suburban areas. While our experiments are focused on
alcohol use, our methods for locating homes and distinguish-
ing temporally-specific self-reports are applicable to a broad
range of behaviors and latent states.

Introduction
Analysis of Twitter has become a widespread approach
for geo-spatial studies of human behavior, such as alco-
hol consumption (Kershaw, Rowe, and Stacey 2014; Cu-
lotta 2013) and exercise (Young 2010), and human latent
states, such as sickness (Paul and Dredze 2011; Sadilek,
Kautz, and Silenzio 2012a; Sadilek et al. 2013) and depres-
sion (Dos Reis and Culotta 2015; Nambisan et al. 2015;
Tsugawa et al. 2015). However, nearly all prior work, with
the notable exception of (Lamb, Paul, and Dredze 2013),
does not attempt to distinguish mere mentions of activities
or states from self-reports of activity. Moreover, no attempt
has been made to distinguish reports about future or past ac-
tivities and in-the-moment reports that provide finer details
when geo-tagged tweets are used to map specific locations of
activities. Further insights into the geo-location of activities
can be obtained by inferring the home locations of the sub-
jects involved. Home location helps analyze the number of
members of a community engaging in an activity, the kinds
of places where the activity occurs (e.g., home, commercial
establishment, public place, etc.), and the distance people

travel from home to participate in it. Prior research has used
simple heuristics for predicting a social media user’s home
location, such as the place from which the user most fre-
quently tweets, or the most common last location of the day
for the user’s posts (Pontes et al. 2012a; Pontes et al. 2012b;
Cho, Myers, and Leskovec 2011; Scellato et al. 2011). But
such heuristics are inaccurate for a large percentage of users,
e.g., in cases when users frequently visit multiple places.

We apply machine learning techniques on Twitter content
to identify in-the-moment reports of user behaviors and to
accurately predict users’ home locations within 100 meters.
Using these tools, we develop new methods for a task of crit-
ical interest in public health: discovering patterns of alcohol
use in urban and suburban settings. Such methods can help
us better understand the occurrence, frequency, and settings
of alcohol consumption, a health-risk behavior, and can lead
to actionable information in prevention and public health.

Excessive alcohol use has a tremendous negative im-
pact on health and communities. Drinking directly results
in about 75,000 deaths annually in the US, making it the na-
tion’s third leading cause of preventable death (Centers for
Disease Control and Prevention and others 2004). Previous
research (Kuntsche et al. 2005; Naimi et al. 2003) shows that
social factors play an important role in developing drink-
ing patterns over time. While social media such as Twit-
ter is both ubiquitous and publicly available, little research
has investigated the relationship between virtual social con-
texts and the alcohol referencing or alcohol-linked behaviors
found there in various real-world community settings.

In this paper, we aim to predict where Twitter users are
when they report on drinking. We report on several stages
of work to accomplish this research objective. First, we col-
lected geo-tagged tweets from urban, suburban, and rural ar-
eas of New York State. Using human computation, we cre-
ated a training set that captures important details such as
whether the tweet mentions drinking alcohol, the user drink-
ing, or the user drinking at the time of tweeting. We created
a hierarchy of three support vector machine (SVM) classi-
fiers (Burges 1998) to distinguish tweets up to these fine de-
tails. Each of these SVMs achieves an F-score above 83%
and is used to classify tweets from New York City and from
Monroe County, a predominantly suburban area in upstate
New York containing one medium-sized city (Rochester), in
order to develop methods that can perform in “big city” as
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well as “small city” contexts of social media use.
We also performed fine-grained home location inference

of Twitter users to generate community descriptions, such as
to calculate the proportion of “social media drinkers” drink-
ing at home, and to analyze how far people travel from home
to drink-and-tweet. Existing home inference methods either
rely on continuous and expensive GPS data, covering a small
number of users, or suffer from poor accuracy. We trained
an SVM classifier to predict home location for active users
(users with as little as 5 geo-tagged tweets) within 100 by
100 meter grids. Considering the sparse and noisy nature
of Twitter data that poses serious challenges in pinpointing
where people live, our classifier achieves a high accuracy of
70%, covering 71% active users in New York City. We also
investigated ways to balance granularity and coverage. Prior
work on home location has been limited to localizing at the
city level; ours is the first to achieve block-level accuracy.

Related Work
Latent States & Activities from Social Media
Most prior work on using Twitter data about users’ on-
line behavior has estimated aggregate disease trends in a
large geographic area, typically at the level of a state or
a large city. Researchers have examined influenza track-
ing (Culotta 2010; Achrekar et al. 2012; Sadilek and Kautz
2013; Broniatowski and Dredze 2013; Brennan, Sadilek,
and Kautz 2013), mental health and depression (Golder and
Macy 2011; De Choudhury et al. 2013), as well as general
public health across a broad range of diseases (Brownstein,
Freifeld, and Madoff 2009; Paul and Dredze 2011). Some re-
searchers have begun modeling health and contagion across
individuals (Ugander et al. 2012; White and Horvitz 2008;
De Choudhury et al. 2013). For example, (Sadilek, Kautz,
and Silenzio 2012b) showed that Twitter users who exhibit
symptoms of influenza can be accurately detected using a
language model based on word trigrams. A detailed epi-
demiological model can be subsequently built by follow-
ing the interactions between sick and healthy individuals in
a population, where physical encounters are estimated by
spatio-temporal collocated tweets. nEmesis (Sadilek et al.
2013) scored restaurants in New York City by the number
of Twitter users who posted status updates from a restaurant
and within the next several days posted self-reports of symp-
toms of food poisoning. Our hierarchical classifiers use the
same kind of word-trigram features at each level.

