
1

Principles of Parallel Algorithm

Design

Why is Parallel Computing Hard?

• Amdahl’s law – insufficient available

parallelism –
– Speedup = 1/(fraction_enhanced/speedup_enhanced + (1-fraction_enhanced))

• Overhead of communication and

coordination

• Portability – knowledge of underlying

architecture often required

Parallel Programming Models

Parallel program: one or more threads of

control operating on data; model defines

naming, operations, ordering

• Data parallel – HPF, Fortran-D, Power

C/Fortran

• Shared memory - pthreads

• Message passing – MPI, PVM

• Global address space

• Task: arbitrarily defined piece of work done

by the program

• Process (or thread): abstract entity that

performs tasks

• Processor: phyical resource on which

processes execute

1 2

3 4

2

Steps in the Parallelization

• Decomposition into tasks
– Expose concurrency

• Assignment to processes
– Balancing load and maximizing locality

• Orchestration
– Name and access data

– Communicate (exchange) data

– synchronization among processes

• Mapping
– Assignment of processes to processors

Decomposition into Tasks

• Many different decompositions possible

– Tasks may be independent or have dependencies

requiring ordering

– Tasks may execute identical or different code

– Tasks may take the same or different amounts of time

• Tasks and dependencies may be abstracted into a

task dependency DAG with nodes as tasks, edges

as control dependence

T1
T2

T2

T7

T5

T4

T6 T8T3

Granularity of Task Decompositions

• Task size (granularity) versus number of

tasks
Example: Dense matrix-vector multiply

Fine grain: each task computes an individual element in y, large number of tasks

Coarse grain: each task computes multiple elements in y, small number of tasks

Degree of Concurrency

• Degree of concurrency of a decomposition:
number of tasks that can execute in parallel

– Increases with finer task granularity

• May change over program execution

• Maximum degree of concurrency: the
largest at any point during execution

• Average degree of concurrency: average
over the execution of the program

5 6

7 8

3

Critical Path
Example: Database Query Processing

Query:

MODEL = ``CIVIC'' AND YEAR = 2001 AND
(COLOR = ``GREEN'' OR COLOR = ``WHITE)

Task: generate intermediate table that satisfy predicate

Edge: output from task at outgoing edge feeds input to task at incoming edge

Database Query Processing:

Alternative decomposition

Different decompositions may lead to different parallel performance

Basics of Parallelization

• Dependence analysis

• Synchronization

– Events

– Mutual exclusion

• Parallelism patterns

9 10

11 12

4

When can two statements execute in parallel?

• On one processor:

statement 1;

statement 2;

• On two processors:

processor1: processor2:

statement1; statement2;

Fundamental Assumption

• Processors execute independently: no

control over order of execution between

processors

When can 2 statements execute in parallel?

• Possibility 1

Processor1: Processor2:

statement1;

statement2;

• Possibility 2

Processor1: Processor2:

statement2:

statement1;

When can 2 statements execute in parallel?

• Their order of execution must not matter!

• In other words,

statement1; statement2;

must be equivalent to

statement2; statement1;

13 14

15 16

5

Example 1

a = 1;

b = 2;

• Statements can be executed in parallel.

Example 2

a = 1;

b = a;

• Statements cannot be executed in parallel

• Program modifications may make it

possible.

Example 3

a = f(x);

b = a;

• May not be wise to change the program

(sequential execution would take longer).

Example 4

b = a;

a = 1;

• Statements cannot be executed in parallel.

17 18

19 20

6

Example 5

a = 1;

a = 2;

• Statements cannot be executed in parallel.

True dependence

Statements S1, S2

S2 has a true dependence on S1

iff

S2 reads a value written by S1

Anti-dependence

Statements S1, S2.

S2 has an anti-dependence on S1

iff

S2 writes a value read by S1.

Output Dependence

Statements S1, S2.

S2 has an output dependence on S1

iff

S2 writes a variable written by S1.

21 22

23 24

7

Types of Dependences

• True (flow) dependence – RAW

• Anti-dependence – WAR

• Output dependence – WAW

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel

iff

there are no dependences between S1 and S2

– true dependences

– anti-dependences

– output dependences

Some dependences can be removed.

Example 6

• Parallelism often occurs in loops.

for(i=0; i<100; i++)

a[i] = i;

• No dependences.

• Iterations can be executed in parallel.

Example 7

for(i=0; i<100; i++) {

a[i] = i;

b[i] = 2*i;

}

Iterations and statements can be executed in

parallel.

25 26

27 28

8

Example 8

for(i=0;i<100;i++) a[i] = i;

for(i=0;i<100;i++) b[i] = 2*i;

Iterations and loops can be executed in

parallel.

Example 9

for(i=0; i<100; i++)

a[i] = a[i] + 100;

• There is a dependence … on itself!

• Loop is still parallelizable.

Example 10

for(i=0; i<100; i++)

a[i] = f(a[i-1]);

• Dependence between a[i] and a[i-1].

• Loop iterations are not parallelizable.

Loop-Carried Dependence

• A loop-carried dependence is a dependence

that is present only if the statements occur

in two different instances of a loop

• Otherwise, we call it a loop-independent

dependence

• Loop-carried dependences limit loop

iteration parallelization

29 30

31 32

9

Example 11

for(i=0; i<100; i++)

for(j=0; j<100; j++)

a[i][j] = f(a[i][j-1]);

• Loop-independent dependence on i.

