GPUs

Jiamin Gan & Bokai Zhang

EBl UNIVERSITY» ROCHESTER

Overview

= Background

= Programming Model
= CUDA Architecture

= Flow Control

= Memory Hierarchy

= Recent Developments

=185(

EB UNIVERSITY~ ROCHESTER

Background

= First GPU: GeForce 256 (1999)
= 5M transistors
= First programmable GPU: GeForce 3 (2001)
= 60M transistors
= Languages: DX8 and OpenGL
= Execute vertex shader and pixel shader programs
= Common architecture:
= NVIDIA: Fermi(2010), Kepler(2012), Maxwell(2014), Pascal(2016),
Volta(2017), Turing(2018), Ampere(2020), Hopper(March, 2022)!
= AMD: TeraScale, GCN, RDNA, etc.
= Fastest datacenter GPU (till 10/2020):
= A40 GPU accelerator: (FP32) 37.4 TFLOPS
= 10,752 CUDA cores (28.3 billion transistors) & 48 GB GDDR6 memory

1. Everything You Need to Know About GPU Architecture and How It Has Evolved https://www.cherryservers.com/blog/everything-you-need-to-know-about-gpu-architecture

UNIVERSITYsROCHESTER

GPU - A Computing Accelerator

= Separate piece of Device
= Specialized hardware

= Connected to CPU through PCle Bus N PN -
= Have its own memory (usually)

Front-side bus]

AV GPU memory
CPU memory

Figure 2.2 CPU/GPU architecture—northbridge.

UNIVERSITYsROCHESTER

Programming Model

EBl UNIVERSITY» ROCHESTER

Programming on GPUs

A typical CUDA program:

1. Copy memory from CPU to GPU
2. Launch a predefined kernel
a. Each thread will execute this —

kernel code float y = func(x);
b. Thread have its identifier output[threadID] = y;

(similar to thread id) CUD;'fe/m.el
3. Copy result from GPU back to CPU i

CUCbA threads \
\\ ‘

UNIVERSITY* ROCHESTER

Programming on GPUs - Example

Kernel Definition (saxpy: Single-precision A * X Plus Y)

__global__
void saxpy(int n, float a, float *x, float xy)
{
int 1 = blockIdx.xkblockDim.x + threadIdx.x;
if (i < n) yli]l = axx[i] + yl[il;

}

UNIVERSITY* ROCHESTER

Programming on GPUs - Example (cont)

Memory (and Data) Initialization

int N = 1<<20;
float *x, *xy, *d_x, *d_y;
X = (floatk)malloc(Nkxsizeof(float));
y = (floatx)malloc(Nxsizeof(float));
cudaMalloc(&d_x, Nxsizeof(float));
cudaMalloc(&d_y, Nxsizeof(float));
for (int 1 = 0; i < N; i++) {
x[1]lh= 1.08%:
vii]l = 2.0t1;

UNIVERSITY* ROCHESTER

Programming on GPUs - Example (cont)

Memory Copying and Kernel Execution

cudaMemcpy(d_x, x, Nxsizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, Nxsizeof(float), cudaMemcpyHostToDevice);

saxpy<<<(N+255) /256, 256>>>(N, 2.0f, d_x, d_y);

cudaMemcpy(y, d_y, Nxsizeof(float), cudaMemcpyDeviceToHost);

Cleanup

cudaFree(d_x);
cudaFree(d_y);
free(x);
free(y);

UNIVERSITY* ROCHESTER

Programming on GPUs (cont)

Thread Organization

= Thread Block
= Collection of warps

CUDA thread CUDA core

-

(multlple thre ads) CUDA streaming
Multiprocessor(SM)

= All threads in same block
have shared memory
= Grid
= (Collection of thread blocks
= All thread blocks in same
grid have shared memory

= [

CUDA-capable GPU

%ﬁ’/l UNIVERSITY ROCHESTER

Programming on GPUs (cont)

int blockSize 256;;
int numBlocks = (N + blockSize - 1) / blockSize; — =|_N/blocks1zeW

add<<<numBlocks, blockSize>>>(N, X, V);

gridDim.x = 4096
A

threadldx.x threadIdx.x threadldx.x

11213].-] 255 1123)...] 255 | ... |O]1]2]3]..]255

J \ J
Y Y

blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 4095

blockIdx.x * blockDim.x + threadIdx.x

(2) * (256) + (3)

%@‘5’1 UNIVERSITY+ ROCHESTER .