Little prior work has attempted to distinguish true in-the-
moment self-reports on Twitter from more general discus-
sion of a condition or activity. A notable exception is (Lamb,
Paul, and Dredze 2013), which explored language models
that could distinguish discussion of the flu from self-reports.
This work enriched the set of n-gram language features
by including manually-specified sets of words, features for
hashtags and retweets, and various syntactic patterns. For
separating general discussion from reports of some partic-
ular person being sick, n-grams were most important, fol-
lowed by the manually-specified word classes. For separat-
ing reports of the user being sick from reports of others be-
ing sick, n-grams were again most important, by the hash-

tag/retweet features. The overall success of n-grams sup-
ports our n-gram based approach for latent activity detec-
tion. The authors did not use hierarchical classifiers or at-
tempt to distinguish in-the-moment-reports from those about
the past or future.

Alcohol Consumption
Despite the huge public health costs exacted by alcohol
use, commercial interests and individuals, for example,
teens (Moreno et al. 2009; Egan and Moreno 2011) do post
about alcohol and drinking in social media. Alcohol-related
posts are seen as credible reports by teens and thus posts
can influence perceived social norms, a factor linked to the
uptake of drinking behaviors (Litt and Stock 2011).

In the case of alcohol use, social context certainly mat-
ters. For instance, survey research shows that having close
friends that drink heightens alcohol use and perceptions
about alcohol use in teen life, in general (Jackson et al. 2014;
Polonec, Major, and Atwood 2006). Peer alcohol consump-
tion behavior of one’s social network, particularly those
of relatives and friends (not immediate neighbors and co-
workers), is a risk factor for alcohol use, specially among
adolescents (Rosenquist et al. 2010; Ali and Dwyer 2010).

When the geography of one’s daily life creates prox-
imity to alcohol (i.e., greater spatial/temporal availability
of on-premise or off-premise alcohol outlets, etc.), a well-
documented risk factor for alcohol use and its array of re-
lated adverse public health consequences emerges (Camp-
bell et al. 2009; Weitzman et al. 2003; Holmes et al. 2014;
Scribner et al. 1999; Scribner et al. 2008; Livingston 2008a;
Livingston 2008b; Livingston 2011; Kypri et al. 2008;
Chen, Grube, and Gruenewald 2010; Scribner, MacKinnon,
and Dwyer 1994; Zhu, Gorman, and Horel 2004; Britt et
al. 2005; Liang and Chikritzhs 2011). Modifying proximity
is often explored as a public health policy means to reduce
alcohol use, for instance, in neighborhoods (Sparks, Jerni-
gan, and Mosher 2011). However, the association between
neighborhood alcohol outlet density and percentage of al-
cohol consumers may be more complex due to variation in
travel patterns and neighborhood styles, and mediated by
proximity to one’s home (e.g., within one-mile) (Schonlau
et al. 2008).

Social media is a new ubiquitous source of real-time
community and individual public-health related behaviors.
When seeking to apply social media to detect the social me-
dia ecology of health behaviors such as alcohol use, it is
important to identify not only whether but where (the set-
tings in which) the mentions or posts are occurring. As both
geo-physical and virtual access to rapidly diffused messages
about alcohol and its use may heighten risky drinking and
related behaviors, methods are needed to permit the study of
these potentially interacting influences. Such methods can
reveal different risk patterns associated with different loca-
tions not prior known, and help inform more localized or tar-
geted intervention strategy development. For instance, as so-
cial network structures are observable in social media, and as
“neighbor” attributes can influence drinking behavior among
online friends or followers, studying network influence in
social media settings like Twitter may illuminate drinking



risk patterns not previously known.
However, current methods for examining these influences

are very limited. Methods for detecting problematic alco-
hol use in communities are typically opportunity or survey
based (e.g., driver check-points, community surveys, ED ad-
missions, or health care-based screenings), not often scal-
able to population levels due to resource restrictions. Re-
search on how to vivify a community’s raft of social me-
dia posts to detect its alcohol use patterns is only now
starting to emerge. For instance, (Tamersoy, De Choudhury,
and Chau 2015) distinguished long-term versus short-term
drinking/smoking abstinence from the social media site Red-
dit. These researchers were able to use linguistic features
from content posted, and social interaction features derived
from users’ network structure through the application of su-
pervised learning. In this paper, we propose new automated
methods for identifying both whether and where self-reports
of drinking are occurring among Twitter users in two major
metropolitan regions of New York State.

Home Location Detection
With the knowledge of home locations, we can gain a better
insight to human mobility patterns, as well as lifestyle in
general. In (Scellato et al. 2011; Cho, Myers, and Leskovec
2011; Scellato, Noulas, and Mascolo 2011), home location
is the key origin to calculate the distance that people travel
and to estimate the distance between social network users
in a pairwise fashion. Home location has also been used to
model individuals’ living conditions and lifestyles (Sadilek
and Kautz 2013). We organize the discussion of related work
on home location prediction by the type of data used.

