
Intel TSX
Adam Dees

Intel
TSX/TSX-NI

Transactional Synchronization
Extensions /

Transactional Synchronization
Extensions New Instructions

● Provides hardware level
transactional memory

● Expands Intel’s x86 Instruction
Set Architecture

● Released in 2013
● Two different implementations:

Hardware Lock Elision (HLE)
and Restricted Transactional
Memory (RTM)

Motivation

● Writing multithreaded code is
difficult or at the very least, time
consuming

● The promise of transactional
memory is the ability to write
parallel code easily

● We want to sacrifice as little
efficiency as possible

From Intel’s presentation on “Transactional Synchronization Extensions”

Lock Elision

● An elision is an omission, in this
case the omission of writing to
a lock

● You might call running multiple
critical sections without any
lock writing optimistic at best

● So it fits that this is a kind of
‘optimistic concurrency control’

● Saves lots of time that would
otherwise be spent
synchronizing

● We watch out for conflict and
retrace our work if it occurs

● A very natural way to exploit
unspecified concurrency

From Intel’s presentation on
“Transactional
Synchronization Extensions”

Hardware Lock Elision (HLE) vs. Restricted Transactional Memory (RTM)

HLE

● Has backwards compatibility with some
prior processors

● XACQUIRE and XRELEASE
● These denote the start and end of a

critical section
● Only a subset of instructions will work

in these critical code sections
● Critical section failure leads to

re-execution without lock elision

RTM

● Processor must provide explicit support
for RTM

● XBEGIN, XEND, and XABORT
● The XBEGIN instruction includes a

redirect to another section of code
● If the transaction fails, we move to this

section of code and update a special
register called EAX with an encoding
that specifies the cause of failure

XTEST is found in both, it tests if you are inside of a transaction

Conflict Detection

● A big open question at this point is how we can detect conflicts
● The specification is not fully given, but we know Intel maintains a read and

write-set for each transaction. The sets are sets of caches. So cache-level is
the granularity of this detection

● From Intel’s manual: “A conflicting data access occurs if another logical
processor either reads a location that is part of the transactional region's
write-set or writes a location that is a part of either the read- or write-set of the
transactional region. We refer to this as a data conflict.”

● “Transactional aborts may also occur due to limited transactional resources”
● At the end of the day with such generality, we may be aborting constantly and

it will be hard to know until the program runs

Details on Conflict Detection
and Contention Management

● In hardware, read and write sets will be
appended to cache lines as a RS bit and WS bit

● Cache controller is used to detect these
conflicts

● When a conflict is detected by a transaction,
the transaction itself aborts

○ Therefore old gives way to new
● This is done because of the desire to preserve

usage of the cache coherence protocol, which
does the same

Cache lines RS WS

. . . 0 0

. . . 1 0

. . . 1 1

Each transaction keeps track of a read and write set like so:

Aborts and Commits

● A copy of the register is made at the start of the transaction
● To abort, the register is restored to its original state, WS/RS bits are zeroed out, and all WS

lines are put in an invalid state
● A commit places all WS lines in M state, RS in S/F state, all WS/RS bits are zeroed, and the

original copy of the register is removed such that the existing register contents are the
new architectural state

Does Intel TSX accomplish its goals?

● “Performance Evaluation of Intel Transactional Synchronization Extensions
for High-Performance Computing” says that TSX . . .

○ “on a set of real-world, high-performance computing workloads, Intel TSX provides 1.41x
average speedup over lock and atomics based implementations”

○ “we observe an average of 1.31x bandwidth improvement on a set of network intensive
applications”

● A significant improvement on performance
● Also makes the code easier/faster to write, so win/win
● However . . .

Security Issues, Removal, and Revival?

● “Breaking Kernel Address Space Layout Randomization with Intel TSX” in 2016 showed
exactly what its title suggests

● Address space layout randomization is a technique to prevent vulnerabilities in memory
by making attacks impossible to reliably reach a particular section of memory

● Because of how Intel TSX handles aborts, it is possible for attackers to reliably discover
the location of an otherwise randomly placed kernel address space on all operating
systems

● HLE has been taken out of all Intel processors from 2019 and later
● Intel 10th generation processors do not support TSX at all, neither HLE or RTM
● A new TSX-like TSXLDTRK instruction set extension has been documented and planned

for inclusion in some future server processors

Slides borrowed from the “Intel®Transactional Synchronization Extensions” presentation given at the Intel
Developer Forum 2012. http://pages.cs.wisc.edu/~rajwar/papers/sf12_arcs004_100.pdf

http://pages.cs.wisc.edu/~rajwar/papers/sf12_arcs004_100.pdf

