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Haswell Xeon E5 2699 V3
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2.3-3.66 GHz, 145W, 45M L3 cache,

2 sockets, 18 cores, 2 threads, 

for a total of 72 hardware threads

Haswell: Logical Blocks
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Shared Memory Implementation

• Coherence - defines the behavior of reads and 
writes to the same memory location
– ensuring that modifications made by a processor 

propagate to all copies of the data

– Program order preserved

– Writes to the same location by different processors 
serialized

• Synchronization - coordination mechanism

• Consistency - defines the behavior of reads and 
writes with respect to access to other memory 
locations 
– defines when and in what order modifications are 

propagated to other processors

Coherence

A multiprocessor memory system is coherent if the results 
of any execution of a program are such that, for each 
location, it is possible to construct a hypothetical serial 
order of all operations to the location that is consistent 
with the result of the execution and 
– it ensures that modifications made by a processor propagate to 

all copies of the data

– program order is preserved for each process in this hypothetical 
order

– writes to the same location by different processors are serialized 
and the value returned by each read is the value written by the 
last write in the hypothetical order
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Snoop-Based Coherence

• Makes use of a shared broadcast medium to 
serialize events (all transactions visible to all 
controllers and in the same order)
– Write update-based protocol

– Write invalidate-based (e.g., basic MSI, MESI 
protocols)

• Cache controller uses a finite state machine 
(FSM) with a handful of stable states to track the 
status of each cache line

• Consists of a distributed algorithm represented 
by a collection of cooperating FSMs

A Simple Invalidate-Based Protocol

- State Transition Diagram

Correctness Requirements

• Need to avoid

– Deadlock – caused by a cycle of resource 

dependencies

– Livelock – activity without forward progress

– Starvation – extreme form of unfairness 

where one or more processes do not make 

forward progress while others do

Design Challenges

• Cache controller and tag design

• Non-atomic state transitions

• Serialization

• Cache hierarchies

• Split-transaction buses
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Snoop-Based or Broadcast 

Coherence
• Make use of a broadcast medium to 

manage replicas

• Benefit: Low metadata requirements

• Challenge: High bandwidth requirements

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

bus

Solution: Directory-based Cache Coherence

Directory:  maintain per-core sharer information to save bandwidth

Full map: associate sharing vector with tags of shared L2
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Directory-Based Coherence 

• Distribute memory, use point-to-point 

interconnect for scalability

• Need to manage coherence for each 

memory line – state stored in directory

– Simple memory-based (e.g., DASH, FLASH, 

SGI Origin, MIT Alewife, HAL)

– Cache-based (linked list (e.g., Sequent 

NUMA-Q, IEEE SCI)

Multiprocessor Interconnects

• Topology

• Routing algorithm

• Switching strategy (circuit vs. packet)

• Flow control mechanism
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Interconnect Topologies

• Fully connected 

– Single large switch

– Bus

• Linear arrays and rings

• Multi-dimensional meshes and tori

• Trees 

• Butterflies

• Hypercube

Switching Strategy

• Circuit-switched: first packet sets up route, 
subsequent packets follow route without any 
header processing

• Packet-switched: each packet is independently 
routed
– Store-and-forward: each hop receives all packets of a 

message before forwarding it on

– Cut-through: each packet forwarded as soon as it is 
received

– Virtual cut-through: cut-through routing, but buffer 
packets when there is contention

– Wormhole routing: packet spread across multiple 
hops, in effect holding a circuit open.  

Metrics

• Hardware cost – number of wires, pin count, length of 
wires, physical arrangement

• Topology diameter
– Length of maximum shortest path between any two nodes in the 

network

• Latency
– Overhead+routing_delay+channel_occupancy(bandwidth)+conte

ntion_delay

• Bandwidth – local, global, bisection
– Bisection bandwidth

• Sum of bandwidths of minimum set of channels/links that, if 
removed, partitions the network into 2 euqal unconnected sets of 
nodes

Simple Memory-based Directory 

Coherence

• Advantage 

– Precise sharing information

• Disadvantage

– Space/storage proportional to PxM

• Work-around for either width or height

– Increase cache block size

– 2-level protocol

– Limited pointer scheme

– Directory cache
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Conventional Full Map Directory

Tag Data Vector of sharing 

processors

(Sharing 

pattern)

1 0 1 1 0 0 0 1

1 bit per processor per cache line

64-Byte cache line size,  for 128 cores,

directory is 25% of the shared cache size
!

Cache-Based Directory Coherence

• Home main memory contains a pointer to 

the first sharer + state bits

• Pointers at each cache line to maintain a 

doubly-linked list

• Advantage – reduced space overhead

• Disadvantage – serialized invalidates 

(latency and occupancy)

A Framework for Sharing Patterns

• Predictable vs. unpredictable

• Regular vs. irregular

• Coarse vs. fine-grain (contiguous vs. non-contiguous in 
the address space)

• Near-neighbor vs. long range in an interconnection 
topology

• In terms of invalidation patterns 
– Read-only

– Producer-consumer

– Broadcast/multicast

– Migratory

– Irregular read-write
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