Language content There has been much prior work on us-
ing language features in non-geotagged social media posts
to predict the home locations of users at a coarse grain, at
the level of a city or state. In (Mahmud, Nichols, and Drews
2012), linguistic features and place names from tweets were
used to create a classifier that infers home locations at city,
state and time zone levels in the top 100 most populated
US cities with accuracies of 58%, 66%, and 78% respec-
tively. This suggests that language models are not good for
fined-grained home localization (in our case, within 100 me-
ters). Similar results, accurate at most to several kilometers,
appear in (Pontes et al. 2012a). In (Cheng, Caverlee, and
Lee 2010), the authors used a content-based method to de-
tect Twitter users’ home cities, placing 51% of active users
within 100 miles of their actual home locations.

Geo-tagged Data Others developed “single-attribute”
models based on different social network features, for ex-
ample, taking the value of users’ “Employment” as their
home cities in Google+, or using geo-tags in FourSquare,
Google+, and Twitter posts to predict the city.Geo-tagged
Foursquare data was used in (Pontes et al. 2012b) to infer
home cities within 50 kilometers with 78% of user coverage.
A dataset containing the traces of 2 million mobile phone
users from a European country was used in (Cho, Myers,
and Leskovec 2011) to estimate home locations based on
the places with most check-ins. The paper reported that by

manual checking, the most check-ins method achieved 85%
accuracy when the area was divided into 25 by 25 km cells.

Other researchers used simple heuristics to select the
home location from the set of locations in a user’s geo-
tagged posts. The most popular heuristics are to assume that
the location with the most check-ins is home (Scellato et al.
2011), or to assume that the common last location of the day
from which one tweets is home (Sadilek and Kautz 2013).
The accuracy and coverage of such heuristic approaches
was not reported. We discovered that these prior methods
individually suffered from low accuracy and/or coverage.
For example, the most check-ins approach performs poorly
when a user visits several places with similar frequencies.

Wearable GPS and Diary Data GPS and diary data
make home detection more precise and easier because they
are more dense and continuous than social network loca-
tion data, but they are more expensive to obtain, resulting
in low population coverage when used in locating homes.
In (Krumm 2007), a device recorded location coordinates
every several seconds when the car was moving on 172 sub-
jects’ vehicles. The subjects reported the ground truth of
their homes. The authors then used 4 heuristic algorithms to
compute the coordinates of each subject’s home, and found
that the best one was “last destination of a day”. The me-
dian distance error of their best algorithm was 60.7 meters.
In (Hoh et al. 2006), the researchers performed agglomera-
tive clustering on the GPS traces of users until the clusters
reached an average size of 100 meters. Next they manually
eliminated clusters with no recorded points between 4PM
and midnight and those falling outside the residential areas.

Semantically labeling places is another important topic re-
lated to home location detection. In (Sadilek and Krumm
2012), the authors used GPS data from 307 people and 396
vehicles, then divided the world into 400 by 400 meter grids,
and assigned each GPS reading to the nearest cell. They
found that the top 10 frequently visited locations can usually
be semantically labeled as “home”, “work”, “favorite restau-
rant” and so on. Other researchers (Krumm and Rouhana
2013) performed experiments using two diary datasets —
American Time Use Survey and the Puget Sound Regional
Council Household Activity Survey — where each location
had a semantic label such as “home” or “school”. They ex-
tracted several features of a location and trained place clas-
sifiers using machine learning, reporting a classification ac-
curacy above 90% on locations labeled as “home”.

Alcohol Usage Detection
We now describe our methods for detecting geo-temporal al-
cohol consumption via Twitter. We discuss the data prepara-
tion steps, the hierarchical classification approach, the strate-
gies we employed to reduce classifier overfitting and the re-
sults.

Ground Truth
We collected geo-tagged tweets from urban, suburban and
rural areas in New York State from July 2013 to July 2014.
Similar to the approach used in (Paul and Dredze 2011),
we began the process of creating a training dataset by first



Figure 1: Flowchart for latent activity detection.

filtering tweets if they included a mention of alcohol, de-
fined by the inclusion of any one of several drinking-related
keywords (e.g., “drunk”, “beer”, “party”) and their variants.
The word set was reviewed and modified with local commu-
nity member input from our social media analytic advisory
group, the Big Data Docents.

We were interested in labeling each tweet that passed this
filter by applying a hierarchy of three yes/no feature ques-
tions, as follows:

Q1: Does the tweet make any reference to drinking alco-
holic beverages?

Q2: if so, is the tweet about the tweeter him or herself
drinking alcoholic beverages?

Q3: if so, is it likely that the tweet was sent at the time and
place the tweeter was drinking alcoholic beverages?

