Principles of Parallel Algorithm
Design

Why is Parallel Computing Hard?

» Amdahl’s law — insufficient available
parallelism —

— Speedup = 1/(fraction_enhanced/speedup_enhanced + (1-fraction_enhanced))
+ Overhead of communication and
coordination

* Portability — knowledge of underlying
architecture often required

Parallel Programming Models

Parallel program: one or more threads of
control operating on data; model defines
naming, operations, ordering

« Data parallel — HPF, Fortran-D, Power
C/Fortran

 Shared memory - pthreads
» Message passing — MPI, PVM
* Global address space

* Task: arbitrarily defined piece of work done
by the program

* Process (or thread): abstract entity that
performs tasks

« Processor: phyical resource on which
processes execute

Steps in the Parallelization

« Decomposition into tasks

— Expose concurrency

Assignment to processes

— Balancing load and maximizing locality
Orchestration

— Name and access data

— Communicate (exchange) data

— synchronization among processes

« Mapping

— Assignment of processes to processors

Decomposition into Tasks

« Many different decompositions possible
— Tasks may be independent or have dependencies
requiring ordering
— Tasks may execute identical or different code
— Tasks may take the same or different amounts of time
« Tasks and dependencies may be abstracted into a
task dependency DAG with nodes as tasks, edges
as control dependence

s

Granularity of Task Decompositions

« Task size (granularity) versus number of
tasks

Example: Dense matrix-vector multiply

Fine grain: each task computes an individual element in y, large number of tasks
Coarse grain: each task computes multiple elements in y, small number of tasks
A b

y
01

Task 1
2

o1
Task n

Degree of Concurrency

« Degree of concurrency of a decomposition:
number of tasks that can execute in parallel

— Increases with finer task granularity
« May change over program execution

« Maximum degree of concurrency: the
largest at any point during execution

* Average degree of concurrency: average
over the execution of the program

Critical Path

+ Edge in task dependency graph represents task serialization
* Critical path = longest weighted path though graph

* Critical path length = lower bound on parallel execution time

EQ>u<6§ympIe: Database Query Processing

MODEL = ""CIVIC" AND YEAR =2001 AND
(COLOR = "GREEN" OR COLOR = "WHITE)
Task: generate intermediate table that satisfy predicate

Edge: output from task at outgoing edge feeds input to task at incoming edge

ID# | Model 625 | 2001 ID# | Golor
4523 | Civic &734 | 2001 7623 | Green
6734 | Civie 5342 | 2001 m 9834 | Green
4395 | Civie 2845 | 2001 3476 | White | |5342 | Green
7352 | Civie 4395 | 2001 6734 | White | | 8354 | Green

(__emie AND 2001 AND (Whita OR Green))

(158 | oot ear] Gotr|
[e734] cwve | 2001 | e

10

9
Database Query Processing:
Alternative decomposition
(aoo1) (whte) (@roen)
awANnmmmwemn)] 1D# | Color | Year]
Chvic AND 2001 AND(Whn-oRerw-) I
mm
m-m
Different decompositions may lead to different parallel performance
11

Basics of Parallelization

* Dependence analysis
 Synchronization

— Events

— Mutual exclusion
« Parallelism patterns

12

When can two statements execute in parallel?

+ On one processor:
statement 1;
statement 2;

+ On two processors:

processorl:
statementl;

processor2:
statement2;

13

Fundamental Assumption

* Processors execute independently: no
control over order of execution between
processors

When can 2 statements execute in parallel?

* Possibility 1
Processor1: Processor2:

statementl;
statement?2;

* Possibility 2
Processor1: Processor2:
statement2:

statementl;

14

15

When can 2 statements execute in parallel?

» Their order of execution must not matter!

* In other words,
statementl; statement2;

must be equivalent to
statement2; statementl;

16

Example 1

)

1
2;

a
b

» Statements can be executed in parallel.

17

Example 2

I
L

o o
11

+ Statements cannot be executed in parallel

+ Program modifications may make it
possible.

Example 3

a = f(x);
b=a;

« May not be wise to change the program
(sequential execution would take longer).

18

19

Example 4

L T
i on
L

« Statements cannot be executed in parallel.

20

Example 5

11
N -

+ Statements cannot be executed in parallel.

21

True dependence

Statements S1, S2

S2 has a true dependence on S1
iff
S2 reads a value written by S1

Anti-dependence

Statements S1, S2.

S2 has an anti-dependence on S1
iff
S2 writes a value read by S1.

22

23

Output Dependence

Statements S1, S2.

S2 has an output dependence on S1
iff
S2 writes a variable written by S1.

24

Types of Dependences

* True (flow) dependence - RAW
+ Anti-dependence - WAR
 Output dependence — WAW

25

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel
iff
there are no dependences between S1 and S2
— true dependences
— anti-dependences
— output dependences
Some dependences can be removed.

Example 6

« Parallelism often occurs in loops.

for(i=0; i<100; i++)
a[i] =1,

* No dependences.

« Iterations can be executed in parallel.

27

26
Example 7
for(i=0; i<100; i++) {
ali] =1i;
b[i] = 2*i;
}
Iterations and statements can be executed in
parallel.
28

Example 8

for(i=0;i<100;i++) a[i] = 1;
for(i=0;i<100;i++) b[i] = 2*i;

Iterations and loops can be executed in
parallel.

Example 9

for(i=0; 1<100; i++)
a[i] = a[i] + 100;

* There is a dependence ... on itself!
* Loop is still parallelizable.

