
4/27/2022

1

Non-Blocking Algorithms
Abdul Moid Munawar, William Leyman, and Jacob Lovell

Introduction

Blocking Algorithms

● One thread relies on an action by another thread to

continue its execution

● Includes all algorithms that may wait to acquire a lock

Non-Blocking Algorithms

● there is never a reachable state of the system in which

some thread is unable to make forward progress

● “failure or suspension of any thread cannot cause failure

or suspension of another thread” (Wikipedia)

1 2

3 4

https://en.wikipedia.org/wiki/Non-blocking_algorithm

4/27/2022

2

Three kinds of Non-blocking algorithms

● Obstruction Free

● Lock Free

● Wait Free

Obstruction Free

Guarantees that a thread running in

isolation will make progress

Lock Free

Guarantees that some process will

complete its operation in a finite amount

of time, even if other processes halt

Wait Free

Operations can guarantee that EVERY

non-faulting process will complete its

operation in a finite amount of time

5 6

7 8

4/27/2022

3

Linearizability

● Property of high level concurrent objects

● Operations appear to occur instantaneously

● Each operation should have one linearization

point

c = 0
Lock L

void inc():
acquire(L)
c++
release(L)

int val():
return c

Lock-Based Counter

Obstruction Free Counter

c = 0

void inc():
do:
tmp = c
LL(&c)

while(SC(&c, tmp++))

int val():
return c

Lock-Free Counter

c = 0

void inc():
tmp = c
while(!CAS(&c, tmp, tmp+1)):

tmp = c

int val():
return c

9 10

11 12

4/27/2022

4

Wait-free Counter

// each i represents a thread id
C[i] = 0 for all i

void inc():
C[self]++

int val():
rtn := 0
for i in [1..N]

rtn +:= C[i]
return rtn

A Solution to the ABA Problem

● Add a counter to each word

● Even if the word is the same, the counter

will be different

Memory Consistency Syntax

● fence(RW||RW)

● load(RW||RW)

● store(value, RW||RW)

Memory Consistency Example

// initially x = f = 0

Thread 1:

x := foo()

f := 1

Thread 2:

while f = 0:

// spin

y := 1/x

13 14

15 16

4/27/2022

5

Lock-Free B+ Tree

What is a B+ Tree?

● A Binary Tree of only keys

● Used for File systems

● The amount of data

allowed per node has an

upper and lower bound

Chunks Basic Operations/Balancing

● Insert

● Delete

● Search

● Split

● Join

● Copy

17 18

19 20

4/27/2022

6

How is Linearizability Achieved?

● Node is only modified after replacement

● Special care in selecting join node, where both will

share the same parent

How is Lock freedom achieved?

● CAS is used

● Freeze State and Infant State

● Limited Join Selection

21 22

23 24

4/27/2022

7

Performance

Non Blocking Queue
Algorithm Creators: Maged M. Michael and Michael L. Scott

Presentor: Abdul Moid Munawar

Single Lock based Concurrent Queue

● Single Lock Queue locks entire queue

Credits: Hussain Tinwala

Two Lock based Concurrent Queue

● Only locks head or tail node

● Enqueue only needs tail

● Dequeue only needs head

Credits: Hussain Tinwala

25 26

27 28

4/27/2022

8

Michael and Scott Queue

● Lock-free but not wait-free

● Prevents Livelock

● Starvation is possible

Queue setup

Queue Operations Enqueue Detail

29 30

31 32

4/27/2022

9

Enqueue Detail Enqueue Possibilities

Credits: Alexey Fyodorov, JUG.ru Group

True

True

Enqueue Possibilities

Credits: Alexey Fyodorov, JUG.ru Group

True

False

Enqueue Possibilities

Credits: Alexey Fyodorov, JUG.ru Group

False

False

33 34

35 36

4/27/2022

10

Enqueue Possibilities

Credits: Alexey Fyodorov, JUG.ru Group

False

True

Dequeue Detail

Dequeue Detail

Make sure head hasn’t changed

Performance

37 38

39 40

4/27/2022

11

Performance Performance

Performance Conclusions

● In all three graphs, the new non-blocking queue

outperforms all of the other alternatives when three or

more processors are active

● The two-lock algorithm outperforms the one-lock

algorithm when more than 5 processors are active on

a dedicated system

References

http://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-
overhead-lock-free-queue.html

https://wiki.eecs.yorku.ca/course_archive/2007-
08/F/6490A/_media/presentations:hussain.ppt

Alexey Fyodorov Slides:
https://www.slideshare.net/23derevo/nonblocking-michaelscott-
queue-algorithm?from_action=save

https://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.
pdf

41 42

43 44

http://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-overhead-lock-free-queue.html
https://www.slideshare.net/23derevo/nonblocking-michaelscott-queue-algorithm?from_action=save

