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Shared Memory: 

Synchronization, Coherence, and 

Consistency

Shared Memory: A Look 

Underneath

proc1 proc2 proc3 procN

Shared memory space

Shared Memory Implementation

• Coherence - defines the behavior of reads and 
writes to the same memory location

– ensuring that modifications made by a processor 
propagate to all copies of the data

– Program order preserved

– Writes to the same location by different processors 
serialized

• Synchronization - coordination mechanism

• Consistency - defines the behavior of reads and 
writes with respect to access to other memory 
locations 
– defines when and in what order modifications are 

propagated to other processors

Synchronization

• Basic types

– Mutual exclusion
• Primitive: locks

– Events
• Global event-based

– Primitive: Barriers 

• Point-to-point event-based
– Semaphores (blocking)

– Condition variables

– Flags (busy-waiting/spinning)

– Full-empty bits (hardware implementation; also considered message 
passing – produce-consumer)

• Interrupts
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Components of a 

Synchronization Event

– Acquire method (enter critical section, 
proceed past event)

– Waiting algorithm (busy waiting, blocking)

– Release method (enable others to proceed)
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The Critical-Section Problem
• Problem context:

– n processes all competing to use some shared 
data

– Each process has a code segment, called critical 
section, in which the shared data is accessed.

• Find a solution that satisfies the following:
1. Mutual Exclusion.  No two processes simultaneously in the critical 

section.
2. Progress.  No process running outside its critical section may 

block other processes.
3. Bounded Waiting/Fairness.  Given the set of concurrent 

processes, a bound must exist on the number of times that other 
processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and 
before that request is granted.
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Bounded Buffer 

• Shared data

typedef struct { ... } item;

item buffer[BUFFER_SIZE];

int in = 0, out = 0;

int counter = 0;

• Producer process 

item nextProduced;

while (1) {

while (counter==BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in+1) % BUFFER_SIZE;

counter++;

}

• Consumer process 

item nextConsumed;

while (1) {

while (counter==0)

; /* do nothing */

nextConsumed = buffer[out];

out = (out+1) % BUFFER_SIZE;

counter--;

}

out in

counter
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Bounded Buffer
• The following statements must be performed atomically:

counter++;

counter--;

• Atomic operation means an operation that completes in its entirety 
without interruption

• The statement “counter++” may be compiled into the following 
instruction sequence:

register1 = counter;

register1 = register1 + 1;

counter   = register1;

• The statement “counter--” may be compiled into:

register2 = counter;

register2 = register2 - 1;

counter   = register2;
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Race Condition

• Race condition: 
– The situation where several processes access and 

manipulate shared data concurrently
– The final value of the shared data and/or effects on 

the participating processes depends upon the order of 
process execution – nondeterminism

• To prevent race conditions, concurrent processes must be 
synchronized
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Eliminating Concurrency
• First idea: eliminating the chance of context switch when a 

process runs in the critical section.
– effective as a complete solution only on a single-

processor machine
– only for short critical sections

• How to eliminate context switch?
– software exceptions
– hardware interrupts
– system calls

• Disabling interrupts?
– not feasible for user programs since they shouldn’t 

be able to disable interrupts
– feasible for OS kernel programs
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Critical Section

• General structure of process Pi

do {
entry section

critical section
exit section

remainder section
} while (1);

• Processes may share some common variables to synchronize their 
actions

• Assumption: instructions are atomic and no re-ordering of 
instructions
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Algorithm 3
• Combine shared variables of algorithms 1 and 2.

• Process Pi

do {

flag[i] = true;

turn = j;

while (flag[j] && turn==j) ;

critical section
flag[i] = false;

remainder section
} while (1);

• Meets all three requirements; solves the critical-section 
problem for two processes.  called Peterson’s algorithm.
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Basic Hardware Mechanisms for 

Synchronization
• Test-and-set – atomic exchange

• Fetch-and-op (e.g., increment) – returns value 

and atomically performs op (e.g., increments it)

• Compare-and-swap – compares the contents of 

two locations and swaps if identical

• Load-locked/store conditional – pair of 

instructions – deduce atomicity if second 

instruction returns correct value

• Transaction support (e.g., Intel’s TSX)

Simple Spinlock

type lock = (unlocked, locked)

procedure acquirelock (L : lock)

while (testandset (L) == locked) // returns 

old value

procedure releaselock (L : lock)

lock = unlocked
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Implementing Critical Sections Using 

Busy Waiting 
• In all our solutions today, a process enters a loop until the 

entry is granted  busy waiting.

