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Virtualization 

• Virtualization:  Providing an interface to software 
that maps to some underlying system. 

– A one-to-one mapping between a guest and 
the host on which it runs [9, 10]. 

• Virtualized system should be an “efficient, 
isolated duplicate” [8] of the real one. 

• Process virtual machine just supports a process; 
system virtual machine supports an entire 
system. 

Why Virtualize? 

• Reasons for Virtualization 

– Hardware Economy 

– Versatility 

– Environment Specialization 

– Security 

– Safe Kernel Development 

– OS Research [12] 

A Taxonomy of Virtual Machine 

Architectures 
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History 

• VM/370 

– Developed by IBM for OS/360 in the 1970s. 

– Introduced timesharing. 

– Provided multiprogramming and an extended 

machine with a more convenient interface than bare 
hardware. 

Virtualization Lay er 

Process Virtualization 

• VM interfaces with 
single process 

• Application sees 
“virtual machine” as 

address space, 
registers, and 
instruction set [10]. 

• Examples: 

– Multiprogramming 

– Emulation for binaries 

– High-level language 
VMMs (e.g., JVM) 

 

 

 

Hardware 

OS 

Application 
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System Virtual Machines 
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VMM 

OS sees VM as an actual machine – raw hardware – CPU, memory, I/O 

Emulation 

• Providing an interface to a system so that it can run on a 

system with a different interface [10]. 

– Lets compiled binaries, OSes run on architectures 
with different ISA (binary translation) 

– Performance usually worse than classic virtualization. 

• Example:  QEMU [11] 

– Breaks CPU instructions into small ops, coded in C. 

– C code is compiled into small objects on native ISA. 

– dyngen utility runs code by dynamically stitching 

objects together (dynamic code generation). 
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OS Virtualization: Some 

Important Terms 

• Virtual Machine (VM):  An instance of of an 
operating system running on a virtualized system.  
Also known as a virtual or guest OS. 

 

• hypervisor:  The underlying virtualization system 
sitting between the guest OSes and the hardware.  
Also known as a Virtual Machine Monitor (VMM). 

– The analogous construct in process 
virtualization is the runtime (the JVM, for 
instance). 

• Hypervisor exists as a 
layer between the 
operating systems and 
the hardware. 
 

• Performs memory 
management and 
scheduling required to 
coordinate multiple 
operating systems. 
 

• May also have a separate 
controlling interface. 

Guest OS Model 

Hardware 

Hy perv isor (Host) 

Guest OS Guest OS Guest OS 

Apps Apps Apps 
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Virtualization Approach – Direct 
Execution 

• Directly executing VM code to attain high speed 

 
• CPU virtualization 

– VM monitor catches timer interrupts and switches 
VM if necessary 
 

• I/O access virtualization 

– cause a trap to VM monitor, which processes 
appropriately 

– extra overhead is not too bad 
 

• Memory virtualization 

– a trap at each memory access is not a very good idea 

– How? 

System VMs – Processors  

• Instruction execution can be through 
interpretation or binary translation.  Can also use 

direct native execution (only if ISAs are identical)   

• Must address issue of “sensitive” and 

“privileged” instruction references 
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Trap and Emulate Basics [8] 

• User and superuser modes in [8] roughly correspond to guest OS 
& VMM modes 

– Analogous to user and kernel modes 

• Trap:  To switch to VMM mode 

• Sensitive Instruction:  Instruction that must be executed in 
superuser (VMM) mode 

– Instructions that manage system resources or switch modes 
are sensitive 

– Instructions affected by location in memory are also sensitive 

• Privileged Instruction:  Any instruction which traps when executed 
in user (OS) mode. 

– Instructions that update memory are privileged, also sensitive 

 

• All sensitive instructions must be privileged instructions [8] 

Performance 

• Modern VMMs based around 
trap-and-emulate [8]. 

• When a guest OS executes a 
privileged instruction, control is 
passed to VMM (VMM “traps” 
on instruction), which decides 
how to handle instruction [8]. 

• VMM generates instructions to 
handle trapped instruction 
(emulation). 

• Non-privileged instructions do 
not trap (system stays in guest 
context). 

CPU_INST 

TRAP 

CPU_INST1 

EXEC 

CPU_INST 

Guest OS 

VMM 

Challenges – Instruction 

Architecture 

• “Sensitive” – May only be executed in kernel 
mode  

• “Privileged” – Cause a trap if executed in user 
mode 

– “Trap” – Switch to kernel mode for execution.   

• For a system to be virtualizable, the sensitive 
instructions must be a subset of the privileged 
instructions  (Popek and Goldberg, 1974) 

• Historically, not all ISAs provided this guarantee 

Trap-and-Emulate Problems 

• Trap-and-emulate is expensive 

– Requires context-switch from guest OS mode to 
VMM. 

• x86 is not trap-friendly 

– Guest’s CPL privilege level is visible in hardware 
registers; cannot change it in a way that the guest OS 
cannot detect [5]. 

– Some instructions are not privileged, but access 
privileged systems 

• Example: instructions that access page tables do not require 
0-level CPL privilege, but anything that affects the MMU does 
[5]. 

– A read is f air game for the user, but if it causes a page fault, a new 
page has to be f etched by the MMU 
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Virtualizing Privileged 

Instructions 
• x86 architecture has four 

privilege levels (rings). 

• The OS assumes it will 
be executing in Ring 0. 

• Many system calls 

require 0-level privileges 

to execute. 

• Any virtualization strategy 

must find a way to 

circumvent this. 

Image Source: VMWare White Paper, “Understanding Full Virtualization, Paravirtualization, and Hardware Assist”, 
2007. 