30

29
Example 10
for(i=0; i<100; i++)
a[i] = f(afi-11);
 Dependence between a[i] and a[i-1].
+ Loop iterations are not parallelizable.
31

Loop-Carried Dependence

« A loop-carried dependence is a dependence

that is present only if the statements occur
in two different instances of a loop

 Otherwise, we call it a loop-independent

dependence

 Loop-carried dependences limit loop

iteration parallelization

32

Example 11

for(i=0; i1<100; i++)
for(j=0; j<100; j++)
a[i][i] = f(alili-11);

 Loop-independent dependence on i.
 Loop-carried dependence on j.

« Outer loop can be parallelized, inner loop
cannot.

Example 12

for(j=0; j<100; j++)
for(i=0; i<100; i++)
a[i]li] = f(alilf-11);
« Inner loop can be parallelized, outer loop
cannot.

* Less desirable situation (finer-grain
parallelism).

« Loop interchange is sometimes possible.

33

Level of loop-carried dependence

* |s the nesting depth of the loop that carries
the dependence.

« Indicates which loops can be parallelized.

35

34
Be careful ... Example 13
printf(“a”);
printf(“b”);

Statements have a hidden output dependence
due to the output stream.

36

Be careful ... Example 14

a = f(x);
b =g(x);

Statements could have a hidden dependence if
f and g update the same variable.

37

Be careful ... Example 16

for(i=1; i<100;i++) {
afi]=..;
.. =a[i-1];
}
 Dependence between a[i] and a[i-1]
« Complete parallel execution impossible
« Pipelined parallel execution possible

Be careful ... Example 15

for(i=0; 1<100; i++)
a[i+10] = f(a[i]);

* Dependence between a[10], a[20], ...
* Dependence between a[11], a[21], ...

Some parallel execution is possible.

38

39

Be careful ... Example 17

for(i=0; i<100; i++)
a[i] = f(a[indexa[i]]);

» Cannot tell for sure.

« Parallelization depends on user knowledge
of values in indexa[].

« User can tell, compiler cannot.

40

10

An aside

Parallelizing compilers analyze program
dependences to decide parallelization.

In parallelization by hand, user does the
same analysis.

« Compiler more convenient and more correct

 User more powerful, can use knowledge of
data values

To remember

Statement order must not matter.
Statements must not have dependences.
Some dependences can be removed.
Some dependences may not be obvious.

41

Synchronization

+ Used to enforce dependences

« Control the ordering of events on different
processors
— Events — signal(x) and wait(x)
— Fork-Join or barrier synchronization (global)
— Mutual exclusion/critical sections

43

42
Example 1: Creating Parallelism
by Enforcing Dependences
for(i=1; i<100; i++) {
afi]=...;
...=a[i-1];
}
 Loop-carried dependence, not parallelizable
44

11

Synchronization Facility

 Suppose we had a set of primitives,
signal(x) and wait(x).

« wait(x) blocks unless a signal(x) has
occurred.

+ signal(x) does not block, but causes a
wait(x) to unblock, or causes a future
wait(x) not to block.

Example 1: Enforcing
Dependencies (continued)
for(i=...;i<..;i++) {
alil=...;
signal(e_a[i]);

\'/\‘/;a’it(e_a[i—l]);
...=a[i-1];
}

45

46

Example 1 (continued)

assigned to which processor.

matters for performance.
« Cyclic assignment is probably best.

» Note that here it matters which iterations are

« |t does not matter for correctness, but it

47

Example 2: Enforcing
Dependences
for(i=0; i<100; i++) a[i] = f(i);

X =g(a);
for(i=0; i<100; i++) b[i] = x + h(a[i]);

« First loop can be run in parallel.
« Middle statement is sequential.
« Second loop can be run in parallel.

48

Example 2 (contimued)

« We will need to make parallel execution
stop after first loop and resume at the
beginning of the second loop.

« Two (standard) ways of doing that:

— fork() - join()
— barrier synchronization

Fork-Join Synchronization

« fork() causes a number of processes to be
created and to be run in parallel.

« join() causes all these processes to wait until
all of them have executed a join().

49

Example 2 (continued)

fork();

for(i=...; i<...;i++) a[i] = f(i);

join();

x=g();

fork();

for(i=...;i<..;i++) b[i] =x+h(a[i]);
join();

51

50
Eliminating Dependences
* Privatization or scalar expansion
 Reduction (common pattern)
52

13

Example: Scalar Expansion or
Privatization

for (1=0; 1 <100; I++)
T=A[l];
All] =B[lI;
BlI]=T;

Loop-carried anti-dependence on T
Eliminate by converting T into an array or by
making T private to each loop iteration

Example: Scalar Expansion

for (I =0; 1 <100; I++)

T [1]= AlL;
Alll = BIlI;
B[] =T[IT;

Loop-carried anti-dependence eliminated

53
Removing Dependences:
Reduction
sum = 0.0;
for(i=0; i<100; i++) sum += a[i];
 Loop-carried dependence on sum.
 Cannot be parallelized, but ...
55

54
Reduction (continued)

for(i=0; i<...; i++) sum[i] = 0.0;

fork();

for(j=...;j<...;j++) sum[i] +=a[j];

join();

sum = 0.0;

for(i=0; i<...; i++) sum += sum[il;

Common pattern often with explicit support

e.g., sum = reduce (+, a, 0, 100)

CAVEAT: Operator must be commutative and associative
56

14

Acknowledgements

Slides reflect content from Willy Zwaenepoel
and from Grama/Gupta/Karypis/Kumar that
accompany their corresponding
course/textbooks and have been adapted to
suit the content of this course

98

15