We labeled this Alcohol dataset1 using the Amazon Me-
chanical Turk2. Given a tweet, a turker was asked Q1, and
only if the turker answered “yes”, then he/she was asked Q2,
and so on. Each question was passed to three Turkers and the
answer choices were “yes”, “no”and “not sure”. Tweets that
didn’t receive consensus in turker ratings ( (yes/no) agree-
ment among less than two turkers) were discarded from the
dataset. The remaining tweets were labeled ‘1’ if two or
more turkers answered “yes”, otherwise they were labeled
‘0’ for each feature question. Since for each tweet the ques-
tions were asked hierarchically, the approach resulted in a
smaller ground truth for deeper questions, as Table 1 shows.

1dataset and keywords available in: cs.rochester.edu/
u/nhossain/icwsm-16-data.zip

2http://www.mturk.com

Q1 Q2 Q3
Class size (0, 1) 2321, 3238 579, 2044 642, 934
Precision 0.922 0.844 0.820
Recall 0.897 0.966 0.845
F-score 0.909 0.901 0.833

Table 1: Alcohol dataset test results

neg. features weights pos. features weights
club -1.244 drunk 1.056
shot -1.206 beer 1.028

party -1.193 wine 0.998
#turnup -0.972 alcohol 0.936

yak -0.919 vodka 0.9
lean -0.919 drink 0.899

crown -0.823 tequila 0.857
root beer -0.772 hangover 0.854

root -0.772 drinking 0.811
wasted -0.745 liquor 0.793
turn up -0.673 #beer 0.779
turnup -0.668 hammered 0.757
binge -0.663 take shot 0.749

drunk in love -0.593 alcoholic 0.749
in love -0.52 get wasted 0.715

water -0.501 champagne 0.708
turnt up -0.499 booze 0.692

fucked up -0.441 ciroc 0.68
fucked -0.441 rum 0.653

water bottles -0.423 whiskey 0.635

Table 2: Top weighted features for SVM-1

Dataset Pre-processing
Tweet texts are usually conversational texts, noisy and un-
structured, making it difficult to create a good feature set us-
ing them. We performed several pre-processing techniques
to reduce lexical variation in tweets. These include con-
verting hyperlinks to “#url”, mentions to “#mention”,
emoticons to positive and negative emoticon features, using
hashtags as distinct features, and truncating three or more
consecutive occurrences of a character in a word to two con-
secutive occurrences (e.g. “druuuuuuunk”→ “druunk”). Us-
ing the pre-processed tweets and their labels, we created sep-
arate trigram linguistic feature sets for the three questions.
In order to reduce overfitting, we only kept the top N most-
frequent features, where N = 25% of the size of the training
set size for the corresponding question.

Training
For each of the three questions, we trained a linear support
vector machine (SVM) to predict the answer. As shown in
Figure 1, these SVMs are hierarchical (Koller and Sahami
1997). For example, the data for SVM-2 (SVM for question
Q2) include only the tweets labeled by SVM-1 as “yes” and
for which consensus was reached by turkers for Q2. This re-
stricts the dataset distribution as we go down the hierarchy.
Compared to a single flattened multi-class classifier, hier-
archical classifiers are easier to optimize, and because they

cs.rochester.edu/u/nhossain/icwsm-16-data.zip
cs.rochester.edu/u/nhossain/icwsm-16-data.zip
http://www.mturk.com


neg. features weights pos. features weights
she -1.222 will 0.411
he -0.936 when you 0.37

your -0.87 bad 0.358
people -0.841 when drunk 0.334

they -0.676 with 0.318
are -0.658 am 0.303

my mom -0.623 get drunk 0.301
drunk people -0.6 through 0.3

guy -0.551 drink 0.296
#mention you -0.5 dad 0.292

her -0.472 us 0.286
for me -0.454 friday 0.283

baby -0.447 more 0.282
their -0.431 still 0.28

his -0.423 little 0.28
see -0.417 drinking 0.28

most -0.394 free 0.27
talking -0.377 pong 0.263

the drunk -0.368 already 0.261

Table 3: Top weighted features for SVM-2

have a restricted feature set, we can build more complex
models without overfitting. This way of classifying tweets
is also more intuitive and suits our purposes. In other words,
SVM-1 will be specialized to filter drinking-related tweets,
while SVM-3 assumes that the input tweet is about drinking
and particularly the tweeter drinking, and decides whether
the tweeter was drinking when he/she posted the tweet.

For each SVM, we used 80% of the labeled data for train-
ing and the remaining 20% for testing. We applied 5 fold
cross validation to reduce overfitting and used the F-score
for model selection. The F-score, ranging between 0 and 1,
is the harmonic mean of precision and recall, and the higher
the score the lower the classification error.