GPU Architecture

Example based on Nvidia Fermi Architecture and GF100

=185(

EB UNIVERSITY~ ROCHESTER

GPU - Architecture Overview

= (Collection of Streaming Multiprocessor

(256 KB per SM in A100) | (256 KB per SM in A100) (256 KB per SM in A100)

L1/SMEM ‘Read Lissmem | [TRead L1/SMEM
(192 KB in A100) | only | (192 KB in A100) || only | (192 KB in At00) || only

L2 Cache (40 MB in A100)

Global Memory (DRAM, 40 GB in A100)

(3]

l, UNIVERSITY ROCHESTER

Streaming Multiprocessor

= Consists of massive cores and independent
load/store units
= Contains special function units
= Execute transcendental instructions
such as sin, sqrt, Tensor Operations.

= Shared L1 cache
= Lots of registers

//'

E | e E | 5 [o E E C (= {2 E | = E 1= E
S EG I FOIRSR I B | ESED R U EE S SR RSO S DR RS
o||ld||la||la|la||lag|la||la|la||ég||la||la|lal|léa|lal|lé
A R R = = = T e = = R]

.

@ -
w || 3
O 5=
]]
] 8

3
2 |3
2 z

®

S
®
H

Acronym
LD/ST: Load Store Units
SFU: Sp ecial Function Units Fermi Streaming Multiprocessor (SM) [3]

L8l UNIVERSITY ROCHESTER

Streaming Processor (or CUDA core)

= Underlying computing hardware
= Takes instruction from warp scheduler and

dispatch unit
= Executes through the ALU units(FP and INT 1n
this case)
= Comparing to a CPU core
= Almost no control logic FP Unit INT Unit

= Much cheaper to build
= More like an ALU(but they call it a core)
= Can have specialized hardware for specific
computations(not necessarily in CUDA core)
= Single/Double Precision Floating Point Unit

= Ray Tracing Core, Tensor Core
= SFUs

Fermi Architecture [3]

I UNIVERSITY« ROCHESTER

GPU Hardware vs CUDA Model

PCI Express 3.0 Host Interface

SMX SMX SMX SMX SM

SMX

SMX

Memory Controller

Memo'y Controller

Memory Controller

L_____ % |

Memory Cor i Mler

Memory Controller

Memory Controller

1 1 1 s 1 T 1 s 1 T 1 |
SMX

SMX

SMX

SMX

SMX

SMX

SMX

CUDA core

CUDA thread

CUDA streaming
Multiprocessor (SM)

GPU

CUDA-capable

grid

~
U
°
]
i)
I
o
e
=
S
<
=)
=
O

CUDA kernel

=
o
~
7p
o
aw
S
=
S
P
=
&
83
=
Z
-

Streaming Multiprocessor - Warp

SMX

Di h DI Di D Di % Di h D h Di.
3 <+ <+ 3 3 S 2 S 2 3

- EaCh SM(thl‘ead blO CkS) haVe multlple S Rigist:r Fil: (65,j36x::2-bit:;|(1:0) |‘(131i)72 xaz-bltszlm S
warps EEE] EEEl BEEEE] EEEl BE
. Sl B BAS R b Bl
= Example: Kepler GK110 o o e = -
= 32 threads/core each warp ==== ==== = [l ======== Gl
. Each’warp is under Single Instruction o e 5 %] - e e R 5] < o
Multiple Thread(SIMT) model o v o [i o o [o+ 50 o o o [G o o [-+ =™

= Warp scheduler give same

instruction to each core

...- ..-- = -..-...- i

...- ...- = ...-...- et

...- ..-- == ...-...- =

= Acronym ...- ...- ...-...-
ERRIRPZEIRRARERTRZRRLITRT,

* DP Units: Double Precision Units
= LD/ST: Load Store Units

- SFU SpGCial FunCtiOH Units Tex Tex Tex Tex Tex Tex Tex Tex
= Tex: Texture Memory Tex Tex Tex Tex Tex Tex Tex Tex

LoiST SFU

oisT | SFU
fiterconnt

l, UNIVERSITY ROCHESTER

(8]

Streaming Multiprocessor - Warp[contd]

= Hardware Warp Scheduler

) o . : Warp Scheduler
= Dispatch specific instructions

by each Instruction Dispatch Instruction Dispatch Unit || Instruction Dispatch Unit

Unit
= All threads in one warp executes the _llllll“l .

same instruction : - —

\ p 2 instruction 42 ‘ (Vai on43
Warp 14 instruction 95 Warp 14 instruction 96

Warp 8 instruction 13 Warp 8 instruction 14
Warp 14 instruction 97 Warp 14 instruction 98

Each Kepler SMX contains 4 Warp Schedulers, each with dual Instruction Dispatch Units. A single Warp Scheduler Unit is
shown above.

