4/27/2022

Non-Blocking Algorithms

Abdul Moid Munawar, William Leyman, and Jacob Lovell

8%, UNIVERSITY~ ROCHESTER

Introduction

8%, UNIVERSITY~ ROCHESTER

Blocking Algorithms

e One thread relies on an action by another thread to
continue its execution

e Includes all algorithms that may wait to acquire a lock

,L%E.;A UNIVERSITY+ ROCHESTER

Non-Blocking Algorithms

e there is never a reachable state of the system in which
some thread is unable to make forward progress

e “failure or suspension of any thread cannot cause failure
or suspension of another thread” wikiedia)

,L%E.;A UNIVERSITY+ ROCHESTER

https://en.wikipedia.org/wiki/Non-blocking_algorithm

4/27/2022

Three kinds of Non-blocking algorithms

e Obstruction Free
e Lock Free
e Wait Free

&2, UNIVERSITY~ ROCHESTER

Obstruction Free

Guarantees that a thread running in
isolation will make progress

&2, UNIVERSITY~ ROCHESTER

Lock Free

Guarantees that some process will
complete its operation in a finite amount
of time, even if other processes halt

L!.égq UNIVERSITY+ ROCHESTER

Walit Free

Operations can guarantee that EVERY
non-faulting process will complete its
operation in a finite amount of time

L!.égq UNIVERSITY+ ROCHESTER

4/27/2022

Linearizability

e Property of high level concurrent objects
e Operations appear to occur instantaneously

e Each operation should have one linearization
point

‘L‘.A".,;:; UNIVERSITY« ROCHESTER

Lock-Based Counter

c =0
Lock L

void inc():
acquire(L)

c++

release(L)

int val():
return c

‘L‘.A".,;:; UNIVERSITY« ROCHESTER

Obstruction Free Counter

void inc():
do:
tmp = ¢
LL(&c)
while(SC(&c, tmp++))

int val():
return c

L!.é..% UNIVERSITY+ ROCHESTER

Lock-Free Counter

void inc():
tmp = ¢
while(!CAS(&c, tmp, tmp+1)):
tmp = ¢

int val():
return c

L!.é..% UNIVERSITY+ ROCHESTER

4/27/2022

Wait-free Counter A Solution to the ABA Problem

// each i represents a thread i
C[i] = 0 for all i

void inc(): e Add a counter to each word

Clself]++

T e Even if the word is the same, the counter
rtn := 0
for i in [1..N] W|” be d|fferent

rtn +:= C[i]
return rtn

‘L‘.A".,;:; UNIVERSITY« ROCHESTER

‘L‘.A".,;:; UNIVERSITY« ROCHESTER

Memory Consistency Syntax Memory Consistency Example

e fence(RW||RW) // initially x = £ = 0
® |Oad(RW||RW) Thread 1: Thread 2:
e store(value, RW||[RW) x 1= foo() while f =

f := 1 // spin

1/x

.l'!g-mg%. UNIVERSITY« ROCHESTER UNIVERSITY« ROCHESTER

4/27/2022

Lock-Free B+ Tree

&2, UNIVERSITY~ ROCHESTER

What is a B+ Tree?

e A Binary Tree of only keys
e Used for File systems
e The amount of data

allowed per node has an

upper and lower bound J

&2, UNIVERSITY~ ROCHESTER

Chunks

T
entriesArray[MAX] | new ‘ joinBuddy | fm;e.vmw| creator J nextNew |

r 64 bits (word) —[:ﬂbuw\wndl I 3LSBs b-lh:hl\mrm-l- Nhuf\lmdb-]

head key: 9 key:L | key:s key: 8 key: - key 1 | key:12
delbit: | | del.bit0 [del.bit:0 | del.bit:0 | del. bit: 0 del. bit: 1 | del. bit: 0
:\\\:"_K/i_ I_,_ff// L

L!.é.%, UNIVERSITY+ ROCHESTER

Basic Operations/Balancing

Insert
Delete
Search
Split
Join
Copy

L!.é.%, UNIVERSITY+ ROCHESTER

4/27/2022

IAlgorithm 3 (a) Search, Insert, and Delete — High Level Methods.
a) BOOL SearchInBtree (key, *data) {

1: Node* node = FindLeaf(key):

2: return SearchInChunk(&(node—chunk), key, data);

INFANT

FREEZE

<SLAVE FREEZE, master>_||

b) BOOL InsertToBtree (key, data) {
I: Node* node = FindLeaf(key);

2: if (node—freezeState == INFANT) helpInfant(node);

// Help infant node
3: return InsertToChunk(&(node—chunk), key, data);

¢) BOOL DeleteFromBtree (key, data) {

1: Node* node = FindLeaf(key):

2: if (node—freezeState == INFANT) helpInfant(node); // Help infant node
3: return DeleteInChunk(&(node—chunk), key):