Results
The results in Table 1 show high precision and recall for each
question. They also suggest that the more detailed the ques-
tion becomes, the harder it gets for the classifier to predict
correctly. This is not unexpected because intuitively we ex-
pect Q3 to be a harder question to answer compared to Q1.
More importantly, our hierarchical classification approach
shrinks the training data as we go down to deeper questions,
most likely making it difficult for the classifiers down the
hierarchy to learn from the smaller data. However, we be-
lieve that this approach is better than a multi-class SVM ap-
proach which, although would use the full training data to
answer each question, does not have the advantage of re-
stricting the data distribution to focus on the question. For
example, Table 2 shows that SVM-1 mainly uses features
related to alcoholic drinks to determine whether the tweet
is related to drinking alcoholic beverages. SVM-2 distin-
guishes self-reports of drinking from general drinking dis-
cussion by using pronouns and implicit references to drink-
ing, as Table 3 suggests. Table 4 shows that, having known
that the tweet is related to the user drinking alcohol, SVM-

neg. features weights pos. features weights
hangover -1.179 #url 0.662

need -1.088 shot 0.461
want -0.878 here 0.429
was -0.67 #mention when 0.4

when -0.617 bottle of wine 0.387
or -0.605 drank 0.368

real -0.601 now 0.36
alcoholic -0.6 think 0.352

for -0.561 one 0.349
last night -0.525 good 0.327

will -0.525 vodka 0.318
wanna -0.523 by 0.312
tonight -0.52 me and 0.312

got -0.492 outside 0.307
weekend -0.483 hammered 0.304

yesterday -0.471 haha 0.3
was drunk -0.47 drive 0.3

Table 4: Top weighted features for SVM-3

3 identifies drinking in-the-moment using temporal features
(e.g., “hangover”, “last night”, “now”) and features related
to the urge to drink (e.g., “need”, “want”).

Home Location Prediction
Existing home inference methods suffer from either low
coverage (GPS & diary data) or coarse granularity and low
accuracy (language models and prior work on geo-tagged
data), making them inadequate for problems that require
both high coverage and fine granularity. Our more sophis-
ticated machine learning based algorithm combines a num-
ber of different features describing each user’s daily trajecto-
ries as determined from geo-tagged tweets, thus predicting
users’ home locations from sparse tweets with high accu-
racy and coverage. We now describe our method for home
location prediction of Twitter users, the creation of a labeled
training data, the feature set, our results, and we evaluate our
system.

Dataset & Pre-Processing
We collected geo-tagged tweets sent from the greater New
York City area during July 2012 and from the Bay Area dur-
ing 06/01/2013 - 08/31/2013. A typical geo-tagged tweet
contains the ID of the poster, the exact coordinates from
where the tweet was sent, time stamp, and the text content.
Due to the inherent noise in the geo-tags, we split the ar-
eas into 100 by 100 meter grids and treat the center of each
grid as the target of home detection. Each tweet is assigned
to its closest grid, and every time a user’s tweet appears in
a grid we say the user has a check-in in this grid. Simi-
lar to previous work (Song et al. 2010; Smith et al. 2014;
Lin, Hsu, and Lee 2012), we only focus on users who have
sent at least 5 geo-tagged tweets, and we call them active
users. Also following these studies, we take each user’s
hourly traces (only one location for each hour in our sam-
pling duration) instead of using every single check-in. Thus,
if a user appears in several unique grids in an hour, we



NYC Bay Area
No. of tweets 2,636,437 3,633,712

Total no. of active users 55,237 53,314
No. of tweets annotated by AMT 5,000 5,000

No. of ground-truth homes 1,063 987

Table 5: Description of our dataset for home inference.

take the grid with the highest number of check-ins as the
user’s location for the hour (ties are broken by random se-
lection). If a user’s location is not observed in an hour, the
location for that hour is set to “Null”. Typically, the hourly
traces TU of a user U form a sparse vector, for example,
TU = [Null, Li, Null, ..., Lj ], and the size of TU is the
number of hours in the sampling period. We provide a snap-
shot of our dataset in Table 5.

Ground Truth
Obtaining fine-grained ground truth is challenging because
it involves identifying a Twitter user’s home from several
locations the user checked-in without being told by the
user. Some researchers relied on information from user pro-
files (Pontes et al. 2012a; Pontes et al. 2012b; Mahmud,
Nichols, and Drews 2012), others manually inspected the
detection results (Cho, Myers, and Leskovec 2011). How-
ever, the location information in user profiles is coarse (at
city level), while manual inspection is not scalable. Reading
a tweet that says “Enjoying the beautiful conference room
view!”, a human can tell that it was sent from a workplace.
Tweets such as “finally home!” or “home sweet home” are
most likely sent from home. Thus, we relied on tweet con-
tent and human intelligence to build the ground truth for
home location.

We asked faithful Twitter users what they would like to
post when at home. Based on their answers, we selected a set
of 50 keywords (e.g., “home”, “bath”, “sofa”, “TV”, “sleep”,
etc.) and their variants which are likely to be mentioned in
tweets sent from home. Next, we filtered tweets that con-
tained at least one of these keywords. Then, we relied on
Amazon Mechanical Turk to find the tweets sent from home.
Each turker was given a questionnaire containing 5 tweets
to answer. For each tweet we asked: “is this tweet sent from
home?”, and the options were “yes”, “no” and “not sure”.
Each questionnaire was answered by three unique turkers.
We only retained the tweets which, all three turkers believed,
were sent from home.

Features Based on Human Mobility
Previous work using linguistic features from tweet con-
tent (Mahmud, Nichols, and Drews 2012; Cheng, Caverlee,
and Lee 2010) did not achieve good accuracy in granular set-
tings, and even in course-grained conditions these methods
required over a few hundred tweets per user to obtain rea-
sonable accuracy. Our goal is to predict homes for users with
as little as 5 tweets to increase coverage. Therefore, instead
of using linguistic features, we extract features that capture
temporal and spatial properties of homes. Although some
of these features alone (e.g. check-in frequency, PageRank

score) can be used as reasonable baseline methods to de-
tect homes, we show that combining features appropriately
using a machine learning method brings significant gain in
both accuracy and coverage. We now discuss how we ob-
tain these features from a user’s hourly traces and how they
capture inherent properties of home.