(8]

UNIVERSITY* ROCHESTER

Graphic Processing Cluster(GPC)

Cluster for specific graphic operations

Basically a collection of (<4) SMs [erc
with other aiding hardware

— aster Engine
Not physically organized(flexible)
Raster Engine

(72}
=

w

=
II'.
I«-

w
=

Il'.

I«

T

SM
— T ——
Triangle setup, rasterization, and Z-cull
//Some Graphic Operation
Polymorph Engine

Vertex attribute fetch and tessellation

//Some Graphic Operation

]
e
Polymorph Engine

Polymorph Engine

E—]
= s
Polymorph Engine Polymorph Engine

GF 100 Graphics Processing Cluster (GPC)[8]

UNIVERSITY* ROCHESTER

GPU Flow Control

- Divergent Branching

EBl UNIVERSITY» ROCHESTER

Control Flow Problem In SIMT

é dot{ e = Consider this piece of CUDA kernel Code
3 ©2=tl+i; = A, B,C,D,E,F G are all instruction
‘5‘ :431 _ g?tal [£2]; address(think of them in assembly)

6 if(3!=t4) { = Different control path can be taken by
g g(jsdf‘:tﬁlt)zg; differgnt thread (depend on their tid)

9 X+=1; = What is the problem?

10 } else {

11 y +=2;

12 !

13 } else {

14 z+=3;

15

16 1++;

17 } while(1<N);

L8l UNIVERSITY ROCHESTER

Divergent Branching - Stmpler Example

if (threadIdx.x < 4) {
A;
B;
} else
X;
bie;

UNIVERSITY* ROCHESTER

Control Flow Problem In SIMT

do {

; o= = Consider this piece of CUDA kernel Code
3 R=tl+i; = A, B,C,D,E,F, G are all instruction

g g _ g?tal [©2]; address(think of them in assembly)

5 if(3 1=t) { = Different control path can be taken by

g g(jsdf‘:tiilt)zg; differgnt thread (depend on their tid)

9 X+=1; = What is the problem?

i(l) j e;sfz{z. = A shared PC and fetched instruction in
12 } all CUDA cores!

13 } else {

14 z+=3;

15 }

16 1++;

17 } while(1<N);

L8l UNIVERSITY ROCHESTER

mul.lo.u32
add.u32
1d.global.u32
mov.u32
setp.eq.u32
bra
1d.global.u32
setp.eq.u32
bra

add.u32

bra

add.u32

bra

add.u32
add.u32
setp.le.u32
bra

Control Flow Problem In SIMT

= Consider this piece of CUDA kernel Code
= A, B,C,D,E,F, G are all instruction
address(think of them in assembly)
= Different control path can be taken by
different thread (depend on their tid)
= What is the problem?
= A shared PC and fetched instruction in
all CUDA cores!

Control Flow Problem In SIMT

= Consider this piece of CUDA kernel Code
= A, B,C,D,E,F, G are all instruction
address(think of them in assembly)

= Different control path can be taken by
different thread (depend on their tid)
F/0001 = What is the problem?
= A shared PC and fetched instruction in

E/1110 all CUDA cores!

(1]

UNIVERSITYsROCHESTER

How to 1ssue the instructions - SIMT Stack

= Located for each warp
= What information should we keep track of

= PC: Program Counter of the next
Per-Warp Reconv. Stacks instruction to execute

=——I = RPC: Reconvergence Program Counter
= Active Mask: One bit for each thread,
PC|RPC[ActiveMask[1:W]| shows if this block of execution
!I includes this thread or not

(7]

UNIVERSITY* ROCHESTER

SIMT Stack

= [Initially: Consist of one entry
= RPC NULL
= Next PC set to the first instruction in the function
= Active Mask set to all 1s
= Executes the instructions starting at the PC of the top entry, until
= Reached the RPC
= In this case, pop the entry
= Or a diverge branch happens
= Needs more branches, leave the entry in the stack
= When a diverge branch happens:
= Evaluate the RPC of those branches