<REQUEST SLAVE, slave>

cory | |

Figure 2: The state transitions of the freeze state of a node. The initial states are presented in the boxes with
the double border.
#2, UNIVERSITY~ ROCHESTER

wﬁm, UNIVERSITY« ROCHESTER

How is Linearizability Achieved? How is Lock freedom achieved?

e Node is only modified after replacement

e Special care in selecting join node, where both will
share the same parent

e CAS isused

e Freeze State and Infant State
e Limited Join Selection

©. UNIVERSITY+ROCHESTER

©. UNIVERSITY+ROCHESTER

4/27/2022

Performance

Total Time Ratia for different number of threads

: | Non Blocking Queue

1) |
Lock : .
- Lock 1
as
b [70 B
u
o4 I] I:I .
0 i
-
ol B I
10000 100000 1000000 -
N

Speedup (relative to one thread performance) for 100 000
aperations.

1
g
The Ratio

Algorithm Creators: Maged M. Michael and Michael L. Scott

Speed Up

Presentor: Abdul Moid Munawar

""’ UNIVERSITY< ROCHESTER ""’ UNIVERSITY< ROCHESTER

Single Lock based Concurrent Queue Two Lock based Concurrent Queue

e Only locks head or tail node
e Enqueue only needs tall

e Single Lock Queue locks entire queue

@Pz

®Pe @Pm

©P: o ue only needs head
[\ |®Ps OP; High @D OB 1
@Ps @Ps ==} Contention D ;\DZ ﬁ @Fs| tncreases
Head Node Node Tail .
ol g el g eE i BPs ®Ps %g: H(ela]a|_,|~(n2a)e Vo] gg: N :\Fggses
Contention

L%ma UNIVERSITY«» ROCHESTER

L%ma UNIVERSITY«» ROCHESTER

4/27/2022

Michael and Scott Queue

e |ock-free but not wait-free
e Prevents Livelock
e Starvation is possible

;. UNIVERSITY« ROCHESTER

Queue setup

type ptr = (node* p, int c)
type node

value val

ptr next
class queue

ptr head

ptr tail

void queue.init()
node* n := new node(L, null)
head.p := tail.p :=n

182, UNIVERSITY+ ROCHESTER

counted pointer
/" p

// initial dummy node

Queue Operations

head tail
CAS (dequeuc),__ CAS 2 (enquene)
<.,,,_77 \\
~ \
[T el F—lwal el | |
dummy node CAS 1 L
(enqueuc)

Figure 8.3: Operation of the M&S queuc. After appropriate preparation (“snapshotting”), dequeue
reads a value from the second node in the list, and updates head with a single CAS to remove the old
dummy node. In enqueue, two CASes are required: one to update the next pointer in the previous
final node; the other to update tail.

UNIVERSITY« ROCHESTER

Enqueue Detail

void queue.enqueue(value v):
node* w := new node(v, null); fence(W| W)
ptrt, n
loop

tail.load()

t.p—next.load()

if t = tail.load()

if n.p = null
if CAS(&t.p—next, n, (w, n.e+1))
break
else

(void) CAS(&tail, t, (n.p, t.ct+1))
(void) CAS(&tail, t, (w, t.c+1))

, UNIVERSITY+ ROCHESTER

// allocate node for new value

// counted pointers

// are t and n consistent?

// was tail pointing to the last node?
// try to add w at end of list

// success; exit loop

// tail was not pointing to the last node
// try to swing tail to next node

// try to swing tail to inserted node

4/27/2022

Enqueue Detail Enqueue Possibilities

void queue.enqueue(value v):

node* w := new node(v, null); fence(W|W) // allocate node for new value
null ptrt, n
loop
t:= tail.load() /] counted pointers
n = t.p—rnext.load()
if t = tail.load() // are t and n consistent?
head tail Step 1. if n.p = null / was tail pointing to the last node?
CAS last node’s next from if CAS(&t.p—snext, n, (w, n.c+1))TU9/ try to add w at end of list
null nullto new node break /] success; exit loop
else // tail was not pointing to the last node
(void) CAS(&tail, t, {n.p, t.c+1)) // try to swing tail to next node
(void) CAS(&tail, t, {w, tc+1)) True // try to swing tail to inserted node
head tail Step 2.

Advance tail with CAS

head tail

Enqueue Possibilities Enqueue Possibilities

void queue enqueue(value v): void queue enqueue(value v):
node* w := new node(v, null); fence(W|W) // allocate node for new value node* w := new node(v, null); fence(W||W) // allocate node for new value
ptrt. n ptrt, n
loop loop
t := tail.load() // counted pointers t := tail.load() /] counted pointers
n := t.p—>next.load() n = t.p—next.load()
if t = tail.load() // are t and n consistent? if t = tail.load() // are t and n consistent?
if n.p = null True// was tail pointing to the last node? if n.p = null False // was tail pointing to the last node?
if CAS(&t.p—»next, n, (w, n.c+1)) ~ // try to add w at end of list if CAS(&t.p—next, n, (w, n.c+1)) // try to add w at end of list
break 1/ success; exit loop break /] success; exit loop
else // tail was not pointing to the last node else aisd/ ail was not pointing to the last node
(void) CAS(&tail, t, (n.p, t.e4+1)) // try to swing tail to next node (void) CAS(&tail, t, {n.p, t c+1>f 7/ try to swing tail to next node
(void) CAS(&tail, t, (w, t.c+1})) False // try to swing tail to inserted node (void) CAS(&tail, t, (w, t.c+1)) // try to swing tail to inserted node

