
Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 1

9/3/2009 CSC 2/456 1

Computer System OrganizationComputer System Organization

CS 256/456
Dept. of Computer Science

University of Rochester

9/3/2009 CSC 2/456 2

What is an Operating System?What is an Operating System?

• Software that abstracts the computer hardware
– Hides the messy details of the underlying hardware
– Presents users with a resource abstraction that is

easy to use
– Extends or virtualizes the underlying machine

• Manages the resources
– Processors, memory, timers, disks, mice, network

interfaces, printers, displays, …
– Allows multiple users and programs to share the

resources and coordinates the sharing, provides
protection

9/3/2009 CSC 2/456 3

Operating Systems ConceptsOperating Systems Concepts

• Processes
• Memory management
• File systems
• Device management
• Security/protection

9/3/2009 CSC 2/456 4

Resource AbstractionResource Abstraction
load(block, length, device);
seek(device, track);
out(device, sector)

write(char *block, int len, int device,
int track, int sector) {

...
load(block, length, device);
seek(device, track);
out(device, sector);
...

}

write(char *block, int len, int device,int addr);

fprintf(fileID, “%d”, datum);

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 2

9/3/2009 CSC 2/456 5

Disk AbstractionsDisk Abstractions

load(…);
seek(…);
out(…);

void write() {
load(…);
seek(…)
out(…)

}

int fprintf(…) {
...
write(…)
…

}

(a) Direct Control (b) write()
abstraction

(c) fprintf()
abstraction

Application
Programmer

OS Programmer

9/3/2009 CSC 2/456 6

Under the AbstractionUnder the Abstraction

• functional complexity

• a single abstraction over multiple devices

• replication → reliability

9/3/2009 CSC 2/456 7

Resource SharingResource Sharing
…Program Pi

OS Resource Sharing

Pi MemoryPi Memory

Pk MemoryPk Memory

Pj MemoryPj Memory

…
Time-multiplexed
Physical Processor

Program Pj Program Pk

Space-multiplexed
Physical Memory

Extended machine interface (resource abstraction)Extended machine interface (resource abstraction)

9/3/2009 CSC 2/456 8

Objectives of Resource SharingObjectives of Resource Sharing

• Efficiency

• Fairness

• Security/protection

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 3

9/3/2009 CSC 2/456 9

ComputerComputer--System ArchitectureSystem Architecture

9/3/2009 CSC 2/456 10

The DeviceThe Device--ControllerController--Software RelationshipSoftware Relationship
Application

Program

Device ControllerDevice Controller

DeviceDevice

So
ftw

ar
e

in
 th

e
m

ac
hi

ne

Device driver

Device driver
• Software Program to manage device

controller
• System software (part of OS)

High-level OS
software

Device controller
• Contains control logic, command

registers, status registers, and on-
board buffer space

• Firmware/hardware

9/3/2009 CSC 2/456 11

I/O OperationsI/O Operations
• How is I/O done?

– I/O devices are much slower than CPU

• Synchronous (polling)
– After I/O starts, busy-wait while polling the device status register

until it shows the operation completes

• Asynchronous (interrupt-driven)
– After I/O starts, control returns to the user program without

waiting for I/O completion
– Device controller later informs CPU that it has finished its

operation by causing an interrupt
– When an interrupt occurs, current execution is put on hold; the CPU

jumps to a service routine called an “interrupt handler”

9/3/2009 CSC 2/456 12

System ProtectionSystem Protection
• User programs (programs not belonging to the OS) are generally not

trusted
– A user program may use an unfair amount of resource
– A user program may maliciously cause other programs or the OS to

fail
• Need protection against untrusted user programs; the system must

differentiate between at least two modes of operations
1. User mode – execution of user programs

o untrusted
o not allowed to have complete/direct access to hardware resources

2. Kernel mode (also system mode or monitor mode) – execution of the
operating system

o trusted
o allowed to have complete/direct access to hardware resources

o Hardware support is needed for such protection

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 4

9/3/2009 CSC 2/456 13

Transition between User/Kernel ModeTransition between User/Kernel Mode
• When does the machine run in kernel mode?

