
1

Shared Memory: A Look

Underneath

proc1 proc2 proc3 procN

Shared memory space

Physical Implementation

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

bus

Multicore Processors

Everywhere
The Multicore Trend

2004,

Prescott

Single-core

2012,

Tegra4

Quad-core

2012,

Xeon Phi

60-core

http://www.extremetech.com/wp-content/uploads/2012/07/Aubrey>I.jpg

http://img.clubic.com/00073094-photo-die-intel-prescott.jpg

http://images.bit-tech.net/content_images/2011/01/intel-sandy-bridge-review/sandy-bridge-die-

map.jpg

http://i1-news.sof tpedia-static.com/images/news2/NVIDIA-Tegra-4-Benchmark-Surf aces-Thanks-to-Project-Shield-Owner-2.jpg?1368004105

http://news.cnet.com/8301-1001_3-57569992-92/tileras-72-core-chip-doubles-down-on-multicore-approach/

2010,

Sandybridge

quad-core

2013, Tilera

72-core

1 2

3 4

2

Haswell Xeon E5 2699 V3

http://cdn4.wccftech.com/wp-content/uploads/2014/09/Xeon-E5-2600-V3-Die.jpg

2.3-3.66 GHz, 145W, 45M L3 cache,

2 sockets, 18 cores, 2 threads,

for a total of 72 hardware threads

Haswell: Logical Blocks

http://images.anandtech.com/doci/8730/1%20Die%20Config%2014-18C_678x452.png

Shared Memory Implementation

• Coherence - defines the behavior of reads and
writes to the same memory location
– ensuring that modifications made by a processor

propagate to all copies of the data

– Program order preserved

– Writes to the same location by different processors
serialized

• Synchronization - coordination mechanism

• Consistency - defines the behavior of reads and
writes with respect to access to other memory
locations
– defines when and in what order modifications are

propagated to other processors

Coherence

A multiprocessor memory system is coherent if the results
of any execution of a program are such that, for each
location, it is possible to construct a hypothetical serial
order of all operations to the location that is consistent
with the result of the execution and
– it ensures that modifications made by a processor propagate to

all copies of the data

– program order is preserved for each process in this hypothetical
order

– writes to the same location by different processors are serialized
and the value returned by each read is the value written by the
last write in the hypothetical order

5 6

7 8

3

Snoop-Based Coherence

• Makes use of a shared broadcast medium to
serialize events (all transactions visible to all
controllers and in the same order)
– Write update-based protocol

– Write invalidate-based (e.g., basic MSI, MESI
protocols)

• Cache controller uses a finite state machine
(FSM) with a handful of stable states to track the
status of each cache line

• Consists of a distributed algorithm represented
by a collection of cooperating FSMs

A Simple Invalidate-Based Protocol

- State Transition Diagram

Correctness Requirements

• Need to avoid

– Deadlock – caused by a cycle of resource

dependencies

– Livelock – activity without forward progress

– Starvation – extreme form of unfairness

where one or more processes do not make

forward progress while others do

Design Challenges

• Cache controller and tag design

• Non-atomic state transitions

• Serialization

• Cache hierarchies

• Split-transaction buses

9 10

11 12

4

Snoop-Based or Broadcast

Coherence
• Make use of a broadcast medium to

manage replicas

• Benefit: Low metadata requirements

• Challenge: High bandwidth requirements

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

bus

Solution: Directory-based Cache Coherence

Directory: maintain per-core sharer information to save bandwidth

Full map: associate sharing vector with tags of shared L2

P0 P1 P2 P3

Directory/Shared cache

tag

tag

tag

1000

0110

0001

tag 0000

tag Data tag Data Data tag Datatag

Data

Data

Data

Data

Block A Block B Block B Block C

Block A

Block B

Block C

Block D

Directory-Based Coherence

• Distribute memory, use point-to-point

interconnect for scalability

• Need to manage coherence for each

memory line – state stored in directory

– Simple memory-based (e.g., DASH, FLASH,

SGI Origin, MIT Alewife, HAL)

– Cache-based (linked list (e.g., Sequent

NUMA-Q, IEEE SCI)

Multiprocessor Interconnects

• Topology

• Routing algorithm

• Switching strategy (circuit vs. packet)

• Flow control mechanism

13 14

15 16

5

Interconnect Topologies

• Fully connected

– Single large switch

– Bus

• Linear arrays and rings

• Multi-dimensional meshes and tori

• Trees

• Butterflies

• Hypercube

Switching Strategy

• Circuit-switched: first packet sets up route,
subsequent packets follow route without any
header processing

• Packet-switched: each packet is independently
routed
– Store-and-forward: each hop receives all packets of a

message before forwarding it on

– Cut-through: each packet forwarded as soon as it is
received

– Virtual cut-through: cut-through routing, but buffer
packets when there is contention

– Wormhole routing: packet spread across multiple
hops, in effect holding a circuit open.

Metrics

• Hardware cost – number of wires, pin count, length of
wires, physical arrangement

• Topology diameter
– Length of maximum shortest path between any two nodes in the

network

• Latency
– Overhead+routing_delay+channel_occupancy(bandwidth)+conte

ntion_delay

• Bandwidth – local, global, bisection
– Bisection bandwidth

• Sum of bandwidths of minimum set of channels/links that, if
removed, partitions the network into 2 euqal unconnected sets of
nodes

Simple Memory-based Directory

Coherence

• Advantage

– Precise sharing information

• Disadvantage

– Space/storage proportional to PxM

• Work-around for either width or height

– Increase cache block size

– 2-level protocol

– Limited pointer scheme

– Directory cache

17 18

19 20

6

Conventional Full Map Directory

Tag Data Vector of sharing

processors

(Sharing

pattern)

1 0 1 1 0 0 0 1

1 bit per processor per cache line

64-Byte cache line size, for 128 cores,

directory is 25% of the shared cache size
!

Cache-Based Directory Coherence

• Home main memory contains a pointer to

the first sharer + state bits

• Pointers at each cache line to maintain a

doubly-linked list

• Advantage – reduced space overhead

• Disadvantage – serialized invalidates

(latency and occupancy)

A Framework for Sharing Patterns

• Predictable vs. unpredictable

• Regular vs. irregular

• Coarse vs. fine-grain (contiguous vs. non-contiguous in
the address space)

• Near-neighbor vs. long range in an interconnection
topology

• In terms of invalidation patterns
– Read-only

– Producer-consumer

– Broadcast/multicast

– Migratory

– Irregular read-write

21 22

23

