
GPUs

Jiamin Gan & Bokai Zhang

1

Overview

▪ Background
▪ Programming Model
▪ CUDA Architecture
▪ Flow Control
▪ Memory Hierarchy
▪ Recent Developments

2

Background

▪ First GPU: GeForce 256 (1999)
▪ 5M transistors

▪ First programmable GPU: GeForce 3 (2001)
▪ 60M transistors
▪ Languages: DX8 and OpenGL
▪ Execute vertex shader and pixel shader programs

▪ Common architecture:
▪ NVIDIA: Fermi(2010), Kepler(2012), Maxwell(2014), Pascal(2016),

Volta(2017), Turing(2018), Ampere(2020), Hopper(March, 2022)1

▪ AMD: TeraScale, GCN, RDNA, etc.
▪ Fastest datacenter GPU (till 10/2020):

▪ A40 GPU accelerator: (FP32) 37.4 TFLOPS
▪ 10,752 CUDA cores (28.3 billion transistors) & 48 GB GDDR6 memory

3

1. Everything You Need to Know About GPU Architecture and How It Has Evolved https://www.cherryservers.com/blog/everything-you-need-to-know-about-gpu-architecture

GPU - A Computing Accelerator

▪ Separate piece of Device
▪ Specialized hardware
▪ Connected to CPU through PCIe Bus
▪ Have its own memory (usually)

4

Programming Model

5

Programming on GPUs

A typical CUDA program:
1. Copy memory from CPU to GPU
2. Launch a predefined kernel

a. Each thread will execute this
kernel code

b. Thread have its identifier
(similar to thread id)

3. Copy result from GPU back to CPU

6

[5]

Programming on GPUs - Example

Kernel Definition (saxpy: Single-precision A * X Plus Y)

7

Programming on GPUs - Example (cont)

Memory (and Data) Initialization

8

Programming on GPUs - Example (cont)
Memory Copying and Kernel Execution

Cleanup

9

Programming on GPUs (cont)

Thread Organization
▪ Thread Block

▪ Collection of warps
(multiple threads)

▪ All threads in same block
have shared memory

▪ Grid
▪ Collection of thread blocks
▪ All thread blocks in same

grid have shared memory

10

[5]

Programming on GPUs (cont)

 =⌈N/blocksize⌉

11

[4]

GPU Architecture

12

Example based on Nvidia Fermi Architecture and GF100

GPU - Architecture Overview

▪ Collection of Streaming Multiprocessor

13

[5]

Streaming Multiprocessor

▪ Consists of massive cores and independent
load/store units

▪ Contains special function units
▪ Execute transcendental instructions

such as sin, sqrt, Tensor Operations.
▪ Shared L1 cache
▪ Lots of registers

14

[3]

▪ Acronym
▪ LD/ST: Load Store Units
▪ SFU: Special Function Units

Streaming Processor (or CUDA core)

▪ Underlying computing hardware
▪ Takes instruction from warp scheduler and

dispatch unit
▪ Executes through the ALU units(FP and INT in

this case)
▪ Comparing to a CPU core

▪ Almost no control logic
▪ Much cheaper to build
▪ More like an ALU(but they call it a core)

▪ Can have specialized hardware for specific
computations(not necessarily in CUDA core)
▪ Single/Double Precision Floating Point Unit
▪ Ray Tracing Core, Tensor Core
▪ SFUs

Fermi Architecture [3]

15

GPU Hardware vs CUDA Model

16

Streaming Multiprocessor - Warp

17

▪ Each SM(thread blocks) have multiple
warps

▪ Example: Kepler GK110
▪ 32 threads/core each warp

▪ Each warp is under Single Instruction
Multiple Thread(SIMT) model
▪ Warp scheduler give same

instruction to each core

[8]

▪ Acronym
▪ DP Units: Double Precision Units
▪ LD/ST: Load Store Units
▪ SFU: Special Function Units
▪ Tex: Texture Memory

Streaming Multiprocessor - Warp[contd]

18

▪ Hardware Warp Scheduler
▪ Dispatch specific instructions

by each Instruction Dispatch
Unit

▪ All threads in one warp executes the
same instruction

[8]

Graphic Processing Cluster(GPC)

19

▪ Cluster for specific graphic operations
▪ Basically a collection of (<4) SMs

with other aiding hardware
▪ Not physically organized(flexible)

▪ Raster Engine
▪ Triangle setup, rasterization, and Z-cull

//Some Graphic Operation
▪ Polymorph Engine

▪ Vertex attribute fetch and tessellation
//Some Graphic Operation

GF 100 Graphics Processing Cluster (GPC)[8]

GPU Flow Control
- Divergent Branching

20

Control Flow Problem In SIMT

21

1 do {
2 t1 = tid*N;
3 t2 = t1 + i;
4 t3 = data1[t2];
5 t4 = 0;
6 if(t3 != t4) {
7 t5 = data2[t2];
8 if(t5 != t4) {
9 x += 1;
10 } else {
11 y += 2;
12 }
13 } else {
14 z += 3;
15 }
16 i++;
17 } while(i < N);

A

C

B

F

D

G

▪ Consider this piece of CUDA kernel Code
▪ A, B, C, D, E, F, G are all instruction

address(think of them in assembly)
▪ Different control path can be taken by

different thread (depend on their tid)
▪ What is the problem?