– after machine boot
– interrupt handler
– system call
– exception

Kernel User

Interrupt/syscall/exception

To user mode

Bootstrap

9/3/2009 CSC 2/456 14

Memory ProtectionMemory Protection
• Goal of memory protection?

– A user program can’t use arbitrary amount of memory
– A user program can’t access data belonging to the

operating system or other user programs

• How to achieve memory protection?
– Indirect memory access

• Memory access with a virtual address which needs to be
translated into physical address

– Add two registers that determine the range of legal
addresses a program may access:

• Base register – holds the smallest legal physical memory address
• Limit register – contains the size of the range
• Memory outside the defined range is protected

9/3/2009 CSC 2/456 15

Hardware Address ProtectionHardware Address Protection

OS kernel

program 4

program 3

program 2

program 1

300040

120900

base register

limit register

0

256000

300040

420940

880000

1024000

• Address of each
memory address is
checked against
“base” and
“base+limit”

• Trap to the OS
kernel if it falls
outside of the
range (an
exception)

9/3/2009 CSC 2/456 16

Protection of I/O DevicesProtection of I/O Devices
• User programs are not allowed to directly access I/O

devices
– Special I/O instructions can only be used in kernel

mode
– Controller registers can only be accessed in kernel

mode

• So device drivers, I/O interrupt handlers must run in
kernel mode

• User programs perform I/O through requesting the OS
(using system calls)

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 5

9/3/2009 CSC 2/456 17

System Call Using the System Call Using the TrapTrap InstructionInstruction
…
read();
…

read() {
…
trap N_SYS_READ()
…
}

sys_read()

sys_read() {
/* system function */
…
return;

}

KernelTrap Table

User program

9/3/2009 CSC 2/456 18

CPU ProtectionCPU Protection
• Goal of CPU protection

– A user program can’t hold the CPU for ever

• Timer – interrupts computer after specified period to ensure
the OS kernel maintains control
– Timer is decremented every clock tick
– When timer reaches the value 0, an interrupt occurs
– CPU time sharing is implemented in the timer interrupt

9/3/2009 CSC 2/456 19

Operation System OrganizationOperation System Organization

• System Components
– process management
– memory management
– I/O system
– file and storage
– networking, …

• Operating System Architectures
– monolithic architecture
– microkernel architecture
– layered architecture
– virtual machines

9/3/2009 CSC 2/456 20

Process ManagementProcess Management
• A process is a program in execution

– Unit of work – A process needs certain resources,
including CPU time, memory, files, and I/O devices, to
accomplish its task

– Protection domain

• OS responsibilities for process management:
– Process creation and deletion
– Process scheduling, suspension, and resumption
– Process synchronization, inter-process communication

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 6

9/3/2009 CSC 2/456 21

Memory ManagementMemory Management
• Memory

– A large array of addressable words or bytes.
– A data repository shared by the CPU and I/O

devices.

• OS responsibility for memory management:
– Allocate and deallocate memory space as requested
– Efficient utilization when the memory resource is

heavily contended
– Keep track of which parts of memory are currently

being used and by whom

9/3/2009 CSC 2/456 22

I/O System ManagementI/O System Management
• A computer needs I/O to interact with the outside world:

– Console/terminal
– Non-volatile secondary storage – disks
– Networking

• The I/O system consists of:
– A buffer-caching system
– A general device-driver interface
– Drivers for specific hardware devices

9/3/2009 CSC 2/456 23

File and Secondary Storage File and Secondary Storage
ManagementManagement

• A file is a collection of information defined by its user.
Commonly, both programs and data are stored as files

• OS responsibility for file management:
– Manipulation of files and directories
– Map files onto (nonvolatile) secondary storage - disks

• OS responsibility for disk management:
– Free space management and storage allocation
– Disk scheduling

• They are not all always together
– Not all files are mapped to secondary storage!
– Not all disk space is used for the file system!