• Problems with busy waiting:
– Waste of CPU time
– Potential for extra traffic/communication
– If a process is switched out of CPU during critical 

section
• other processes may have to waste a whole CPU 

quantum 
• may even deadlock with strictly prioritized 

scheduling (priority inversion problem)

Synchronization Using Special 

Instruction: TSL (test-and-set)

entry_section:

TSL R1, LOCK | copy lock to R1 and set lock to 1

CMP R1, #0 | was lock zero?

JNE entry_section | if it wasn’t zero, lock was set, so loop

RET | return; critical section entered

exit_section:

MOV LOCK, #0 | store 0 into lock

RET | return; out of critical section
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Implementing Locks Using 

Test&Set
• On the SPARC ldstub moves an unsigned byte 

into the destination register and rewrites the 
same byte in memory to all 1s
_Lock_acquire:

ldstub [%o0], %o1

addcc %g0, %o1, %g0

bne _Lock

nop

fin: 

jmpl %r15+8, %g0

nop

_Lock_release:

st %g0, [%o0]

jmpl %r15+8, %g0

nop

Using ll/sc for Atomic Exchange

• Swap the contents of R4 with the memory 

location specified by R1

try: mov R3, R4      ; mov exchange value

ll     R2, 0(R1)  ; load linked

sc R3, 0(R1)     ; store conditional

beqz R3, try      ; branch if store fails

mov  R4, R2     ; put load value in R4

Spinlock Algorithms

• Test&test&set (w, w/o exponential backoff)

• Ticket lock (w, w/o proportional backoff)

• Array based queue locks

• MCS linked-list based queue locks

MCS Lock Acquire

mcs_lock_acquire:

st %g0, [%o1+4]

mov %o1, %g3

swap [%o0], %g3

cmp %g3, 0

be .LL4

mov 1, %g2

st %g2, [%o1]

st %o1, [%g3+4]

.LL9:

ld [%o1], %g2

cmp %g2, 0

bne .LL9

nop

.LL4:

retl

nop
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MCS Lock Release
mcs_lock_release:

ld [%o1+4], %g2

cmp %g2, 0

bne .LL11

nop

cas [%o0], %o1, %g2

cmp %g2, %o1

be .LL10

nop

.LL17:

ld [%o1+4], %g2

cmp %g2, 0

be .LL17

nop

.LL11:

st %g0, [%g2]

.LL10:

retl

nop

Barrier Algorithms

• Centralized sense-reversing barrier

• Software combining tree

• Tournament barrier

• Dissemination barrier

• Combining tree with improved locality

A Simple Barrier
mycount: local variable; counter, flag, lock: shared variables

p = number of processors

lock(&lock);

if counter == 0

flag = 0

mycount = ++counter

unlock(&lock);

if (mycount == p) {

counter = 0

flag = 1

}

else

while (flag == 0) {};

Will this work?

A Sense-Reversing Barrier
local_sense=0: local variable; counter, flag, lock: shared variables

p = number of processors; 

local_sense = !(local_sense);

lock(&lock)

counter++

if (counter == p) {

unlock(&lock) 

counter = 0

flag = local_sense

}

else {

unlock (&lock)

while (flag != local_sense) {};

}
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Performance Goals

• Low latency, short critical path

• Low traffic

• Scalability

• Low storage cost

• Fairness

Basic Hardware Mechanisms for 

Synchronization
• Test-and-set – atomic exchange

• Fetch-and-op (e.g., increment) – returns value 

and atomically performs op (e.g., increments it)

• Compare-and-swap – compares the contents of 

two locations and swaps if identical

• Load-locked/store conditional – pair of 

instructions – deduce atomicity if second 

instruction returns correct value

Non-blocking algorithms

Failure or suspension of any thread cannot cause failure or 
suspension of another thread (no indefinite delay due to mutual 
exclusion)
➢ Operations defined on it do not require mutual exclusion over multiple 

instructions (use atomic primitives)

• Obstruction-free algorithm
– One that guarantees that a thread running in isolation will make 

progress (although livelock is possible)

• Lock-free algorithm 
– Operations guarantee that some process will complete its operation a 

finite amount of time, even if other processes halt

• Wait-free algorithm
– Operations can guarantee that EVERY non-faulting process will 

complete its operation in a finite amount of time

Shared Memory Implementation

• Coherence - defines the behavior of reads and 
writes to the same memory location

– ensuring that modifications made by a processor 
propagate to all copies of the data

– Program order preserved

– Writes to the same location by different processors 
serialized

• Synchronization - coordination mechanism

• Consistency - defines the behavior of reads and 
writes with respect to access to other memory 
locations 
– defines when and in what order modifications are 

propagated to other processors


