2/13/2022

Géw - ¢

0 G ooo

Figure % The Sequent Symmetry Model B,

w
S

2/13/2022

5 6

7 8

2/13/2022

Software Fix

* We want each processor to only spin on memory local to that
processor

* And that is not the spin target of any other processor
* This way, we will greatly reduce traffic across the interconnect and to memory
* How to communicate between processors?

* To be addressed later, varies between lock designs and hardware
architectures

Test-and-Set Lock

* Processors repeatedly executing test-and-set atomic instructions to
try to acquire the lock
* And as fast as possible
* Expensive: causes many remote cache invalidations as well as
interconnect contention
* Some optimizations do exist

* Test-and-test-and-set: Only do the expensive test-and-set if a previous read
indicates it’s likely to succeed

* Backoff strategies - constant delay or exponential

10
ok ’ Ticket Lock — Pseudocode (From Paper)
T|C et LOC type lock = record
next_ticket : unsigned integer := 0
* Reduces the number of fetch-and-op operations to 1 per lock now_serving : unsigned dnveger: :=:0
acquisition) .
procedure acquire_lock (L : “lock)
* Ensures FIFO service my_ticket : unsigned integer := fetch_and_increment (&L->next_ticket)
» Two counters: request counter and release counter // returns old value; arithmetic overflow is harmless
L . . . loop
* Improvement: Only read operations in the spin, no expensive writes pause (my_ticket - L->now_serving)
« Still fairly expensive on the interconnect // consume this many units of time
* Potential issues with backoff and overshooting // on most machines, subtraction works correctly despite overflow
if L->now_serving = my_ticket
return
procedure release_lock (L : ~lock)
L->now_serving := L->now_serving + 1
11

12

2/13/2022

13 14

15 16

2/13/2022

shared coust : integer i= P
shared sense Boclean := true
procsssor privats local_sense : Boolean := trus

procedure central_barrier
net local_semse // each precessor toggles its oun semse
screment (kcount) = 1

P
local sense /4 1ast processor toggles global sense

repest until sense = local_sense

2/13/2022

type node = record
® : integer // fan-in of this mode
count : inte /1 initialized to k
locksense // imitially false
// pointer to parent mode; mil if root

array [8..P-1] of nede

ent of nodes allocated in a different memory moduls or cachs line
processor private Boolean :m true
processor private aynode : “neds // my group’s leaf in the combining tres

procedure combining barrier
combining_barrier_aux (mynode) // jein the barrier
semse := not sense /1 tor next barrier

procedure combining barrier_aux (nedepointer : “nede)
with nodepointer” do

if fstch_and decrement (kcount) = 1 // last ome to reach this node

if pareat '= mil
conbining barrier_aur (parent}

count := k // prepare for nert barrier
lockssnse := mot lockssnse // relsase waiting processors

repeat until locksense = sense

< (o
OIOIOIOIOICIONC CDCEDCEDCEDEDEDED

type traencde
parentsen Boalean
parentpointer : “Boolean
childpointers : array [0..1] of "Boolean
havechild : array [0..3] of Boolean
childnotzeady : array [0..3] of Boolean
dunmy : Bealean // pmeudo-data

shared nodes : array [0..P-1] of treemcde
/4 nodes(wpid] is allocated in shared memory
/1 locally accessible to processor vpid
vpid : integer // a unique virtual processor index
: Boolean

procedure tres_barrier
with nodealvpidl do
repeat until childnotready = {false, false, false, falae}
childnotready := havechild // prepars for mext barrier
parentpointer” i= false /4 let parent know I'm ready
/4 if not root, wait until my parent signals wakeup
if vpid 1= 0
repeat until parentsenss = sense
// signal children in wakeup tree
childpointers[0] - := sen
childpointers[1] = := senss
sense := not senss

2/13/2022

2/13/2022