9/3/2009 CSC 2/456 24

Networking and CommunicationNetworking and Communication
• A distributed system

– A collection of processors that do not share
memory

– Processors are connected through a
communication network

– Communication takes place using a protocol
– OS provides communication end-points or

sockets
• Inter-process communication (msg, shm, sem)

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 7

9/3/2009 CSC 2/456 25

Application
Programs

Application
ProgramsLibrariesLibraries CommandsCommands

Device DriverDevice Driver

OS Architecture: Monolithic OS Architecture: Monolithic
StructureStructure

Interactive User

Application
Programs

Application
Programs

OS System Call Interface

Device DriverDevice Driver

Device DriverDevice Driver
D

riv
er

 In
te

rf
ac

e
D

riv
er

 In
te

rf
ac

e

…
Monolithic Kernel Module
•Process Management
•Memory Management
•File Management
•Device Mgmt Infrastructure

Trap Table

…

Most modern OSes fall into this category!
9/3/2009 CSC 2/456 26

Microkernel System Architecture Microkernel System Architecture
• Microkernel architecture:

– Moves as much from the kernel into “user” space (still
protected from normal users).

– Communication takes place between user modules using
message passing.

• What must be in the kernel and what can be in user space?
– Mechanisms determine how to do something.
– Policies decide what will be done.

• Benefits:
– More reliable (less code is running in kernel mode)
– More secure (less code is running in kernel mode)

• Disadvantage?

9/3/2009 CSC 2/456 27

Layered StructureLayered Structure
• Layered structure

– The operating system is divided into a number of layers (levels),
each built on top of lower layers.

– The bottom layer (layer 0), is the hardware.
– The highest (layer N) is the user interface.
– Decreased privileges for higher layers.

• Benefits:
– more reliable
– more secure
– more flexibility, easier to extend

• Disadvantage?
– Weak integration results in performance penalty (similar to the

microkernel structure).

9/3/2009 CSC 2/456 28

Virtual MachinesVirtual Machines
• Virtual machine architecture

– Virtualization: A piece of software that provides an interface identical
to the underlying bare hardware.

• the upper-layer software has the illusion of running directly on hardware
• the virtualization software is called virtual machine monitor

– Multiplexing: It may provide several virtualized machines on top of a
single piece of hardware.

• resources of physical computer are shared among the virtual machines
• each VM has the illusion of owning a complete machine

• Trust and privilege
– the VM monitor does not trust VMs
– only the VM monitor runs in full privilege

• Compared to an operating system
– VM monitor is a resource manager, but not an extended machine

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 8

9/3/2009 CSC 2/456 29

Virtual Machine ArchitectureVirtual Machine Architecture

Non-VM Native VM

hardware

OS

user
programs

hardware

VM monitor

user
programs

OS OS OS

user
programs

user
programs

Hosted VM

hardware

native OS

user
programs
on native

OS OS

user
programs

VMM

9/3/2009 CSC 2/456 30

System BootSystem Boot

• How does the hardware know where the kernel
is or how to load that kernel?
– Use a bootstrap program or loader
– Execution starts at a predefined memory

location in ROM (read-only memory)
– Read a single block at a fixed location on disk

and execute the code from that boot block
– Easily change operating system image by

writing new versions to disk

9/3/2009 CSC 2/456 31

User OperatingUser Operating--System InterfaceSystem Interface

• Command interpreter – special program initiated
when a user first logs on

• Graphical user interface
– Common desktop environment (CDE)
– K desktop environment (KDE)
– GNOME desktop (GNOME)
– Aqua (MacOS X)

9/3/2009 CSC 2/456 32

System Calls and System Calls and
Interfaces/AbstractionsInterfaces/Abstractions

• Examples: Win32, POSIX, or Java APIs
• Process management

– fork, waitpid, execve, exit, kill
• File management

– open, close, read, write, lseek
• Directory and file system management

– mkdir, rmdir, link, unlink, mount, umount
• Inter-process communication

– sockets, ipc (msg, shm, sem)

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 9

9/3/2009 CSC 2/456 33

Process and Its ImageProcess and Its Image
• An operating system executes a variety of programs:

– A program that browses the Web
– A program that serves Web requests

• Process – a program in execution.