= Change the current top entry’s next PC to the RPC of those branched
instructions

= Push the two branched entries into the stack with proper active masks

UNIVERSITYsROCHESTER

SIMT Stack - Example
@ # RPC PC ?\Z::ke

1 = A 1111 @—TOS

B/ 1110 @ # RPC PC Active

Mask

C/1000 D/0110 1 - 111
2 F 0001

E/1110 3 B 1110 [<€=TOS
@ # RPC PC Active
Mask

1 - (€] 1111

s 5 2 G F 0001
=[] >
— || —>

W = 3 G 1110
— —»

Time 4 D) 0110

5 C 1000 |«g=TOS

SIMT Stack - Example (cont)
@ # RPC PC 1;/([:::1::

1 - (€] 1111

2 G F 0001
B/1110 3 G 1110
4 D 0110

E/1110 @ .
RPC PC Active
Mask

1 - (€] 1111

C/1000 D/0110 F/0001 ; . 000|105

2 G F 0001
G & 3 G E 1110 4—TOS
— || —»
— || —»
— ([—»
= il == # RPC PC Active
Mask

Time

| = G 1111 —TOS

Naive SIMT Lock

= Consider this lock

= Threads diverges as different : *mutex = @

. : while('!atomicCAS(mutex, 0 ,1));
result from the while loop . // critical section
COl’lditiOIlS atomicExch(mutex, @) ;

= (is set to the reconvergence
point

= The one succeed to the lock still

needs to wait for reconvergence m
—\

of other threads, causing deadlock .. Thrmad Threads
| diverged to C i -
(blocked) wverged to

[1]

UNIVERSITYsROCHESTER

GPU Memory Hierarchy

EBl UNIVERSITY» ROCHESTER

Memory Hierarchy

= Different types of GPU memory

= Comparison between memory for GPU and CPU
= Use of shared memory and texture memory

= First-level memory architectures

= Memory partition unit

=185(

EB UNIVERSITY~ ROCHESTER

Overview of Memory System

= Local: thread-private data determined by the compiler statically.
(usually means registers and low-level cache)

= Shared (scratchpad): on-chip memory per thread block managed by
programmers using shared specifier.

= Constant: Read-only, Compiler-determined constant values.

= Texture: Read-only memory associated with textures (often used in
streaming and rendering).

= Global: Other memory accessible for all blocks and the host.

L8l UNIVERSITY ROCHESTER

Overview of Memory System

Multiprocessor
Multiprocessor
Multiprocessor

C P U Registers

Shared Memory

- e

ER UNIVERSITY+« ROCHESTER

S1ze, Throughput, and Latency

Thread

Local(registers): ~256KB per thread, ~1 cycle VeCTIend PRVt
Shared: 32 banks w/ 4 bytes per bank, >1TB/s,
~10 CYC]CS Thread Block

Constant: ~64KB, much slower than shared §§
Texture: > 100 texture units w/ 48KB per unit
Global: <900GB/s, >100 cycles

L

2 || 2222 per-

Application
Context
Global

Memory

UNIVERSITY* ROCHESTER

Compare Memory for GPUs and CPUs

= GPU:
= Texture cache works well on streaming (read-only, high
throughput, uniform latency).
= Shared memory works well on intra-block communication.
= CPU:
= L1d cache, L11 cache, and TLB are used for reducing memory
latency.
= L3 cache & RAM are used for sharing data among cores.

L8l UNIVERSITY ROCHESTER

Using Shared Memory

__shared specifier to
declare

void syncthreads();

works as a barrier in a
thread block

Note: CUDA does not
have built-in mutex.