E

22

Divergent Branching - Simpler Example

[1]

Control Flow Problem In SIMT

23

1 do {
2 t1 = tid*N;
3 t2 = t1 + i;
4 t3 = data1[t2];
5 t4 = 0;
6 if(t3 != t4) {
7 t5 = data2[t2];
8 if(t5 != t4) {
9 x += 1;
10 } else {
11 y += 2;
12 }
13 } else {
14 z += 3;
15 }
16 i++;
17 } while(i < N);

A

C

B

F

D

G

E

▪ Consider this piece of CUDA kernel Code
▪ A, B, C, D, E, F, G are all instruction

address(think of them in assembly)
▪ Different control path can be taken by

different thread (depend on their tid)
▪ What is the problem?

▪ A shared PC and fetched instruction in
all CUDA cores!

24

▪ Consider this piece of CUDA kernel Code
▪ A, B, C, D, E, F, G are all instruction

address(think of them in assembly)
▪ Different control path can be taken by

different thread (depend on their tid)
▪ What is the problem?

▪ A shared PC and fetched instruction in
all CUDA cores!

Control Flow Problem In SIMT

[1]

25

▪ Consider this piece of CUDA kernel Code
▪ A, B, C, D, E, F, G are all instruction

address(think of them in assembly)
▪ Different control path can be taken by

different thread (depend on their tid)
▪ What is the problem?

▪ A shared PC and fetched instruction in
all CUDA cores!

Control Flow Problem In SIMT

[1]

26

▪ Located for each warp
▪ What information should we keep track of

▪ PC: Program Counter of the next
instruction to execute

▪ RPC: Reconvergence Program Counter
▪ Active Mask: One bit for each thread,

shows if this block of execution
includes this thread or not

How to issue the instructions - SIMT Stack

[7]

27

SIMT Stack

▪ Initially: Consist of one entry
▪ RPC NULL
▪ Next PC set to the first instruction in the function
▪ Active Mask set to all 1s

▪ Executes the instructions starting at the PC of the top entry, until
▪ Reached the RPC

▪ In this case, pop the entry
▪ Or a diverge branch happens

▪ Needs more branches, leave the entry in the stack
▪ When a diverge branch happens:

▪ Evaluate the RPC of those branches
▪ Change the current top entry’s next PC to the RPC of those branched

instructions
▪ Push the two branched entries into the stack with proper active masks

28

SIMT Stack - Example
RPC PC Active

Mask

1 - A 1111

RPC PC Active
Mask

1 - G 1111

2 G F 0001

3 G B 1110

RPC PC Active
Mask

1 - G 1111

2 G F 0001

3 G E 1110

4 E D 0110

5 E C 1000

TOS

TOS

TOS[1]

New
Entries

1

2

3

29

SIMT Stack - Example (cont)
RPC PC Active

Mask

1 - G 1111

2 G F 0001

3 G E 1110

4 E D 0110

5 E C 1000 TOS

RPC PC Active
Mask

1 - G 1111

2 G F 0001

3 G E 1110 TOS

RPC PC Active
Mask

1 - G 1111 TOS
[1]

3

4

5

Naive SIMT Lock

30

▪ Consider this lock
▪ Threads diverges as different

result from the while loop
conditions

▪ C is set to the reconvergence
point

▪ The one succeed to the lock still
needs to wait for reconvergence
of other threads, causing deadlock

[1]

GPU Memory Hierarchy

31

Memory Hierarchy

▪ Different types of GPU memory
▪ Comparison between memory for GPU and CPU
▪ Use of shared memory and texture memory
▪ First-level memory architectures
▪ Memory partition unit

32

Overview of Memory System

▪ Local: thread-private data determined by the compiler statically.
(usually means registers and low-level cache)

▪ Shared (scratchpad): on-chip memory per thread block managed by
programmers using __shared__ specifier.

▪ Constant: Read-only, Compiler-determined constant values.
▪ Texture: Read-only memory associated with textures (often used in

streaming and rendering).
▪ Global: Other memory accessible for all blocks and the host.