• A process’s state/image in a computer includes:
– User-mode address space
– Kernel data structure
– Registers (including program counter and stack pointer)

• Address space and memory protection
– Physical memory is divided into user memory and kernel memory
– Kernel memory can only be accessed when in the kernel mode
– Each process has its own exclusive address space in the user-

mode memory space (sort-of)

9/3/2009 CSC 2/456 34

UserUser--mode Address Spacemode Address Space
User-mode address space for a

process:
• Text: program code, instructions
• Data: initialized global and static

variables (those data whose size is
known before the execution)

• BSS (block started by symbol):
uninitialized global and static
variables

• Heap: dynamic memory (those being
malloc-ed)

• Stack: local variables and other
stuff for function invocations

Text

Data

Heap

Stack

0

0xffffffff

BSS

9/3/2009 CSC 2/456 35

Process Control Block (PCB)Process Control Block (PCB)
OS data structure (in kernel

memory) maintaining information
associated with each process.

• Process state
• Program counter
• CPU registers
• CPU scheduling information
• Memory-management information
• Accounting information
• Information about open files
• maybe kernel stack?

9/3/2009 CSC 2/456 36

Process CreationProcess Creation
• When a process (parent) creates a new process (child)

– Execution sequence?
– Address space sharing?
– Open files inheritance?
– … …

• UNIX examples
– fork system call creates new process with a duplicated

copy of everything.
– exec system call used after a fork to replace the

process’ memory space with a new program.
– child and parent compete for CPU like two normal

processes.

• Copy-on-write

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 10

9/3/2009 CSC 2/456 37

Context SwitchingContext Switching
• Processes are managed by a shared chunk of OS code

called the kernel
– Important: the kernel is not a separate process, but

rather runs as part of some user process
• Control flow passes from one process to another via a

context switch.
Process A

code
Process B

code
user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

9/3/2009 CSC 2/456 38

Private Address SpacesPrivate Address Spaces
• Each process has its own private address space.

kernel virtual memory
(code, data, heap, stack)

memory mapped region for
shared libraries

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from the
executable file

0xffffffff

9/3/2009 CSC 2/456 39

Simple Shell Simple Shell evaleval FunctionFunction
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else /* otherwise, don’t wait for bg job */

printf("%d %s", pid, cmdline);
}

} 9/3/2009 CSC 2/456 40

Problem with Simple Shell ExampleProblem with Simple Shell Example

• Shell correctly waits for and reaps foreground
jobs.

• But what about background jobs?
–Will become zombies when they terminate.
–Will never be reaped because shell (typically)

will not terminate.
–Creates a memory leak that will eventually

crash the kernel when it runs out of memory.
• Solution: Reaping background jobs requires a

mechanism called a signal.

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 11

9/3/2009 CSC 2/456 41

SignalsSignals
• A signal is a small message that notifies a process that an event of

some type has occurred in the system.
– Kernel abstraction for exceptions and interrupts.
– Sent from the kernel (sometimes at the request of another

process) to a process.
– Different signals are identified by small integer ID’s
– The only information in a signal is its ID and the fact that it

arrived.

Timer signalTerminateSIGALRM14
Segmentation violationTerminate & DumpSIGSEGV11

17

9
2

ID

Child stopped or terminatedIgnoreSIGCHLD

Kill program (cannot override or ignore)TerminateSIGKILL

Interrupt from keyboard (ctl-c)TerminateSIGINT

Corresponding EventDefault ActionName

9/3/2009 CSC 2/456 42

Signal Concepts Signal Concepts

• Sending a signal
– Kernel sends (delivers) a signal to a destination

process by updating some state in the context of the
destination process.

– Kernel sends a signal for one of the following
reasons:

• Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to
explicitly request the kernel to send a signal to the
destination process.