Check-in Rate As we discussed earlier, taking the lo-
cation of most check-ins as home is a popular method.
Throughout the paper, we refer to this method and the cor-
responding feature as “Most Check-in”. Although check-
in based methods for home detection work well on GPS
data (Krumm 2007), they perform much worse on Twitter
data. This is because GPS devices keep recording locations
every few seconds whereas the frequency of a user’s geo-
tagged tweets are low and largely vary based on the type of
user. The location with most check-ins definitely is impor-
tant to a user, but that does not necessarily mean it is the
home.

For user U , we define the margin between two locations
of check-ins A and B as PA − PB , where PA and PB are
percentages of U ’s check-ins at A and B respectively. Fig-
ure 2 shows that for a user, the lower the margin between
the most check-in location and the second most check-in
location, the less effective is the Most Check-in feature as
an accurate predictor of home. For instance, the accuracy is
70% only when this margin is 50 or higher. Figure 3 shows
that only a small number of users have large margins be-
tween most check-in and second most check-in locations
(e.g., only about 20% of the users have margins above 70,
which means that home detection accuracy for these users
using Most Check-in method is about 80%, according to
Figure 2). These explain why the Most Check-in method
performs poorly in fine-grained settings — for example, as
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Figure 2: Accuracy of home inference using Most Check-in
feature vs. margin between the locations with most check-
ins and second most check-ins. For each point (X , Y ), X is
the margin and Y is the home detection accuracy obtained
using Most Check-in feature for the group of users in our
ground truth having margin X .



the grid with most check-in shrinks from 1 by 1 kilometer
block to many 100 by 100 meter grids, the most check-in
percentage spreads over many of these smaller grids, lower-
ing the margin between the new most check-in location and
the new second most check-in location. To circumvent this
problem, we extract 3 features for each location L checked-
in by a Twitter user U :

• the percentage of check-ins of U at location L

• the margin between L and those of its immediate higher
and lower most check-in locations

Figure 3: The cumulative distribution of the margin between
the locations with most check-ins and second most check-
ins. The smaller plot shows the distribution of margin be-
tween most check-in and second most check-in locations.

Check-in Frequency During Late Night Intuitively, the
places people check-in at late night are probably their
homes. For example, (Sadilek and Kautz 2013) estimated
a person’s home by taking the mean of a two-dimensional
Gaussian fitted to the person’s check-ins between 1AM and
6AM. This method potentially alleviates the biases caused
by other frequently visited places during daytime. Thus, for
each location visited by a user, we take the check-in percent-
age of that location computed over a restricted time period
of 12AM - 7AM as a feature, which we define as the late
night feature of that location.

Last Destination of a Day According to research using
GPS data (Krumm 2007), the last destination of a person on
a day (no later than 3AM) is most likely the home, highlight-
ing that people’s daily movements end at their homes. Based
on this assumption we extract a mobility feature, which we
call the last destination feature. For each location visited
by a user, we count the number of times the location had
been the last destination of the day, and we add this count to
our feature set.

Last Destination with Inactive Late Night Since “last
destination” might suffer from check-ins sent from non-
home places (e.g., when the night was spent outside), we
add to our feature set a variant of last destination. We only

consider tweets sent on the days when people were inactive
during late night (12AM - 7AM). We exclude the days with
active late night and, for each place visited by the user, we
count the number of times the place had been the last desti-
nation in the remaining days.

The original check-in feature has limitations in obtaining
a broader coverage in detecting homes. The above three fea-
tures introduce extra human behaviour information to the
simple check-in feature and help reduce this limitation.

Temporal Features According to (Krumm 2007), the
probability of being at home varies over time. For each place
checked-in by a user, we compute the check-in percentages
in that place at each hour of the day over the sampling pe-
riod, and we add these 24 values (which sum to 100%) to
our feature set. These time related features help us capture
the property of home in terms of temporal patterns.

Spatial Features Home is a crucial start/end point of
many of our movements. Thus, for each place we add 2
more features — weighted PageRank (Xing and Ghorbani
2004) and Reversed PageRank scores — to model how im-
portantly a place behaves as an origin and a destination. To
apply PageRank, we first transfer a Twitter user’s trace into a
directed graph called the movement graph, in which the ver-
tices are the locations visited by the user and a directed edge
from vertex Li to Lj represents that location Lj is visited
directly from Li. To quantify the certainty and importance
of transitions between locations, we assign a weight to each
edge. The weight should be proportional to the number of
times a transition appears in the user’s trace, and inversely
proportional to the number of idle hours during the transi-
tion. Thus, assuming that T is the set of hourly traces of a
user over the sampling period, the weight w(Li,Lj) is the ra-
tio of the total number of transitions from Li to Lj in T to
the total number of idle hours during all these transitions.