ISA Challenge: Potential Solution

  

• Paravirtualization 

– Remove (some or all) sensitive instructions from the 

guest OS and replace them with hypervisor calls  

– The VMM basically acts as a microkernel by 

emulating guest OS system calls  

Paravirtualization 

• Replace certain 
unvirtualized sections of 
OS code with  
virtualization-friendly 
code. 

• Virtual architecture 
“similar but not identical 
to the underlying 
architecture.” [3]  

• Advantages: easier, lower 
virtualization overhead 

• Disadvantages: requires 
modifications to guest OS 

Image Source: VMWare White Paper, “Understanding Full Virtualization, Paravirtualization, and Hardware Assist”, 
2007. 

Full Virtualization 

• “Hardware is functionally 
identical to underlying 
architecture.” [3] 

• Typically accomplished 
through interpretation or 
binary translation. 

• Advantage:  Guest OS 
will run without any 
changes to source code. 

• Disadvantage:  Complex, 
usually slower than 
paravirtualization. 

Image Source: VMWare White Paper, “Understanding Full Virtualization, Paravirtualization, and Hardware Assist”, 
2007. 
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ISA Challenge: Potential Solution

  

• Architecture design can limit potential for 
virtualizability   

– Some ISAs have instructions that can read 
sensitive information without trapping  (Ex: 

Pentium) 

• Solution: Design from the start with virtualization 
in mind 

– Ex: Intel Core 2 Duo (VT) and AMD Pacific 
(SVM) 

Hardware-Assisted Virtualization 

• Hardware virtualization-assist released in 2006 [5]. 

– Intel, AMD both have technologies of this type. 

• Introduces new VMX runtime mode. 
– Two modes: guest (for OS) and root (for VMM). 

– Each mode has all four CPL privilege levels 
available [8]. 

– Switching from guest to VMM does not require 
changes in privilege level. 

– Root mode supports special VMX instructions. 
– Virtual machine control block [5] contains control 

flags and state information for active guest OS. 

– New CPU instructions for entering and exiting VMM 
mode. 

• Does not support I/O virtualization. 

Virtualizing Memory 

• Virtualization softw are must f ind a w ay to handle paging 
requests of operating systems, keeping each set of pages 
separate. 

• Memory virtualization must not impose too much overhead, 
or performance and scalability w ill be impaired. 

• Guest OS must each have an address space, be convinced 
that it has access to the entire address space. 

• SOLUTION: most modern VMMs add an additional layer of 
abstraction in address space [4]. 

– Machine Address—bare hardw are address. 

– Physical Address—VMM abstraction of machine 
address, used by guest Oses. 

– Guest maintains virtual-to-physical page tables. 

– VMM maintains pmap structure containing physical-to-
machine page mappings. 

 

System VMs – Memory  

• Example: VMware’s ESX Server 
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Memory Virtualization Under Direct 
Execution (protected page table) 

• From the VM OS’s view, the page table contains mapping 
from virtual to VM physical addresses 

• For proper operation, the page table hooked up with MMU 
must map virtual to real machine addresses 
 

• VM OS cannot directly access the page table 

– each page table read is trapped by VM monitor, the 
physical address field is translated (from real machine 
address to VM physical address) 

– each page table write is also trapped, for a reverse 
translation and for security checking 
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Memory Virtualization Under Direct 
Execution (shadow page table) 

• VM OS maintains virtual to VM physical (V2P) page table 
 

• VM monitor  

– maintains a VM physical to machine (P2M) mapping 
table 

– combines V2P and P2M table into a virtual to machine 
mapping table (V2M) 

– supplies the V2M table to the MMU hardware 
 

• Page table updates 

– any VM change on its V2P page table must be trapped 
by VM monitor 

– VM monitor modifies V2M table appropriately 

System VMs – I/O 

• Challenging for VMM, but can adapt techniques 
from time-sharing of I/O devices on typical 

systems  

• Create a virtualized version of system devices.  

VMM intercepts request by guest VM and 
converts the request to equivalent physical 
device request  

 

System VMs – I/O 

• The VMM can catch and virtualize the I/O action 
at three levels: 

– I/O operation level 

– device driver level 

– system call level 

• Virtualizing at the device driver level is most 
practical 
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I/O Virtualization 

• Performance is critical for 

virtualized I/O 

– Many I/O devices are time-

sensitive or require low 

latency [7]. 

• Most common method: 

device emulation 

– VMM presents guest OS 

with a virtual device [7]. 

– Preserves security, 

handles concurrency, but 

imposes more overhead. 

Guest OS 

Guest 

Driv er 

VMM 

Virtual 

Dev ice 

Virtual 

Driv er 

Phy sical Dev ice 

I/O Virtualization Problems 

• Multiplexing 

– How to share hardware access among 
multiple OSes. 

 

• Switching Expense 

– Low-level I/O functionality happens at the 
VMM level, requiring a context switch. 

Packet Queuing 

• Both major VMMs use an 

asynchronous ring buffer 

to store I/O descriptors. 

• Batches I/O operations to 

minimize cost of world 

switches [7]. 

• Sends and receives exist 

in same buffer. 

• If buffer fills up, an exit is 

triggered [7]. 

Image Source:  Barham, P. et al. “Xen and the Art of Virtualization”, SOSP 2003.  

I/O Rings, continued 

Xen 

• Rings contain memory 
descriptors pointing to I/O 
buffer regions declared in 
guest address space. 

• Guest and VMM deposit 
and remove messages 

using a producer-consumer 
model [2]. 

• Xen 3.0 places device 
drivers on their ow n virtual 
domains, minimizing the 
effect of driver crashes. 

VMWare 

• Ring buffer is constructed 

in and managed by VMM. 

• If VMM detects a great 
deal of entries and exits, 

it starts queuing I/O 

requests in ring buffer [7]. 

• Next interrupt triggers 

transmission of 
accumulated messages. 
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