
1

Parallelism: Practical Considerations,

pthreads

CSC 2/458

Instructor: Sandhya Dwarkadas

Parallelism:

Practical Considerations

• Spatial locality

• Temporal locality

• False sharing

• Commutativity and associativity of

operations

Performance Metrics

• Speedup(p): s(p) = T(1)/T(p)

• Parallel efficiency (p): e(p) = s(p)/p = T(1)/(pT(p))

• Experimentally determined serial fraction

Programming in Parallel

• Explicitly concurrent languages – e.g.,
Occam, SR, Java, Ada, UPC, C++11

• Compiler-supported extensions – e.g., HPF,
Cilk

• Library packages outside the language
proper – e.g., pthreads, MPI

95 96

97 98

2

Pthreads: A Shared Memory

Programming Model

• POSIX standard shared-memory

multithreading interface

• Not just for parallel programming, but for

general multithreaded programming

• Provides primitives for process

management and synchronization

What does the user have to do?

• Decide how to decompose the computation

into parallel parts

• Create (and destroy) processes to support

that decomposition

• Add synchronization to make sure

dependences are covered

General Thread Structure

• Typically, a thread is a concurrent execution

of a function or a procedure

• So, your program needs to be restructured

such that parallel parts form separate

procedures or functions

Thread Creation

int pthread_create
(pthread_t *new_id,
const pthread_attr_t *attr,
void *(*func) (void *),
void *arg)

• new_id: thread’s unique identifier

• attr: ignore for now

• func: function to be run in parallel

• arg: arguments for function func

99 100

101 102

3

Example of Thread Creation

void *func(void *arg) {

int *I=arg;

…..

}

void main()

{

int X; pthread_t id;

….

pthread_create(&id, NULL, func, &X);

…

}

Pthread Termination

void pthread_exit(void *status)

• Terminates the currently running thread.

• Is implicit when the function called in

pthread_create returns.

Thread Joining

int pthread_join(
pthread_t new_id,
void **status)

• Waits for the thread with identifier new_id
to terminate, either by returning or by
calling pthread_exit().

• Status receives the return value or the value
given as argument to pthread_exit().

Example of Thread Creation

main()

pthread_

create(func) func()

pthread_

join(id)
pthread_

exit()

103 104

105 106

4

Matrix Multiply

for(i=0; i<n; i++)

for(j=0; j<n; j++) {

c[i][j] = 0.0;

for(k=0; k<n; k++)

c[i][j] += a[i][k]*b[k][j];

}

Parallel Matrix Multiply

• All i- or j-iterations can be run in parallel

• If we have p processors, n/p rows to each

processor

• Corresponds to partitioning i-loop

Matrix Multiply: Parallel Part

void mmult(void* s)

{

int slice = (int) s;

int from = (slice*n)/p;

int to = ((slice+1)*n)/p;

for(i=from; i<to; i++)

for(j=0; j<n; j++) {

c[i][j] = 0.0;

for(k=0; k<n; k++)

c[i][j] += a[i][k]*b[k][j];

}

}

Matrix Multiply: Main

int main()
{

pthread_t thrd[p];

for(i=0; i<p; i++)
pthread_create(&thrd[i], NULL, mmult,(void*) i);

for(i=0; i<p; i++)
pthread_join(thrd[i], NULL);

}

107 108

109 110

5

General Program Structure

• Encapsulate parallel parts in functions.

• Use function arguments to parametrize what

a particular thread does.

• Call pthread_create() with the function and

arguments, save thread identifier returned.

• Call pthread_join() with that thread

identifier.

Pthreads Synchronization

• Create/exit/join

– provide some form of synchronization

– at a very coarse level

– requires thread creation/destruction

• Need for finer-grain synchronization

– mutex locks, reader-writer locks, condition

variables, semaphores

Synchronization Primitives in

Pthreads

• Mutexes

• Reader-writer locks

• Condition variables

• Semaphores

• Barriers

Mutex Locks: Creation and

Destruction

pthread_mutex_init(

pthread_mutex_t * mutex,

const pthread_mutex_attr *attr);

• Creates a new mutex lock

pthread_mutex_destroy(

pthread_mutex_t *mutex);

• Destroys the mutex specified by mutex

111 112

113 114

6

Mutex Locks: Lock

pthread_mutex_lock(

pthread_mutex_t *mutex)

• Tries to acquire the lock specified by

mutex.