another

head head

curTail curTail

dummy P

P

35 36

4/27/2022

void queue.enqueue(value v):
node* w = new node(v, null); fence(W||W)
ptrt, n
loop
t := tail.load()
n = t.p—rnext.load()
if t = tail.load()

if n.p = null False
if CAS(&t.p—next, n, (w, n.c+1))
break
else

(void) CAS(&tail, t, (w, t.ct+1))

Enqueue Possibilities

(void) CAS(&tail, t, (n.p, t.c+1))True// try to swing tail to next node

// allocate node for new value

/[counted pointers

// are t and n consistent?

/[was tail pointing to the last node?
// try to add w at end of list

/[success; exit loop

/[tail was not pointing to the last node

/] try to swing tail to inserted node

Dequeue Detall

value queue.dequeue():
ptrh, t n
loop
h := head.load()
t:= tail.load()
n := h.p—next.load()
value rtn
if h = head.load()
ifhp=tp
if n.p = null return L
(void) CAS(&tail, t, (n.p, t.c+1))

counted pointers
P

// are h, t, and n consistent?
// is queue empty or tail falling behind?
// empty; return failure
// tail is falling behind; try to update
/ no need to deal with tail

// read value before CAS; otherwise another dequeue might free n

else
rtn := n.p—val.load()
if CAS(&head, h, (n.p, h.c+1))
break
fence(W|[W)
free_for_reuse(h.p)
return rtn

%,.‘z’., UNIVERSITY« ROCHESTER

/] try to swing head to next node

// success; exit loop

// link node out before deleting!

/] type-preserving

// queue was nonempty; return success

Dequeue Detall

value queue.dequeue()

loop
h:= head load()
t:= tail load()
n:= h.p—next.load()
value rtn

if n.p = null return L
els

rtn := n.p-valloa
if CAS(&head, h, (n.p, h.c+1))

{RSITY ROCHESTER

// counted pointers

if h = head.load() Make sure head hasn'tchanged // are h, t, and n consistent?
ifhp=tp // is queue empty or tail falling behind?
/] empty; return failure
(void) CAS(&tail, t, (np, t.c+1) // tail s falling behind; try to update
e 1/ 1o need to deal with tail
// read value before CAS; otherwise another dequeue might free n

// try to swing head to next node

break /] success; exit loop
fence(W(W) /] link node out before deleting!
free.for_reuse(h.p) /] type-preserving
return rtn / queue was nonempty; return success

head tail

E1

CAS (dequeue)

dummy node

40

Performance

o= -0 Single lock
oo MG lock-free
25 %= Valois non-blocking -
- = new two-lock .
+—— PLJ nan—blocking -
20 =—= new non-blocking L
81s
&
8
10]
s
"z s 4 s & 7 8 8 10 11 a2
Frocessors
Figure 3: Net execution time for one million en-

queue/dequeue pairs on a

dedicated multiprocessor.

10

Performance

o- o Single lock
o—a MG lock-frea
® Valois non—blacking
w- - new wo—lock
+— PLJ non-blocking 8
w—% new non-biocking g

Figure 4: Net execution time for one million en-
queue/dequeue pairs on a multiprogrammed system with 2
Processes per processor.

&2, UNIVERSITY]

41

Performance

o- o Single lock
o—a MG lock-frea
® Valois non—blacking
w- - new wo—lock
+— PLJ non-blocking 515
w—% new non-biocking E

Figure 5: Net execution time for one million en-
queue/dequeue pairs on a multiprogrammed system with 3
processes per processor.

‘#‘.A'(.!):% UNIVERSITY",

Performance Conclusions

e In all three graphs, the new non-blocking queue
outperforms all of the other alternatives when three or
more processors are active

e The two-lock algorithm outperforms the one-lock
algorithm when more than 5 processors are active on
a dedicated system

L!.‘.,s..z, UNIVERSITY+ ROCHESTER

References

http://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-
overhead-lock-free-queue.html

https://wiki.eecs.yorku.ca/course_archive/2007-
08/F/6490A/_media/presentations:hussain.ppt

Alexey Fyodorov Slides:
https://www.slideshare.net/23derevo/nonblocking-michaelscott-
queue-algorithm?from_action=save

https://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.
pdf

L!.‘.,s..z, UNIVERSITY+ ROCHESTER

4/27/2022

11

http://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-overhead-lock-free-queue.html
https://www.slideshare.net/23derevo/nonblocking-michaelscott-queue-algorithm?from_action=save

