
1

Shared Memory Implementation

• Coherence - defines the behavior of reads and
writes to the same memory location

– ensuring that modifications made by a processor
propagate to all copies of the data

– Program order preserved

– Writes to the same location by different processors
serialized

• Synchronization - coordination mechanism

• Consistency - defines the behavior of reads and
writes with respect to access to other memory
locations
– defines when and in what order modifications are

propagated to other processors

Memory Consistency Model

• Specifies constraints on the order in which

memory operations to different locations

must appear to be performed with respect

to one another

Sequential Consistency

• ``A system is sequentially consistent if the result

of any execution is the same as if the operations

of all the processors were executed in some

sequential order, and the operations of each

individual processor appear in this sequence in

the order specified by its program.'' [Lamport 79]

150 151

152 153

2

Implications
• Program order (among operations from individual

processors)

P1 P2

A = 1; while (flag == 0);

flag = 1; print A;

• Write atomicity (single sequential order among
operations from all procesors)

P1 P2 P3

A = 1; while (A == 0);

B = 1; while (B == 0);

print A;

Dekker’s Algorithm

P1: A = 0; P2: B = 0;

… …

A = 1; B = 1;

L1: while (B == 1) {..} L2: while (A == 1) {…}

… …

Can B = 0 at P1 and A = 0 at P2 at the corresponding

if statements?

Write Buffers [Bypassing

Capability]

• Reads bypass writes, reads are blocking

Overlapping Write Operations

• Writes may bypass other writes in write buffer

154 155

156 157

3

Non-blocking Reads

• Reads are allowed to bypass reads and

writes

Drawbacks of Sequential

Consistency

• SC imposes a performance penalty

• SC restricts any compiler optimization that can result in
reordering memory operations

– Code motion, register allocation, common sub-
expression elimination, loop blocking, software
pipelining

• SC restricts hardware generated memory re-orderings
because of program-order and write-atomicity
requirements

– Write Buffers, OOO instruction issue, pipelining of
memory operations, lock-up free caches, non-atomic
memory operations

Consistency Model

Classification
• Models vary along the following

dimensions

– Local order - order of a processor's accesses
as seen locally

– Global order - order of a single processor's
accesses as seen by each of the other
processors

– Interleaved order - order of interleaving of
different processor's accesses on other
processors

Memory Model Relaxations

• Possible relaxations

– Write Read

– Write Write

– Read Read, Write

– Read other’s write early

– Read own write early

• All Models provide some Safety net

• All models maintain uni-processor data and control
dependencies

• Write atomicity is maintained by all the models except
PC, RCpc, PowerPC

158 159

160 161

4

Categorization of Relaxed Models Maintaining Write Atomicity

Initially A = B = C = 0

P1 P2 P3 P4

A = 1 A = 2 while (B!= 1){} while (B!= 1){}

B = 1 C = 1 while (C!= 1){} while (C!= 1){}

register1 = A register2 = A

Write Atomicity (continued)

P1 P2 P3

A = 1; while (A == 0);

B = 1; while (B == 0);

print A;

370? TSO? PC?

Consider Peterson’s Algorithm

• Process Pi

do {

flag[i] = true;

turn = j;

while (flag[j] && turn==j) ;

critical section
flag[i] = false;

remainder section
} while (1);

162 163

164 165

5

Relaxing All Program Orders

• Read or a Write operation may be reordered w.r.t

following read or write to a different location

– Weak Ordering Model

• Release Consistency Model (RCsc / RCpc)

• Digital Alpha, Sparc V9 RMO, IBM Power PC

• Except Alpha, the above models allow reordering of

two reads to the same location.

• RCpc and PowerPC allow a read to return the value

of another processors write early.

Weak Ordering

• Classifies instructions into “Data” and

“Sync”

• Reordering memory operations

between sync operations

• Hardware Implementation using WO

counters, to issue sync operation

counter must be zero

• No operations are issued until

previous sync operation completes

• Synchronization accesses are

sequentially consistent with respect

to one another.

Read/Write….

Read/Write….

Read/Write….

Sync

Read/Write….

Read/Write….

Read/Write….

Sync

Weak Ordering (Cont’d)

• Open up opportunities for buffering of

reordered write operations between two

synchronization points.

P1: W(x)1 W(x)2 S

P2: R(x)0 R(x)2 S R(x)2

P3: R(x)1 S R(x)2

OK

TOP: while (flag2 == 0)

A = 1;

u = B;

v = C;

D = B*C;

flag2 = 0;

flag1 = 1;

goto TOP;

Release Consistency
• Extends WO and makes distinction among sync and non-

sync operations

• Ordinary accesses are completely unordered with respect

to each other

• Synchronization operations divided into acquires and

releases
Read/Write….

Read/Write….

Read/Write….

Acquire

Read/Write….

Read/Write….

Read/Write….

Release

shared

ordinary special

sync nsync

acquire release

Read/Write….

Read/Write….

Read/Write….

166 167

168 169

6

RC Example

acquire

A = 1;

release

While (A==0);

acquire

B = 1;

release

While (B==0);

Print A;

RC

Before an ordinary access to a shared variable is performed, all
previous acquires done by the process must have completed
successfully.

Before a release is allowed to be performed, all previous reads and
writes done by the process must have completed.

Alpha, RMO and PowerPC

• Alpha employ RCsc model with Memory Barrier and
Write Memory Barrier (WMB) fence instructions.

• Sparc V9 (RMO) employ RCsc model with MemBar
instruction to specify any combination of RtoR, RtoW,
WtoR, WtoW ordering.

– No need for RMW to preserve WtoR ordering

– Write atomicity is maintained

• PowerPC employ RCpc

– SYNC instruction similar to MB instruction except
for RtoR order.

– RMW required to make writes atomic and
preserve RtoR order.

Programmer Centric View

• System Centric view is accompanied by higher level of

complexity for programmers.

• Varied semantics for different models complicates the

task of porting programs across systems.

Motivates for higher level of abstraction for

programmers

• Provide informal rules for correct results defined by SC

i.e. Consistency Model is defined in terms of program

level information provided by the programmer.

– DRF0 is one such approach which explores the information

that is required to allow optimization similar to Weak Ordering.

– PL (Properly Labeled) approach for defining RCsc

optimizations.

The Data-race-free-0 Model
• Weak Ordering classifies instruction into “Data” and

“Sync”

Key Goal is to formally distinguish operations as data or

Synchronization on the basis of data races

• An operation forms a race with another operation if,

– They access the same location && at least one operation is a

write && there are no intervening operations between the two

operations

P1 P2

A = 23; while (Flag != 1) {;}

B = 37; … = B;

Flag = 1; … = A;

Flag = Synchronization, Data = A, B

Can optimize operations that never race

170 171

172 173

7

Programming With DRF-0

• Write operation assuming SC

• For every memory operation specified in the program

do:

•Language Support:

Synchronization with special constructs

Support to distinguish individual accesses

Distinguishing Memory Operations

• At the Programming Language Level

– Special synchronizaiton operation (library call)

– High-level paradigms

– Data or synchronization attribute with code or

data

• At the hardware level

– Address regions

– Special instructions

174 175