EBl UNIVERSITY» ROCHESTER

__global void stencil_ld(int *in, int *out) ({

__shared int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + radius;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex — RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

Using Texture Memory

struct cudaTextureDesc

{

enum cudaTextureAddressMode addressMode[3];

enum cudaTextureFilterMode filterMode;

enum cudaTextureReadMode readMode;

int sRGB;

int normalizedCoords;
unsigned int maxAnisotropy;

enum cudaTextureFilterMode mipmapFilterMode;
float mipmaplLevelBias;
float minMipmaplLevelClamp;
float maxMipmaplLevelClamp;

= https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#te
xture-object-api

UNIVERSITY* ROCHESTER

Using Texture Memory

Kernel Code:

// Simple transformation kernel

__global__ void transformKernel(float* output,
cudaTextureObject_t texObj,
int width, int height,
float theta)

// Calculate normalized texture coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.
unsigned int y = blockIdx.y * blockDim.y + threadIdx.

float u = x / (float)width;
float v = y / (float)height;

// Transform coordinates

u -= 0.5f;

v -= 0.5f;

float tu = u * cosf(theta) - v * sinf(theta) + ©.5f;
float tv = v * cosf(theta) + u * sinf(theta) + ©.5f;

// Read from texture and write to global memory
output[y * width + x] = tex2D<float>(texObj, tu, tv);

UNIVERSITY* ROCHESTER

Using Texture Memory

Host Code:

// Specify texture

struct cudaResourceDesc resDesc;

memset (&resDesc, ©, sizeof(resDesc));
resDesc.resType = cudaResourceTypeArray;
resDesc.res.array.array = cuArray;

// Specify texture object parameters

struct cudaTextureDesc texDesc;

memset (&texDesc, ©, sizeof(texDesc));
texDesc.addressMode[8] = cudaAddressModelrap;
texDesc.addressMode[1] = cudaAddressModelWrap;
texDesc.filterMode = cudaFilterModelinear;
texDesc.readMode = cudaReadModeElementType;
texDesc.normalizedCoords = 1;

// Create texture object
cudaTextureObject_t texObj = ©;
cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL);

// Invoke kernel
dim3 threadsperBlock(16, 16);
dim3 numBlocks((width + threadsperBlock.x - 1) / threadsperBlock.x,
(height + threadsperBlock.y - 1) / threadsperBlock.y);
transformKernel<<<numBlocks, threadsperBlock>>>(output, texObj, width, height,
angle);

Bl UNIVERSITY~ ROCHESTER

First-Level Memory Structures

= Unified L1 data cache and shared memory
= asubset of the global memory address space in the cache
= shared memory access: bank conflicts (i.e. two threads want to
access the same bank of shared memory at the same time)
= cache read & write
= Texture cache
= often used in streaming and rendering
= High throughput, uniform latency

=185(

EB UNIVERSITY~ ROCHESTER

Unified L1 data cache and shared memory

Load/Store Unit

Pending
Request

Load Miss Path

Write
Buffer Bk

= Arbiter(2): handle bank conflicts (“replay”)
= Shared memory load, read (hit & miss), write (through & back)

o Data Crossbar Store Path

Register File

EBl UNIVERSITY» ROCHESTER

Texture Cache

Load/Store Unit c

= Read-only

® Miss = FIFO: hide the latency of

Request .
FIFO miss requests that may need

to be serviced from DRAM

Fragment

FIFO M
emory
e 7
o

Reorder
Buffer

Data Array
<—> Controller

@ ()
lﬁ 61[1
A 04

Texture

Filter e

Register File

7
UNIVERSITYs ROCHESTER

43

Memory Partition Unit

To/From
Crossbar Unit
210 : :
= L2 Cache: contains both graphics
Partition and compute data.
g‘llgt « Frame Buffer (FB)
1.2 Cache = Raster Operations Pipeline (ROP):
330 = QGraphics operation (e.g. alpha
blending).

= Atomic operations (€.g. in
CUDA programming model).

To/From
PP Memory

ER UNIVERSITY+« ROCHESTER

GPU Special Function Hardware
- Tensor Core

EBl UNIVERSITY» ROCHESTER

SM

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT .. FP64 INT INT ..
FP64 INT INT .. FP64 INT INT ..
FP64 INT INT .. FP64 INT INT ..
roe W T FSRERE oysor TENSOR et (wr wr BB rensor TENsOR
= — .. CORE CORE P84 NT INT -. CORE CORE
FP64 INT INT .. o | --
FP64 INT INT .. FPes N T ..
FP64 INT INT .. Fres R IS ..

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT .. Ll | ..
FP64 INT INT .. el
| .. P64 INT INT ..
Fos Wt ot FRRRERE ovsor TENSOR reoswr wr BB renson TEnsoR
FP64 INT INT .. CORE GORE FP64 INT INT .. CORK CORK
P64 INT INT .. FP64 INT INT ..
FP64 INT INT .. FP64 INT INT ..
FP64 INT INT .. Fres RO IR ..