After constructing a user’s movement graph, we apply
PageRank to calculate, for each visited location, the im-
portance of that location as a destination. To study the im-
portance of that location as an origin, we calculate the Re-
versed PageRank score by reversing each edge direction in
the movement graph (edge weights remain unchanged), and
then applying weighted PageRank. The PageRank and Re-
versed PageRank scores describe the spatial characteristics
of movements.

SVM Training and Home Location Evaluation
Training We trained a linear SVM classifier using all
these features to capture important feature combinations
that better distinguish homes. Each training datapoint is a
tweet identified uniquely by user ID and location ID, labeled
“home” or “not home”, having 32 feature values calculated
from the user’s hourly traces. For each Twitter user, the clas-
sifier outputs a score for all the places the user checked-in
from. If the place with the highest score exceeds a thresh-
old, it is marked as the user’s home. Otherwise, the user’s
home is marked “unknown”, which decreases our home de-
tection coverage. Table 6 shows the most significant SVM
features.



Positive Features Weight
Check-in ratio 2.03

Margin between top two check-ins 0.19
PageRank Score 0.19

Last destination with inactive late night 0.12
Reversed PageRank score 0.09

Negative Features Weight
Margin below next higher check-in -0.30
Margin under next higher PageRank -0.28

Margin under next higher Reversed PageRank -0.21
Rank of Reversed PageRank -0.07

Rank of PageRank -0.07

Table 6: Top SVM features and their weights.
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Figure 4: The trade-off between accuracy and coverage for
different home detection methods using New York City data.

Accuracy vs. Coverage To guarantee the practicality of
our home detection method, we need to balance granularity
and coverage. Because of the natural trade-off between gran-
ularity and detection accuracy, we fix the granularity to 100
by 100 meter grid and explore the relationship between ac-
curacy and coverage. The accuracy can be adjusted by vary-
ing the threshold, which also affects coverage.

Figure 4 shows how our methods compare with three
other single-feature based methods in terms of accuracy
and coverage. The tuning parameter for PageRank (and Re-
versed PageRank) scores was the extent to which the high-
est PageRank Score was larger than the second highest one,
and for Most Check-ins it was the check-ins count. Homes
were not predicted using Most Check-ins when the most
check-in count was less than 3. At every accuracy level, our
method covers more homes than other methods, suggesting
that a combined model significantly increases coverage over
single-feature based models. Particularly, when we set the
accuracy of each method to 70% (which we think is accept-
able for urban computing), our classifier obtains 71% and

76% coverage in NYC and Bay Area respectively, signifi-
cantly higher than those achieved using individual features.
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Figure 5: Resolution vs. accuracy of home detection.

Granularity Since we performed home detection to 100
by 100 meter grids, the resolution of this grid-based method
is around 70 meters (

√
2 ∗ 100/2 ≈ 70 m). We explore how

resolution affects our method’s accuracy by setting cover-
age at 80% and varying the resolution from 100 meters to
1000 meters. Figure 5 shows that increasing the resolution
increase the accuracy although the rate of increase of ac-
curacy slows down and peaks at around 80%. Compared to
previous work (Pontes et al. 2012a), our method provides
higher resolution with similar accuracy ( 80%).

Analysis of Alcohol Consumption via Twitter
In this section, we discuss the results obtained by apply-
ing our SVMs on geo-tagged tweets from New York City
(dataset range: 11/19/2012 - 03/31/2013) and from Monroe
County in upstate New York (dataset range: 07/03/2014 -
04/27/2015). We specifically chose these datasets to study
alcohol consumption in urban (NYC) vs suburban (Monroe)
settings. We analyze drinking at home vs. away from home,
and we investigate the relationship between the density of
tweets sent from different regions while intoxicated and the
density of alcohol outlets in those regions. The following
terms will be used throughout this section:

• drinking-mention: SVM-1 predicts “yes”

• user-drinking: SVM-2 predicts “yes”

• user-drinking-now: SVM-3 predicts “yes”

We ran the set of NYC and Monroe tweets in the order
shown in Figure 1. The results in Table 7 show that for each
drinking-related question, NYC has a higher proportion of
tweets marked positive compared to the corresponding pro-
portion in Monroe County. One possible explanation is that
a crowded city such as NYC with highly dense alcohol out-
lets and many people socializing is likely to have a higher
rate of drinking happening at a time compared to a suburban



NYC Monroe
No. of geo-tagged tweets 1,931,662 1,537,979
Passed keyword filter 51,321 26,858
drinking-mention 24,258 13,108
user-drinking 23,110 12,178
user-drinking-now 18,890 8,854
Correlation with outlet density 0.390 0.237

Table 7: Classification of drinking-related tweets on NYC
and Monroe datasets.

area such as Monroe county with low population and alcohol
outlet density.

Figure 6 shows the zoomed geographic distributions3 of
user-drinking-now tweets via normalized heat maps. These
maps were constructed by splitting the geographic area for
each dataset into 100 by 100 meter grids, then computing the
proportion of tweets in each grid that were user-drinking-
now (excluding grids that had less than 5 user-drinking-now
tweets), and using these values as the degree of “heat”. That
is, the grids with “more heat” are those where the proportion
of in-the-moment drinking tweets compared to the total geo-
tagged tweets are much higher. We believe that such grids
are regions of unusual drinking activities.

