Distributed Transactions

Instructor: Sandhya Dwarkadas
University of Rochester

Software Development

Difficulty of Software Development

[Identify concurrency
(algorithmic, manual...)

Y
Correctness A Performance

Manage concurrency
(locks, ...)

- J

Software Devéloﬁment

The Need for Synchronization

1 '- -
e fivo =] | mrroTE |
] ! | L
: : : :
' | Developer) | I !
| I— /| —

H ' H

Alice wants $50 from A

« A was $100, A is now $50
Bob wants $60 from A

« A was $100, A is now $40
A should be -10

Alice wants $50 from A
* Alice locks table

* A was $100, A is now $50
Bob wants $60 from A

* Bob waits till lock release

* A was $50, Insufficient funds

Bob and Alice saw A as $100. Locks prevent such data races

f12-arcs004-100-393551. pdf

Software Development

Lock Granularity Optimization

Coarse Grain Locking
(lock per table)

i :

1 Bs200 H Developer
H 1

| —— | |
A 1

Alice withdraws $20 from A Alice withdraws $20 from A

« Alice locks table » Alice locks A

Bob wants $30 from B Bob wants $30 from B
Waits for Alice to free table » Bob locks B

Fine Grain Locking
(lock per entry)

Such Tuning is Time Consuming and Error Prone

intel

Software Development

12-arcs004-100-393551.pdf

Complexity of Fine Grain Locking

L i e maklsisdeie k|]
: —] |
™A si00 [oek H As100
H 1 Fre=|
H™ B $200 ™ B $200
! | ! |
H _— |
H '
| oy] () e e
I
Alice transfers $20 from A to B Alice transfers Bob transfers

Alice locks A and locks B $20 fromAtoB $50

Performs transfer
Alice unlocks A and unlocks B | | Cannot lock B

from B to A

Locks A Locks B

Cannot lock A

Expensive and Difficult to Debug Millions of Lines of Code

» Want coarse grain locking effort for fine grain locking performance

Practical Problem |

Thread 1:

Write to af]

Solution:
1 Spin lock

Coarsen-grained? Less lock ops, poor scalability, poor bandwidth.
Better scalability, more lock cost, more bandwidth

Fine-grained?

Shared Array: a[]

Thread 2:

Write to af]

Practical Problem Il

Shared Array: a[]

Thread 1: Thread 2:

Read from a[] //parallel Read from a[] //parallel

Write to a[] // serialized Write to a[] // serialized

Solution:
1 R/W lock
2 Spin lock or mutex (worse in this case)

Priority inversion

« Occurs when a lower priority process is
preempted while holding a lock needed

by a high priority process

Bad priority inversion:

Mars Pathfinder
——

data collection task
)

[Data bus J

Ighb[l)gorlt Low priority\ Medium priority
meteorologica] |Communication
management

Convoying

. Situation where the processes wait in line
for the process ahead in the line to finish

some task

10

9
deadlock
@ Needs
Hel‘wy/ \
P1 P2
Ws wf
11

The Complexity of Locking

— Deadlocks

— Priority Inversion
— Convoy Effect
— Composition and modularity

12

Database Transactions

 Modify multiple data items potentially at multiple
locations/by multiple processes as a single
atomic operation

+ Transaction properties (ACID) —

— Atomic — happens indivisibly to the outside world

— Consistent — does not violate system invariants —
must hold before and after but not necessarily during

— Isolated (or serializable) — refers to multiple
simultaneous transactions — the final result must
appear as if each transaction occurred in some
sequential order

— Durable — once committed, the results become
permanent — no failure can undo the results

Classification of Transactions

» Flat — series of operations satisfying ACID
properties

* Nested — transaction logically divided into
sub-transactions
— Open vs. closed

+ Distributed — data is distributed
(transaction could be flat)

13

Transaction Implementation

* Private workspace
— Operations performed on private copy of all
open files
» Writeahead log

— Modify in place but write a log of transaction
(id, old, and new values) BEFORE doing so

15

14

Concurrency Control

» Synchronize conflicting read and write
operations to ensure serializability
— Two-phase locking

— Timestamp ordering
» Pessimistic vs. optimistic

16

Two-Phase Locking

All schedules of interleaved transactions
can be proven to be serializable

= » Tanenbaum and van Steen: Figure 5-26

« Strict two-phase locking
— Release all locks at the same time
— Avoids cascaded aborts

* Problem: deadlocks

— Solution? Deadlock detection or canonical
ordering

17

Pessimistic Timestamp Ordering

* Read(T,x)
— Tts < tsyr(X) > abort
— Tts > ts,r(X) = perform
—tSpp (X) = max{Tts, tsgp (X)}
* Write(T,x)
— Tts < tsgp(X) = abort
— Tts > tsgp(X), tsyr(X) = perform
—tsywr (X) = max{Tts, tsyr (X)}

Timestamp Ordering

» Assign each transaction a unique
timestamp (Lamport’s)

» Each data item has a (most recent) read
and a (most recent) write timestamp
» Lowest timestamp processed first
» Pessimistic timestamp ordering
— Abort on a conflict as reads and writes occur
» Optimistic timestamp ordering

— Delay check until time of commit (best with
private workspaces)

18

19

Distributed Commit

Operation must be performed by each
member of a process group or none at all
— Established by means of a coordinator

* 1-Phase commit?

— No way to tell the coordinator that the
operation cannot be performed

* 2-Phase commit
* 3-Phase commit

20

Two-Phase Commit

INT)
Commit
Vote-request y

WAIT
Vote-abort Vote-commit
Global-abort Global-commit
ABORT COMMIT

(a)

Tanenbaum and van Steen Figure 7.17:

Vote-request
Vote-abort

Vote-request
Vote-commit

Global-abort
ACK

Global-commit
ACK

(b)

Finite state machines for coordinator (a) and participant (b)

21

Three-Phase Commit

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Prepare-commit

Ready-commit
Global-commit

COMMIT

(a)

Vote-request

Vote-abort INIT
Vote-request
Vote-commit

READY

Global-abort
ACK
ABORT

(b)

Prepare-commit
Ready-commit

Global-commit
ACK

Tanenbaum and van Steen Figure 7-21:
Finite state machines for coordinator (a) and participant (b)

23

Two-Phase Commit
* Phase 1
— Step 1: vote request
— Step 2 — return vote commit or abort
* Phase 2 — global commit or abort
Problem: failures when blocked waiting for
incoming messages

— (a) Participant in INIT state; (b) coordinator in WAIT
state; (c) participant in READY state

Solutions: timeout; ABORT under (a) and (b), poll
other participants under (c)

Remaining problem: must wait for coordinator
under (c) if all participants in READY state

22

Three-Phase Commit

* No state from which it is possible to transition
directly to either COMMIT or ABORT

* No state from which a final decision cannot be
made on failure and from which a transition to
COMMIIT is possible

* No crashed process could be in COMMIT if any
participant is in READY state; or in INIT or
ABORT if any patrticipant is in PRE-COMMIT
— Allows a participant to use a majority to decide

whether to ABORT (if majority is in READY) or

COMMIT (if majority is in PRE-COMMIT) when
coordinator is unresponsive

24