9/3/2009 CSC 2/456 43

Signal Concepts (cont)Signal Concepts (cont)

• Receiving a signal
– A destination process receives a signal when it is

forced by the kernel to react in some way to the
delivery of the signal.

– Three possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process.
• Catch the signal by executing a user-level function called a

signal handler.
– Akin to a hardware exception handler being called in response

to an asynchronous interrupt.

9/3/2009 CSC 2/456 44

Signal Concepts (cont)Signal Concepts (cont)
• A signal is pending if it has been sent but not yet received.

– There can be at most one pending signal of any
particular type.

– Important: Signals are not queued
• If a process has a pending signal of type k, then subsequent

signals of type k that are sent to that process are discarded.

• A process can block the receipt of certain signals.
– Blocked signals can be delivered, but will not be

received until the signal is unblocked.
• A pending signal is received at most once.

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 12

9/3/2009 CSC 2/456 45

Signal ConceptsSignal Concepts

• Kernel maintains pending and blocked bit vectors in
the context of each process.
– pending – represents the set of pending signals

• Kernel sets bit k in pending whenever a signal of type k is
delivered.

• Kernel clears bit k in pending whenever a signal of type k is
received

– blocked – represents the set of blocked signals
• Can be set and cleared by the application using the
sigprocmask function.

9/3/2009 CSC 2/456 46

Process GroupsProcess Groups
• Every process belongs to

exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

• getpgrp() – Return
process group of current
process

• setpgid() – Change
process group of a process

9/3/2009 CSC 2/456 47

Sending Signals with Sending Signals with killkill
ProgramProgram

• kill program sends
arbitrary signal to a
process or process
group

• Examples
– kill –9 24818

• Send SIGKILL to
process 24818

– kill –9 –24817
• Send SIGKILL to
every process in
process group
24817.

linux> ./forks 16
linux> Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

9/3/2009 CSC 2/456 48

Sending Signals from the KeyboardSending Signals from the Keyboard
• Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the

foreground process group.
– SIGTERM – default action is to terminate each process
– SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process
group 32

Background
process
group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Operating Systems 9/3/2009

CSC 256/456 - Spring 2007 13

9/3/2009 CSC 2/456 49

Receiving SignalsReceiving Signals

• Suppose kernel is returning from exception handler and is ready to
pass control to process p.

• Kernel computes pnb = pending & ~blocked
– The set of pending nonblocked signals for process p

• If (pnb == 0)
– Pass control to next instruction in the logical flow for p.

• Else
– Choose least nonzero bit k in pnb and force process p to

receive signal k.
– The receipt of the signal triggers some action by p
– Repeat for all nonzero k in pnb.
– Pass control to next instruction in logical flow for p.

9/3/2009 CSC 2/456 50

Default ActionsDefault Actions

• Each signal type has a predefined default
action, which is one of:
–The process terminates
–The process terminates and dumps core.
–The process stops until restarted by a

SIGCONT signal.
–The process ignores the signal.

9/3/2009 CSC 2/456 51

Installing Signal HandlersInstalling Signal Handlers
• The signal function modifies the default action associated with the

receipt of signal signum:
– handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
– SIG_IGN: ignore signals of type signum
– SIG_DFL: revert to the default action on receipt of signals of type
signum.

– Otherwise, handler is the address of a signal handler
• Called when process receives signal of type signum
• Referred to as “installing” the handler.
• Executing handler is called “catching” or “handling” the signal.
• When the handler executes its return statement, control passes back to

instruction in the control flow of the process that was interrupted by
receipt of the signal.

9/3/2009 CSC 2/456 52

DisclaimerDisclaimer

• Parts of the lecture slides contain original
work from Gary Nutt, Andrew S.
Tanenbaum, Dave O’Hallaron, Randal
Bryant, Abraham Silberschatz, Peter B.
Galvin, Greg Gagne, and Kai Shen. The
slides are intended for the sole purpose of
instruction of operating systems at the
University of Rochester. All copyrighted
materials belong to their original owner(s).