LD/ LD/ LD/ LW/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

z
3
3

Volta Tensor Core Matrix Multiply and
Accumulate

Go Coy Cox Gos
+ By -|cuc|.lcu¢v.l
CGo Gy G G

Go G Gy Gy
FP16 or FP32

Bl UNIVERSITY ROCHESTER

V)]
(a1
)
-
)
b |
Q
L=
(@)
-
(@)
c
}—

Using Tensor Cores to Accelerate Matrix
Multiplications

= Example - Neural Networks:
= (NN, ResNet, ...

V100 fp32 V100 fplb — TC disabled

- TC enabled
-~ TC w/ no trans.
50 50 - =TC disabled (Peak)
" - =TC enabled (Peak)
pe——1 I [I — = NPU on S10-NX

0
2000 4000 6000 8000 2000 4000 6000 8000
Matrix Size Matrix Size

Boutros, Andrew, et al. "Beyond peak performance: Comparing the real performance of Al-optimized

FPGAs and GPUs." 2020 International Conference on Field-Programmable Technology (ICFPT).
IEEE, 2020.

UNIVERSITYsROCHESTER

GPU Special Function Hardware
- Ray Tracing Core

EBl UNIVERSITY» ROCHESTER

Ray Tracing Problem

BVH ALGORITHM
sive Improvement in Search Efficier

Ty,

Mass

B e
(6]

L8l UNIVERSITY ROCHESTER

Accelerate Ray Tracing Algorithms - RT Core

TURING RAY TRACING WITH RT CDRES

vare Acceleration Replaces Softy
Turing SM Shaders RT Core A
= [1 | Evaluators

T =TT Launch Ray Probe

. Fetch box g
2 5 - 1 PR Decode box
L —l] == Intersection test

Sub-box or tris?

“““““““ e 1 Triangle
e v Intersection
| s Evaluators

Ed — m 3 — Ray/triangle ’

intersection test

- Sl Shading

.
Return hit

B

(6]

L8l UNIVERSITY ROCHESTER

Using Ray Tracing Hardware
For General Problem

= Example - Neighbor Search
= Construct BVH tree using the given data
= Already HW accelerated
= Use the RT Core hardware to compute
= Good if querying multiple times
= By professor Yuhao Zhu, University of Rochester
= RTNN: Accelerating Neighbor Search Using Hardware Ray
Tracing[9]
= Example - Tet-Mesh Point Location
= RTX Beyond Ray Tracing: Exploring the Use of Hardware Ray
Tracing Cores for Tet-Mesh Point Location[10]

L8l UNIVERSITY ROCHESTER

References

= [1]JAamodt, T. M., Fung, W. W. L., & Rogers, T. G. (2018).
General-purpose graphics processor architectures. Synthesis
Lectures on Computer Architecture, 13(2), 1-140.

= [2]https://pages.cs.wisc.edu/~sinclair/courses/cs758/fall2019/hando

uts/lecture/cs758-fall19-gpu memSys.pdf

= [3]https://www.nvidia.com/content/PDF/fermi_white papers/NVID

[IA Fermi Compute Architecture Whitepaper.pdf

= [4]https://developer.nvidia.com/blog/even-easier-introduction-cuda/

= [S]https://developer.nvidia.com/blog/cuda-refresher-cuda-programm

ing-model/

= [6]https://www.hardwarezone.com.sg/feature-what-you-need-know-
about-ray-tracing-and-nvidias-turing-architecture/rt-cores-and-tenso
r-cores

L8l UNIVERSITY ROCHESTER

References

= [7]W. W. L. Fung and T. M. Aamodt, "Thread block compaction for
efficient SIMT control flow," 2011 IEEE 17th International
Symposium on High Performance Computer Architecture, 2011, pp.
25-36, do1: 10.1109/HPCA.2011.5749714.

= [8]https://www.ece.lsu.edu/gp/refs/gf100-whitepaper.pdf

= [9]https://www.cs.rochester.edu/horizon/pubs/ppopp22.pdf

= [10]I. Wald, W. Usher, N. Morrical, L. Lediaev, and V. Pascucci,
“RTX Beyond Ray Tracing,” p. 7.

L8l UNIVERSITY ROCHESTER

Q&A

EBl UNIVERSITY» ROCHESTER