• If mutex is already locked, then calling

thread blocks until mutex is unlocked.

Mutex Locks: UnLock

pthread_mutex_unlock(

pthread_mutex_t *mutex);

• If calling thread has mutex currently locked,

this will unlock the mutex.

• If other threads are blocked waiting on this

mutex, one will unblock and acquire mutex

• Which one is determined by the scheduler

Condition variables: Creation and

Destruction

pthread_cond_init(

pthread_cond_t *cond,

pthread_cond_attr *attr)

• Creates a new condition variable cond

pthread_cond_destroy(

pthread_cond_t *cond)

• Destroys the condition variable cond.

Condition Variables: Wait

pthread_cond_wait(

pthread_cond_t *cond,

pthread_mutex_t *mutex)

• Blocks the calling thread, waiting on cond

• Unlocks the mutex

• Re-acquires the mutex when unblocked

115 116

117 118

7

Condition Variables: Signal

pthread_cond_signal(

pthread_cond_t *cond)

• Unblocks one thread waiting on cond.

• Which one is determined by scheduler.

• If no thread waiting, then signal is a no-op.

Condition Variables: Broadcast

pthread_cond_broadcast(

pthread_cond_t *cond)

• Unblocks all threads waiting on cond.

• If no thread waiting, then broadcast is a no-

op.

Use of Condition Variables

• IMPORTANT NOTE: A signal is

“forgotten” if there is no corresponding wait

that has already occurred

• Use semaphores (or construct a semaphore)

if you want the signal to be remembered

Semaphores

sem_wait(sem_t *sem)

• Blocks until the semaphore value is non-
zero

• Decrements the semaphore value on return

sem_post(sem_t *sem)

• Unlocks the semaphore and unblocks one
waiting thread

• Increments the semaphore value otherwise

119 120

121 122

8

PIPE with Pthreads

P1:for(i=0; i<num_pics, read(in_pic); i++) {

int_pic_1[i] = trans1(in_pic);

sem_post(event_1_2[i]);

}

P2: for(i=0; i<num_pics; i++) {

sem_wait(event_1_2[i]);

int_pic_2[i] = trans2(int_pic_1[i]);

sem_post(event_2_3[i]);

}

Parallel TSP

process i:

while((p=de_queue()) != NULL) {

for each expansion by one city {

q = add_city(p);

if complete(q) { update_best(q) };

else en_queue(q);

}

}

Parallel TSP

• Need critical section

– in update_best,

– in en_queue/de_queue.

• In de_queue

– wait if q is empty,

– terminate if all processes are waiting.

• In en_queue:

– signal q is no longer empty.

Parallel TSP: Mutual Exclusion

en_queue() / de_queue() {

pthread_mutex_lock(&queue);

…;

pthread_mutex_unlock(&queue);

}

update_best() {

pthread_mutex_lock(&best);

…;

pthread_mutex_unlock(&best);

}

123 124

125 126

9

Parallel TSP: Condition Synchronization
de_queue() {

pthread_mutex_lock(&queue);
while((q is empty) and (not done)) {

waiting++;
if(waiting == p) {

done = true;
pthread_cond_broadcast(&empty);

}
else {

pthread_cond_wait(&empty, &queue);
waiting--;

}
}
if(done)

return null;
else

remove and return head of the queue;
pthread_mutex_unlock(&queue);

}

Sequential SOR

for some number of timesteps/iterations {

for (i=0; i<n; i++)

for(j=1, j<n, j++)

temp[i][j] = 0.25 *

(grid[i-1][j] + grid[i+1][j]

grid[i][j-1] + grid[i][j+1]);

for(i=0; i<n; i++)

for(j=1; j<n; j++)

grid[i][j] = temp[i][j];

}

Parallel SOR

• First (i,j) loop nest can be parallelized

• Second (i,j) loop nest can be parallelized

• Must wait until all processors have finished first

loop nest before starting second

• Must wait until all processors have finished

second loop nest of previous iteration before

starting first loop nest of next iteration

• Give n/p rows to each processor

Pthreads SOR: Parallel parts (1)

void* sor_1(void *s)

