
Operating Systems 12/5/2013

CSC 256/456 – Fall 2010 1

12/2/2013 CSC 2/456 1

Virtual Machines

CS 256/456

Dept. of Computer Science, University
of Rochester

(slides developed by Brandon Shroyer,
Sandhya Dwarkadas)

Virtualization

• Virtualization: Providing an interface to software
that maps to some underlying system.

– A one-to-one mapping between a guest and
the host on which it runs [9, 10].

• Virtualized system should be an “efficient,
isolated duplicate” [8] of the real one.

• Process virtual machine just supports a process;
system virtual machine supports an entire
system.

Why Virtualize?

• Reasons for Virtualization

– Hardware Economy

– Versatility

– Environment Specialization

– Security

– Safe Kernel Development

– OS Research [12]

A Taxonomy of Virtual Machine

Architectures

12/3/2013 CSC 2/456 4

Operating Systems 12/5/2013

CSC 256/456 – Fall 2010 2

History

• VM/370

– Developed by IBM for OS/360 in the 1970s.

– Introduced timesharing.

– Provided multiprogramming and an extended

machine with a more convenient interface than bare
hardware.

Virtualization Lay er

Process Virtualization

• VM interfaces with
single process

• Application sees
“virtual machine” as

address space,
registers, and
instruction set [10].

• Examples:

– Multiprogramming

– Emulation for binaries

– High-level language
VMMs (e.g., JVM)

Hardware

OS

Application

12/5/2013 CSC 2/456 7

System Virtual Machines

Non-VM Support Native VM Support

hardware

OS

user
programs

hardware

VM monitor

user
programs

OS OS OS

user
programs

user
programs

Hosted VM Support

hardware

native OS

user
programs
on native

OS OS

user
programs

VMM

OS sees VM as an actual machine – raw hardware – CPU, memory, I/O

Emulation

• Providing an interface to a system so that it can run on a

system with a different interface [10].

– Lets compiled binaries, OSes run on architectures
with different ISA (binary translation)

– Performance usually worse than classic virtualization.

• Example: QEMU [11]

– Breaks CPU instructions into small ops, coded in C.

– C code is compiled into small objects on native ISA.

– dyngen utility runs code by dynamically stitching

objects together (dynamic code generation).

Operating Systems 12/5/2013

CSC 256/456 – Fall 2010 3

OS Virtualization: Some

Important Terms

• Virtual Machine (VM): An instance of of an
operating system running on a virtualized system.
Also known as a virtual or guest OS.

• hypervisor: The underlying virtualization system
sitting between the guest OSes and the hardware.
Also known as a Virtual Machine Monitor (VMM).

– The analogous construct in process
virtualization is the runtime (the JVM, for
instance).

• Hypervisor exists as a
layer between the
operating systems and
the hardware.

• Performs memory
management and
scheduling required to
coordinate multiple
operating systems.

• May also have a separate
controlling interface.

Guest OS Model

Hardware

Hy perv isor (Host)

Guest OS Guest OS Guest OS

Apps Apps Apps

12/3/2013 CSC 2/456 11

Virtualization Approach – Direct
Execution

• Directly executing VM code to attain high speed

• CPU virtualization

– VM monitor catches timer interrupts and switches
VM if necessary

• I/O access virtualization

– cause a trap to VM monitor, which processes
appropriately

– extra overhead is not too bad

• Memory virtualization

– a trap at each memory access is not a very good idea

– How?

System VMs – Processors

• Instruction execution can be through
interpretation or binary translation. Can also use

direct native execution (only if ISAs are identical)

• Must address issue of “sensitive” and

“privileged” instruction references

Operating Systems 12/5/2013

CSC 256/456 – Fall 2010 4

Trap and Emulate Basics [8]

• User and superuser modes in [8] roughly correspond to guest OS
& VMM modes

– Analogous to user and kernel modes

• Trap: To switch to VMM mode

• Sensitive Instruction: Instruction that must be executed in
superuser (VMM) mode

– Instructions that manage system resources or switch modes
are sensitive

– Instructions affected by location in memory are also sensitive

• Privileged Instruction: Any instruction which traps when executed
in user (OS) mode.

– Instructions that update memory are privileged, also sensitive

• All sensitive instructions must be privileged instructions [8]

Performance

• Modern VMMs based around
trap-and-emulate [8].

• When a guest OS executes a
privileged instruction, control is
passed to VMM (VMM “traps”
on instruction), which decides
how to handle instruction [8].

• VMM generates instructions to
handle trapped instruction
(emulation).

• Non-privileged instructions do
not trap (system stays in guest
context).

