Shared Memory: A Look
Underneath

procl proc2 proc3 procN

Physical Implementation

e

procl proc2 proc3 procN

Multicore Processors
Everywhere

s
Yy

=

The Multicore Trend ~ 7we

2010,
Sandybridge
quad-core

)

Prescott
Single-core

- 2012,
Xeon Phi
60-core

Tegrad
Quad-core

Haswell Xeon E5 2699 V3

2 sockets, 18 cores, 2 threads,
for a total of 72 hardware threads

http://cdna wecftech P 014/09/Xeon-E5-2600-V3-Die jpg

2.3-3.66 GHz, 145W, 45M L3 cache,

Haswell: Logical Blocks
14-18 Core (HCC)

f
+f
eE
E
i
e
]
¢

http://images.anandtech.com/doci/8730/1%20Die%20Config%2014-18C_678x452.png

Shared Memory Implementation

« Coherence - defines the behavior of reads and
writes to the same memory location

— ensuring that modifications made by a processor
propagate to all copies of the data

— Program order preserved
— Writes to the same location by different processors
serialized
+ Synchronization - coordination mechanism

» Consistency - defines the behavior of reads and
writes with respect to access to other memory
locations

— defines when and in what order modifications are
propagated to other processors

Coherence

A multiprocessor memory system is coherent if the results
of any execution of a program are such that, for each
location, it is possible to construct a hypothetical serial
order of all operations to the location that is consistent
with the result of the execution and

— it ensures that modifications made by a processor propagate to
all copies of the data

— program order is preserved for each process in this hypothetical
order

— writes to the same location by different processors are serialized
and the value returned by each read is the value written by the
last write in the hypothetical order

Snoop-Based Coherence

* Makes use of a shared broadcast medium to
serialize events (all transactions visible to all
controllers and in the same order)

— Write update-based protocol
— Write invalidate-based (e.g., basic MSI, MESI
protocols)

« Cache controller uses a finite state machine
(FSM) with a handful of stable states to track the
status of each cache line

+ Consists of a distributed algorithm represented
by a collection of cooperating FSMs

A Simple Invalidate-Based Protocol
- State Transition Diagram

Processor

Processor Read Miss Fload

- -

INVALID SHARED
Bus Invalidate
- or Write Miss
»
Bus ”
Processor Write Processor Write
Write Miss (Send Invalidate
Miss (Supply on Bus)
1% Data) Bus Read Miss
» (Supply Data)
MODIFIED

Processor4
Read or
Write

10

Correctness Requirements

* Need to avoid

— Deadlock — caused by a cycle of resource
dependencies

— Livelock — activity without forward progress

— Starvation — extreme form of unfairness

where one or more processes do not make
forward progress while others do

11

Design Challenges

» Cache controller and tag design
» Non-atomic state transitions
Serialization

» Cache hierarchies
Split-transaction buses

12

Snoop-Based or Broadcast
Coherence

Make use of a broadcast medium to
manage replicas
Benefit: Low metadata requirements

Challenge: High bandwidth requirements

‘ procl ‘ ‘ proc2 ‘ ‘ proc3 ‘

Solution: Directory-based Cache Coherence

Directory: maintain per-core sharer information to save bandwidth

Full Map: associate sharing vector with tags of shared L2

Block A Block B Block B Block
PO P1 P2 P3
Data | 1000
Data | 0110
Data 0001
Data | 0000

13

Directory-Based Coherence

Distribute memory, use point-to-point
interconnect for scalability

Need to manage coherence for each
memory line — state stored in directory

— Simple memory-based (e.g., DASH, FLASH,

SGI Origin, MIT Alewife, HAL)

— Cache-based (linked list (e.g., Sequent
NUMA-Q, IEEE SCI)

15

14
Multiprocessor Interconnects
» Topology
* Routing algorithm
» Switching strategy (circuit vs. packet)
* Flow control mechanism
16

Interconnect Topologies

Fully connected
— Single large switch
—Bus

Linear arrays and rings
Multi-dimensional meshes and tori
Trees

Butterflies

Hypercube

Switching Strategy

+ Circuit-switched: first packet sets up route,
subsequent packets follow route without any
header processing

* Packet-switched: each packet is independently

routed

— Store-and-forward: each hop receives all packets of a
message before forwarding it on

— Cut-through: each packet forwarded as soon as it is
received

— Virtual cut-through: cut-through routing, but buffer
packets when there is contention

— Wormhole routing: packet spread across multiple
hops, in effect holding a circuit open.

17

18

Metrics

Hardware cost — number of wires, pin count, length of
wires, physical arrangement

Topology diameter

— Length of maximum shortest path between any two nodes in the
network

Latency

— Overhead+routing_delay+channel_occupancy(bandwidth)+conte
ntion_delay

Bandwidth — local, global, bisection

— Bisection bandwidth

» Sum of bandwidths of minimum set of channels/links that, if

removed, partitions the network into 2 eugal unconnected sets of
nodes

19

Simple Memory-based Directory
Coherence

+ Advantage
— Precise sharing information
» Disadvantage
— Space/storage proportional to PxM
» Work-around for either width or height
— Increase cache block size
— 2-level protocol
— Limited pointer scheme
— Directory cache

20

Conventional Full Map Directory

I I 1 /(o[][1][o][o][o][x

Tag Data Vector of sharing
processors

(Sharing

1 bit per processor per cache line
64-Byte cache line size, for 128 cores,
directory is 25% of the shared cache size

Cache-Based Directory Coherence

Home main memory contains a pointer to
the first sharer + state bits

Pointers at each cache line to maintain a
doubly-linked list

Advantage — reduced space overhead

Disadvantage — serialized invalidates
(latency and occupancy)

21

A Framework for Sharing Patterns

» Predictable vs. unpredictable

* Regular vs. irregular

» Coarse vs. fine-grain (contiguous vs. non-contiguous in
the address space)

» Near-neighbor vs. long range in an interconnection
topology

* In terms of invalidation patterns
— Read-only
— Producer-consumer
— Broadcast/multicast

Migratory

— lIrregular read-write

23

22