• Loop-carried dependence on j.

• Outer loop can be parallelized, inner loop

cannot.

Example 12

for(j=0; j<100; j++)

for(i=0; i<100; i++)

a[i][j] = f(a[i][j-1]);

• Inner loop can be parallelized, outer loop

cannot.

• Less desirable situation (finer-grain

parallelism).

• Loop interchange is sometimes possible.

Level of loop-carried dependence

• Is the nesting depth of the loop that carries

the dependence.

• Indicates which loops can be parallelized.

Be careful … Example 13

printf(“a”);

printf(“b”);

Statements have a hidden output dependence

due to the output stream.

33 34

35 36

10

Be careful … Example 14

a = f(x);

b = g(x);

Statements could have a hidden dependence if

f and g update the same variable.

Be careful … Example 15

for(i=0; i<100; i++)

a[i+10] = f(a[i]);

• Dependence between a[10], a[20], …

• Dependence between a[11], a[21], …

• …

• Some parallel execution is possible.

Be careful … Example 16

for(i=1; i<100;i++) {

a[i] = …;

... = a[i-1];

}

• Dependence between a[i] and a[i-1]

• Complete parallel execution impossible

• Pipelined parallel execution possible

Be careful … Example 17

for(i=0; i<100; i++)

a[i] = f(a[indexa[i]]);

• Cannot tell for sure.

• Parallelization depends on user knowledge

of values in indexa[].

• User can tell, compiler cannot.

37 38

39 40

11

An aside

• Parallelizing compilers analyze program

dependences to decide parallelization.

• In parallelization by hand, user does the

same analysis.

• Compiler more convenient and more correct

• User more powerful, can use knowledge of

data values

To remember

• Statement order must not matter.

• Statements must not have dependences.

• Some dependences can be removed.

• Some dependences may not be obvious.

Synchronization

• Used to enforce dependences

• Control the ordering of events on different

processors

– Events – signal(x) and wait(x)

– Fork-Join or barrier synchronization (global)

– Mutual exclusion/critical sections

Example 1: Creating Parallelism

by Enforcing Dependences

for(i=1; i<100; i++) {

a[i] = …;

…;

… = a[i-1];

}

• Loop-carried dependence, not parallelizable

41 42

43 44

12

Synchronization Facility

• Suppose we had a set of primitives,

signal(x) and wait(x).

• wait(x) blocks unless a signal(x) has

occurred.

• signal(x) does not block, but causes a

wait(x) to unblock, or causes a future

wait(x) not to block.

Example 1: Enforcing

Dependencies (continued)

for(i=...; i<...; i++) {

a[i] = …;

signal(e_a[i]);

…;

wait(e_a[i-1]);

… = a[i-1];

}

Example 1 (continued)

• Note that here it matters which iterations are

assigned to which processor.

• It does not matter for correctness, but it

matters for performance.

• Cyclic assignment is probably best.

Example 2: Enforcing

Dependences

for(i=0; i<100; i++) a[i] = f(i);

x = g(a);

for(i=0; i<100; i++) b[i] = x + h(a[i]);

• First loop can be run in parallel.

• Middle statement is sequential.

• Second loop can be run in parallel.

45 46

47 48

13

Example 2 (contimued)

• We will need to make parallel execution

stop after first loop and resume at the

beginning of the second loop.

• Two (standard) ways of doing that:

– fork() - join()

– barrier synchronization

Fork-Join Synchronization

• fork() causes a number of processes to be

created and to be run in parallel.

• join() causes all these processes to wait until

all of them have executed a join().

Example 2 (continued)

fork();

for(i=...; i<...; i++) a[i] = f(i);

join();

x = g(a);

fork();

for(i=...; i<...; i++) b[i] = x + h(a[i]);

join();

Eliminating Dependences

• Privatization or scalar expansion

• Reduction (common pattern)

49 50

51 52

14

Example: Scalar Expansion or

Privatization

for (I = 0; I < 100; I++)

T = A[I];

A[I] = B[I];

B[I] = T;

Loop-carried anti-dependence on T

Eliminate by converting T into an array or by

making T private to each loop iteration

Example: Scalar Expansion

for (I = 0; I < 100; I++)

T [I]= A[I];

A[I] = B[I];

B[I] = T[I];

Loop-carried anti-dependence eliminated

Removing Dependences:

Reduction

sum = 0.0;

for(i=0; i<100; i++) sum += a[i];

• Loop-carried dependence on sum.

• Cannot be parallelized, but ...

Reduction (continued)

for(i=0; i<...; i++) sum[i] = 0.0;

fork();

for(j=…; j<…; j++) sum[i] += a[j];

join();

sum = 0.0;

for(i=0; i<...; i++) sum += sum[i];

Common pattern often with explicit support

e.g., sum = reduce (+, a, 0, 100)

CAVEAT: Operator must be commutative and associative

53 54

55 56

15

Acknowledgements

Slides reflect content from Willy Zwaenepoel

and from Grama/Gupta/Karypis/Kumar that

accompany their corresponding

course/textbooks and have been adapted to

suit the content of this course

98