CPU_INST

TRAP

CPU_INST1

EXEC

CPU_INST

Guest OS

VMM

Challenges – Instruction

Architecture

• “Sensitive” – May only be executed in kernel
mode

• “Privileged” – Cause a trap if executed in user
mode

– “Trap” – Switch to kernel mode for execution.

• For a system to be virtualizable, the sensitive
instructions must be a subset of the privileged
instructions (Popek and Goldberg, 1974)

• Historically, not all ISAs provided this guarantee

Trap-and-Emulate Problems

• Trap-and-emulate is expensive

– Requires context-switch from guest OS mode to
VMM.

• x86 is not trap-friendly

– Guest’s CPL privilege level is visible in hardware
registers; cannot change it in a way that the guest OS
cannot detect [5].

– Some instructions are not privileged, but access
privileged systems

• Example: instructions that access page tables do not require
0-level CPL privilege, but anything that affects the MMU does
[5].

– A read is f air game for the user, but if it causes a page fault, a new
page has to be f etched by the MMU

Operating Systems 12/5/2013

CSC 256/456 – Fall 2010 5

Virtualizing Privileged

Instructions
• x86 architecture has four

privilege levels (rings).

• The OS assumes it will
be executing in Ring 0.

• Many system calls

require 0-level privileges

to execute.

• Any virtualization strategy

must find a way to

circumvent this.

Image Source: VMWare White Paper, “Understanding Full Virtualization, Paravirtualization, and Hardware Assist”,
2007.

ISA Challenge: Potential Solution

• Paravirtualization

– Remove (some or all) sensitive instructions from the

guest OS and replace them with hypervisor calls

– The VMM basically acts as a microkernel by

emulating guest OS system calls

Paravirtualization

• Replace certain
unvirtualized sections of
OS code with
virtualization-friendly
code.

• Virtual architecture
“similar but not identical
to the underlying
architecture.” [3]

• Advantages: easier, lower
virtualization overhead

• Disadvantages: requires
modifications to guest OS

Image Source: VMWare White Paper, “Understanding Full Virtualization, Paravirtualization, and Hardware Assist”,
2007.

Full Virtualization

• “Hardware is functionally
identical to underlying
architecture.” [3]

• Typically accomplished
through interpretation or
binary translation.

• Advantage: Guest OS
will run without any
changes to source code.

• Disadvantage: Complex,
usually slower than
paravirtualization.

Image Source: VMWare White Paper, “Understanding Full Virtualization, Paravirtualization, and Hardware Assist”,
2007.

Operating Systems 12/5/2013

CSC 256/456 – Fall 2010 6

ISA Challenge: Potential Solution

• Architecture design can limit potential for
virtualizability

– Some ISAs have instructions that can read
sensitive information without trapping (Ex:

Pentium)

• Solution: Design from the start with virtualization
in mind

– Ex: Intel Core 2 Duo (VT) and AMD Pacific
(SVM)

Hardware-Assisted Virtualization

• Hardware virtualization-assist released in 2006 [5].

– Intel, AMD both have technologies of this type.

• Introduces new VMX runtime mode.
– Two modes: guest (for OS) and root (for VMM).

– Each mode has all four CPL privilege levels
available [8].

– Switching from guest to VMM does not require
changes in privilege level.

– Root mode supports special VMX instructions.
– Virtual machine control block [5] contains control

flags and state information for active guest OS.

– New CPU instructions for entering and exiting VMM
mode.

• Does not support I/O virtualization.

Virtualizing Memory

• Virtualization softw are must f ind a w ay to handle paging
requests of operating systems, keeping each set of pages
separate.

• Memory virtualization must not impose too much overhead,
or performance and scalability w ill be impaired.

• Guest OS must each have an address space, be convinced
that it has access to the entire address space.

• SOLUTION: most modern VMMs add an additional layer of
abstraction in address space [4].

– Machine Address—bare hardw are address.

– Physical Address—VMM abstraction of machine
address, used by guest Oses.

– Guest maintains virtual-to-physical page tables.

– VMM maintains pmap structure containing physical-to-
machine page mappings.