33

Overview of Memory System

34

Size, Throughput, and Latency

Local(registers): ~256KB per thread, ~1 cycle
Shared: 32 banks w/ 4 bytes per bank, >1TB/s,
~10 cycles
Constant: ~64KB, much slower than shared
Texture: > 100 texture units w/ 48KB per unit
Global: <900GB/s, >100 cycles

35

Compare Memory for GPUs and CPUs

36

▪ GPU:
▪ Texture cache works well on streaming (read-only, high

throughput, uniform latency).
▪ Shared memory works well on intra-block communication.

▪ CPU:
▪ L1d cache, L1i cache, and TLB are used for reducing memory

latency.
▪ L3 cache & RAM are used for sharing data among cores.

Using Shared Memory

37

__shared__ specifier to
declare
void __syncthreads();
works as a barrier in a
thread block

Note: CUDA does not
have built-in mutex.

Using Texture Memory

38

▪ https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#te
xture-object-api

Using Texture Memory

39

Kernel Code:

Using Texture Memory

40

Host Code:

First-Level Memory Structures

▪ Unified L1 data cache and shared memory
▪ a subset of the global memory address space in the cache
▪ shared memory access: bank conflicts (i.e. two threads want to

access the same bank of shared memory at the same time)
▪ cache read & write

▪ Texture cache
▪ often used in streaming and rendering
▪ High throughput, uniform latency

41

Unified L1 data cache and shared memory

▪ Arbiter(2): handle bank conflicts (“replay”)
▪ Shared memory load, read (hit & miss), write (through & back)

42

Texture Cache

▪ Read-only
▪ FIFO: hide the latency of

miss requests that may need
to be serviced from DRAM

43

Memory Partition Unit

▪ L2 Cache: contains both graphics
and compute data.

▪ Frame Buffer (FB)
▪ Raster Operations Pipeline (ROP):

▪ Graphics operation (e.g. alpha
blending).

▪ Atomic operations (e.g. in
CUDA programming model).

44

45

GPU Special Function Hardware
- Tensor Core

46

Volta GV100 Streaming Multiprocessor

Volta Tensor Core Matrix Multiply and
Accumulate

▪

47

Using Tensor Cores to Accelerate Matrix
Multiplications

▪ Example - Neural Networks:
▪ CNN, ResNet, …

48

Boutros, Andrew, et al. "Beyond peak performance: Comparing the real performance of AI-optimized
FPGAs and GPUs." 2020 International Conference on Field-Programmable Technology (ICFPT).
IEEE, 2020.

GPU Special Function Hardware
- Ray Tracing Core

49

Ray Tracing Problem

50

[6]

Accelerate Ray Tracing Algorithms - RT Core

51

[6]

Using Ray Tracing Hardware
For General Problem

52

▪ Example - Neighbor Search
▪ Construct BVH tree using the given data

▪ Already HW accelerated
▪ Use the RT Core hardware to compute

▪ Good if querying multiple times
▪ By professor Yuhao Zhu, University of Rochester

▪ RTNN: Accelerating Neighbor Search Using Hardware Ray
Tracing[9]

▪ Example - Tet-Mesh Point Location
▪ RTX Beyond Ray Tracing: Exploring the Use of Hardware Ray

Tracing Cores for Tet-Mesh Point Location[10]

References

▪ [1]Aamodt, T. M., Fung, W. W. L., & Rogers, T. G. (2018).
General-purpose graphics processor architectures. Synthesis
Lectures on Computer Architecture, 13(2), 1-140.

▪ [2]https://pages.cs.wisc.edu/~sinclair/courses/cs758/fall2019/hando
uts/lecture/cs758-fall19-gpu_memSys.pdf

▪ [3]https://www.nvidia.com/content/PDF/fermi_white_papers/NVID
IA_Fermi_Compute_Architecture_Whitepaper.pdf

▪ [4]https://developer.nvidia.com/blog/even-easier-introduction-cuda/
▪ [5]https://developer.nvidia.com/blog/cuda-refresher-cuda-programm

ing-model/
▪ [6]https://www.hardwarezone.com.sg/feature-what-you-need-know-

about-ray-tracing-and-nvidias-turing-architecture/rt-cores-and-tenso
r-cores

53

References

▪ [7]W. W. L. Fung and T. M. Aamodt, "Thread block compaction for
efficient SIMT control flow," 2011 IEEE 17th International
Symposium on High Performance Computer Architecture, 2011, pp.
25-36, doi: 10.1109/HPCA.2011.5749714.

▪ [8]https://www.ece.lsu.edu/gp/refs/gf100-whitepaper.pdf
▪ [9]https://www.cs.rochester.edu/horizon/pubs/ppopp22.pdf
▪ [10]I. Wald, W. Usher, N. Morrical, L. Lediaev, and V. Pascucci,

“RTX Beyond Ray Tracing,” p. 7.

54

55

Q&A