{

int slice = (int) s;

int from = (slice*n)/p;

int to = ((slice+1)*n)/p;

for(i=from;i<to;i++)

for(j=0; j<n; j++)

temp[i][j] = 0.25*(grid[i-1][j] + grid[i+1][j]

+grid[i][j-1] + grid[i][j+1]);

}

127 128

129 130

10

Pthreads SOR: Parallel parts (2)

void* sor_2(void *s)

{

int slice = (int) s;

int from = (slice*n)/p;

int to = ((slice+1)*n)/p;

for(i=from;i<to;i++)

for(j=0; j<n; j++)

grid[i][j] = temp[i][j];

}

Pthreads SOR: main

for some number of timesteps {

for(i=0; i<p; i++)

pthread_create(&thrd[i], NULL, sor_1, (void *)i);

for(i=0; i<p; i++)

pthread_join(thrd[i], NULL);

for(i=0; i<p; i++)

pthread_create(&thrd[i], NULL, sor_2, (void *)i);

for(i=0; i<p; i++)

pthread_join(thrd[i], NULL);

}

Barrier Synchronization

• A wait at a barrier causes a thread to wait

until all threads have performed a wait at

the barrier.

• At that point, they all proceed

• Use instead of creating and destroying

threads multiple times to achieve the same

global synchronization with lower overhead

Implementing Barriers in Pthreads

• Count the number of arrivals at the barrier.

• Wait if this is not the last arrival.

• Make everyone unblock if this is the last

arrival.

• Since the arrival count is a shared variable,

enclose the whole operation in a mutex

lock-unlock.

131 132

133 134

11

Implementing Barriers in Pthreads

void barrier()
{

pthread_mutex_lock(&mutex_arr);
arrived++;
if (arrived<N) {

pthread_cond_wait(&cond, &mutex_arr);
}
else {

pthread_cond_broadcast(&cond);
arrived=0; /* be prepared for next barrier */

}
pthread_mutex_unlock(&mutex_arr);

}

Parallel SOR with Barriers (1 of 2)

void* sor (void* arg)

{

int slice = (int)arg;

int from = (slice * (n-1))/p + 1;

int to = ((slice+1) * (n-1))/p + 1;

for some number of iterations { … }

}

Parallel SOR with Barriers (2 of 2)

for (i=from; i<to; i++)

for (j=1; j<n; j++)

temp[i][j] = 0.25 * (grid[i-1][j] + grid[i+1][j]

+ grid[i][j-1] + grid[i][j+1]);

barrier();

for (i=from; i<to; i++)

for (j=1; j<n; j++)

grid[i][j]=temp[i][j];

barrier();

Parallel SOR with Barriers: main

int main(int argc, char *argv[])

{

pthread_t *thrd[p];

/* Initialize mutex and condition variables */

for (i=0; i<p; i++)

pthread_create (&thrd[i], &attr, sor, (void*)i);

for (i=0; i<p; i++)

pthread_join (thrd[i], NULL);

/* Destroy mutex and condition variables */

}

135 136

137 138

12

Busy Waiting

• Not an explicit part of the API

• Available in any general shared memory

programming environment

Busy Waiting

initially: flag = 0;

P1: produce data;

flag = 1;

P2: while(!flag) ;

consume data;

Use of Busy Waiting

• On the surface, simple and efficient

• In general, not a recommended practice

• Often leads to messy and unreadable code

(blurs data/synchronization distinction)

• On some architectures, may be inefficient or

may not even work as intended (depending

on consistency model)

Private Data in Pthreads

• To make a variable private in pthreads, you

need to make an array out of it

• Index the array by thread identifier, which

you can get by the pthread_self() call

• An alternative is to declare the variable on

the stack

• Not very elegant or efficient

139 140

141 142

13

Other Primitives in Pthreads

• Set the attributes of a thread

• Set the attributes of a mutex lock

• Set scheduling parameters

Acknowledgements

Slides include content from Willy

Zwaenepoel that accompany his

corresponding course/textbook and that have

been adapted to suit the content of this course

143 144