System VMs – Memory

• Example: VMware’s ESX Server

Operating Systems 12/5/2013

CSC 256/456 – Fall 2010 7

12/5/2013 CSC 2/456 25

Memory Virtualization Under Direct
Execution (protected page table)

• From the VM OS’s view, the page table contains mapping
from virtual to VM physical addresses

• For proper operation, the page table hooked up with MMU
must map virtual to real machine addresses

• VM OS cannot directly access the page table

– each page table read is trapped by VM monitor, the
physical address field is translated (from real machine
address to VM physical address)

– each page table write is also trapped, for a reverse
translation and for security checking

12/5/2013 CSC 2/456 26

Memory Virtualization Under Direct
Execution (shadow page table)

• VM OS maintains virtual to VM physical (V2P) page table

• VM monitor

– maintains a VM physical to machine (P2M) mapping
table

– combines V2P and P2M table into a virtual to machine
mapping table (V2M)

– supplies the V2M table to the MMU hardware

• Page table updates

– any VM change on its V2P page table must be trapped
by VM monitor

– VM monitor modifies V2M table appropriately

System VMs – I/O

• Challenging for VMM, but can adapt techniques
from time-sharing of I/O devices on typical

systems

• Create a virtualized version of system devices.

VMM intercepts request by guest VM and
converts the request to equivalent physical
device request

System VMs – I/O

• The VMM can catch and virtualize the I/O action
at three levels:

– I/O operation level

– device driver level

– system call level

• Virtualizing at the device driver level is most
practical

Operating Systems 12/5/2013

CSC 256/456 – Fall 2010 8

I/O Virtualization

• Performance is critical for

virtualized I/O

– Many I/O devices are time-

sensitive or require low

latency [7].

• Most common method:

device emulation

– VMM presents guest OS

with a virtual device [7].

– Preserves security,

handles concurrency, but

imposes more overhead.

Guest OS

Guest

Driv er

VMM

Virtual

Dev ice

Virtual

Driv er

Phy sical Dev ice

I/O Virtualization Problems

• Multiplexing

– How to share hardware access among
multiple OSes.

• Switching Expense

– Low-level I/O functionality happens at the
VMM level, requiring a context switch.

Packet Queuing

• Both major VMMs use an

asynchronous ring buffer

to store I/O descriptors.

• Batches I/O operations to

minimize cost of world

switches [7].

• Sends and receives exist

in same buffer.

• If buffer fills up, an exit is

triggered [7].

Image Source: Barham, P. et al. “Xen and the Art of Virtualization”, SOSP 2003.

I/O Rings, continued

Xen

• Rings contain memory
descriptors pointing to I/O
buffer regions declared in
guest address space.

• Guest and VMM deposit
and remove messages

using a producer-consumer
model [2].

• Xen 3.0 places device
drivers on their ow n virtual
domains, minimizing the
effect of driver crashes.

VMWare

• Ring buffer is constructed

in and managed by VMM.

• If VMM detects a great
deal of entries and exits,

it starts queuing I/O

requests in ring buffer [7].

• Next interrupt triggers

transmission of
accumulated messages.

Operating Systems 12/5/2013

CSC 256/456 – Fall 2010 9

References
1. Singh, A. “An Introduction To Virtualization”, www.kernelthread.com,

2004.

2. VMWare White Paper, “Understanding Full Virtualization,
Paravirtualization, and Hardware Assist”, 2007.

3. Barham, P. et al. “Xen and the Art of Virtualization”, SOSP 2003.

4. Waldspurger, C. “Memory Resource Management in VMware ESX
Server”, OSDI 2002.

5. Adams, K. and Agesen, O. “A Comparison of Software and Hardware
Techniques for x86 Virtualization”, ASPLOS 2006.

6. Pratt, I. et al. “Xen 3.0 and the Art of Virtualization”, Linux Symposium
2005.

7. Sugerman, J. et al. “Virtualizing I/O Devices on Vmware
Workstation’s Hosted Virtual Machine Monitor”, Usenix, 2001.

8. Popek, G. and Goldberg, R. “Formal Requirements for Virtualizable
Third-Generation Architectures”, Communications of the ACM, 1974.

9. Mahalingam, M. “I/O Architectures for Virtualization”, VMWorld, 2006.

10. Smith, J. and Nair, R. Virtual Machines, Morgan Kaufmann, 2005.

11. Bellard, F. “QEMU, a Fast and Portable Translator”, USENIX 2005.

12. Silberschatz, A., Galvin, P., Gagne, G. Operating System Concepts,
Eighth Edition. Wiley & Sons, 2009.

Sources

• “Modern Operating Systems,” Tanenbaum
– Chapters 1, 8

• “Virtual Machines,” Smith and Nair
– Chapters 1, 2, 3, 8

• VMware Resource Management Guide
– http://pubs.vmware.com/vi301/resmgmt/wwhelp/wwhimpl

/common/html/wwhelp.htm?context=resmgmt&file=vc_ad

vanced_mgmt.11.16.html

• “Survey of Virtual Machine Research,” Robert P.

Goldberg, 1974.

http://www.kernelthread.com