We also computed the alcohol outlet densities4 for the
grids and then calculated the correlation between the alcohol
outlet density and the density of user-drinking-now tweets.
As Table 7 shows, the density of user-drinking-now tweets
in both our datasets exhibit positive correlations with al-
cohol outlet density, with p-values less than 1%. Although
correlation does not necessarily imply causation, these re-
sults agree with several prior work (Campbell et al. 2009;
Sparks, Jernigan, and Mosher 2011; Weitzman et al. 2003;
Scribner et al. 2008; Kypri et al. 2008; Chen, Grube, and
Gruenewald 2010) which claim that alcohol outlet density
influences drinking.

Location-based Analysis
The ability to detect homes and locations where user-
drinking-now tweets are generated enables us to compare
drinking going on at home vs. not at home. For this pur-
pose, we only used homes predicted with at least 90% accu-
racy which resulted in some loss of coverage (see Figure 4).
We filtered all Twitter users with homes in our datasets and
extracted all the user-drinking-now tweets posted by these
users. For these tweets, we plotted the histogram of distance
from home, shown in Figure 7. We see that NYC has a larger
proportion of user-drinking-now tweets posted from home
(within 100 meters from home) whereas in Monroe County
a higher proportion of these tweets generated at driving dis-
tance (more than 1000 meters from home).

Discussion and Future Work
We proposed a machine learning based model for detecting
latent activities and user states via Twitter to such fine details

3obtained using CartoDB — http://cartodb.com/
4obtained from NYS LAMP — lamp.sla.ny.gov/

(a) NYC

(b) Monroe

Figure 6: Heat maps of user-drinking-now tweets showing
unusual drinking zones. In NYC, the drinking hot spots are
Lower Manhattan and it’s surroundings whereas in Monroe
County they are Downtown Rochester (center) and the city
of Brockport (left).

that have not been distinguished yet. The model not only dis-
tinguishes people discussing an activity vs. discussing them-
selves performing the activity, but also determines whether
they are performing it at-the-moment vs. past/future. We
showed the strength of our model by applying it to the de-
tection of alcohol consumption as an example application.
Coupled with our other contribution of home location pre-
diction, the model allows us to study Twitter users’ drinking
behavior from several community or ecological viewpoints
built from the fine-grained location information extracted.

Models that permit the fine-grained study of alcohol con-
sumption in social media can reveal important real-time in-
formation about users and the influences they have on each
other. We can begin to evaluate the merits of these data for
public health research. Such analyses can teach us who is
and isn’t referencing alcohol on Twitter, and in what set-
tings, to evaluate the degree of self-reporting biases, and also
help to create a tool for improving a community’s health,
given social networks can become a resource to spread pos-
itive health behaviour. For instance, the peer social network
“Alcoholics Anonymous”5 is designed to develop social net-
work connections to encourage abstinence among the mem-
bers and establish helpful ties.

5http://www.aa.org/

http://cartodb.com/
lamp.sla.ny.gov/
http://www.aa.org/


Figure 7: Histogram of distances from home for tweets sent while the user was drinking.

Although we apply home localization to describe a geo-
graphical community portrait of drinking referencing pat-
terns among its social media users, since people spend a
large portion of their time at home, our model enables a wide
range of applications that were previously impractical. For
instance, we can analyze human mobility patterns; we can
study the relationship between demographics, neighborhood
structure and health conditions in different zip codes, thus
understanding many aspects of urban life and environments.
Research in these areas and alcohol consumption is mainly
based on surveys and census, which are costly and often in-
cur a delay that hamper real-time analysis and response. Our
results demonstrate that tweets can provide powerful and
fine-grained cues of activities going on in cities.

While Twitter use is ubiquitous, its users are not a rep-
resentative sample of the general population; it is known to
include more young and minority users (Smith 2011). Bias,
however, is a problem in any sampling method. For exam-
ple, surveys under-represent the segment of the population
that is unwilling to respond to surveys, such as undocu-
mented immigrants. Statistics estimated from Twitter (or any
other source) can be adjusted to account for known biases
by weighting data appropriately. While addressing Twitter’s
bias is beyond the scope of this paper, our methods can per-
mit further work in this area by locating users in communi-
ties with fine-grained detail, meaning more fine-grained de-
mographic data becomes available for linkage. We also note
that the average sampling rate of US Census in each state is
about 3% (U.S. Census Bureau 2011), which is similar to the
percentage of users we covered out of all the Twitter users.

Our future work will perform a comprehensive study of
alcohol consumption in social media around features such
as user demographics, settings people go to drink-and-tweet
(e.g., friends’ house, stadium, park), etc. We can explore the
social network of drinkers to find out how social interactions
and peer pressure in social media influence the tendency
to reference drinking. Another interesting study is to com-
pare the rate of in-flow and out-flow of drinkers in adjacent
neighborhoods. All these analyses will help us understand

the merits of these methods for analyzing drinking behav-
ior, via social media, at a large-scale with very little cost,
which can lead to new ways of reducing alcohol consump-
tion, a global public health concern. Finally, our models are
broadly applicable to various latent activities and make way
for future work in many other domains.
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