Consensus/Agreement in
Faulty Systems

95

When is Agreement possible?

* The two-armies problem (attaining
common knowledge)

— Reliable armies, unreliable communication
-7

Common Knowledge

There is common knowledge of p in a group
of agents G when all the agents

in G know p, they all know that they know p,
they all know that they all know that they
know p, and so on ad infinitum

96

97

When is Agreement possible?

* The Byzantine generals problem
—m unreliable generals (arbitrary failures)

1 Got(1,2,x,4) 1 Got 2 Got 4 Got

2 Got(1,2,y, 4) 1,2, v,4) (1,2, x,4) (1,2, x4)
3 Got(1,2,3,4) (a,b, c,d) (e f, gh) (1,2 v,4)
4 Got(1,2,z,4) (1,2,z4) (1,2,z4) (i} kl)

Faulty process
@ (b) ©

In general, need 3m+1 nodes to tolerate m failures

Tanenbaum and van Steen Figure 7-4: Lamport’s solution

98

Byzantine Generals Problem
* Achieving fault tolerance in a group with m
arbitrary failures

1 Got 2 Got 4 Got

1 Got(1,2,x,4)

2 Got(1,2,y, 4) (1,2, y,4) (1,2,x4) (1,2 x,4)

3 Got(1,2,3,4) (a,b,c,d) (ef, gh) (1,2 y4)

4 Got(1,2,z,4) (1,2,2,4) (1,2,24) (ij kl)
Faulty process (b) (c)

(a)
In general, need 3m+1 nodes to tolerate m failures

Tanenbaum and van Steen Figure 7-4: Lamport’s solution

Process Resilience

* For a process providing services, we want
it to be fault-tolerant
— Assumption: fail-stop/fail-silent processes
— Replicate service with several identical
processes in a distributed group
— An abstraction as a single process to outside

clients
—When a message is sent to a group, all
members of the group receive it
— Goal: all servers eventually reach the same

99

Paxos: Services and roles

Client;
Single client requestiresponse

Proposer Acceptor Leamner

Y
AL

Server process

Other request

Figure 8.6: The organization of Paxos into different logical processes.

101

state
100
Paxos: The role of the leader

foly (TTI } L'E‘

o = ._ ; 2

. \ (SEQ, 0%, 1} {SEQ,0',2)

L’I‘n.': ‘ "'. Y ! | i |

| I".I) 0? y \'-..‘ ol /

82— D R S W S >

. / " o

¢ ::['2::-

Figure 8.7: Two clients communicating with a 2-server process group.
102

Paxos communication phases

Proposers Acceptors

1) Choose new proposal number n

prepare(n) to all
|:> 3) Respond to prepare

- if n > max_proposal_num then
max_proposal_num = n

return pr roposal,
- return max_proposal_num

4) When receives promises from majority

- it any acceptedValue attached, replace its
own value with the one with highest Prepare
acceptedProposal phase

5) Broadcast accept(n, value) to all acceptors :

6) Respond to accept
- If n >= max_proposal_num then
acceptedProposal = max_proposal_num = n

<:| acceptedvalue = value
7) When receives responses from majority send accepted(acceptedValue) to all learners
- it any rejection (max_proposal_num > n}, - return max_proposal_num
goto 1) (with a larger n) Accept
- otherwise, the value is chosen phase

* acceptedProposal, max_proposal_num, acceptedValue must be stored
on disks L T

e The Color indicates value, bold indicates proposers, P=sends a
prepare & receives a promise, A=sends an accept & receives an
accepted

* When an acceptor promise to a prepare with proposal number n, it
would reject accept with lower proposal number

Courtesy Ziliang Lin

103

104

e When an acceptor promise to a prepare with proposal number n, it
would also reject prepare with lower proposal number

Courtesy Ziliang Lin

CAP Theorem

Any networked system providing shared data can provide
only two of the following three properties:

— C: consistency, by which a shared and replicated data item
appears as a single, up-to-date copy

— A: availability, by which updates will always be eventually
executed

— P: Tolerant to the partitioning of process group (e.g., because of
a failing network).

In a network subject to communication failures, it is
impossible to realize an atomic read/write shared memory
that guarantees a response to every request [Gilbert and
Lynch, 2012].

105

106

Types of Replicas

* Replica creation and placement:
— Permanent
— Server-initiated
— Client-initiated

From Distrbuted Systems by van Steen and Tanenbaum

//‘ / Pem‘nem \\\
\ \&e'\/e _Initiated replicas // ’."I

\. L em '||t alec replcﬁs -

—» Server-initiated replication
-# Client-initiated replication:

L\eﬁls e

Figure 7.21: The logical organization of different kinds of copies of a data
store into three concentric rings.

107

Keeping Replicas Consistent

* Primary-based
* Quorum-based

Quorum-Based Replication
Protocols

* Replicate file on N servers
— For update: contact majority (N/2+1) for
agreement
— For read: contact majority once again, read is
successful if they have the same version
—In general
* Ng+Ny >N
* Ny > N/2

108

109

Update Propagation

* What is propagated?

— Invalidation

— Update

— active replication (move the computation)
* When is it propagated?

— Pull versus push

— Leases

— Epidemic protocols

110

When is it Propagated?

* Push vs. Pull

Issue Push-based Pull-based
State at server List of client replicas and caches None
Messages sent Update (and possibly fetch update Poll and update
later)
Response time Immediate (or fetch-update time) Fetch-update
at client time

Figure 7.23: A comparison between push-based and pull-based protocels in
the case of multiple-client, single-server systems.

Distributed Systems by van rbaum

* Leases —a compromise [Gray and Cheriton SOSP’89]

— Adaptive leases
« Age-based (lower frequency of writes-> higher lease)
+ Client request frequency based (higher freq > higher lease)
«+ Server state space/load based (higher space - lower lease)

Epidemic protocols

* Infective: server that holds updates and is
willing to spread it

» Susceptible: server that has not been
updated yet

* Removed: server that is not willing or not
able to spread its update

112

111

112

Epidemic protocols

* Try to “infect” all members in the group
with new updates as fast as possible

113

Anti-entropy
* A server P picks up a server Q at random

— P only pushes its own updates to Q
» Spreads slowly

— P only pulls in new updates from Q
* Works better when most servers are infective

— P and Q send updates to each other (push-
pull)

114

113

114

Gossiping Topics to Come

* If P is recently updated with data item x, it * Group Communication
will contact an arbitrary server Q and try to Distributed transactions

push the updates to Q Distributed file systems

More on GPUs

Nonblocking data structures/algorithms
Transactional memory, time permitting

« If Q has already received the update, P
will lose interest in spreading it further with
some probability
— No guarantee that all servers will be updated

115

115 116

