MapReduce & GraphLab: Programming Models for Large-Scale Parallel/Distributed Computing

Motivation

- The Age of “Big Data”
 - ~45 Billion Webpages
 - ~1.06 Billion Facebook Users
 - ~24 Million Wikipedia Pages
 - ~6 Billion Flickr Photos

- Infeasible to analyze on a single machine
- Solution: Distribute across many computers

Outline

- Motivation
- MapReduce Overview
 - Design Issues & Abstractions
 - Examples and Results
 - Pros and Cons
- Graph Lab
 - Graph Parallel Abstraction
 - MapReduce vs Pregel vs GraphLab
 - Implementation Issues
 - Pros and Cons

Motivation

- Challenges: We repeatedly solve the same system-level problems
 - Communication/Coordination among the nodes
 - Synchronization, Race Conditions
 - Load Balancing, Locality, Fault Tolerance, ...
- Need a higher level programming Model
 - That hides these messy details
 - Applies to a large number of problems
MapReduce: Overview

- A programming model for large-scale data-parallel applications
 - Introduced by Google (Dean & Ghemawat, OSDI'04)
- Petabytes of data processed on clusters with thousands of commodity machines
 - Suitable for programs that can be decomposed in many embarrassingly parallel tasks
- Hides low level parallel programming details

Example: Count word frequencies from web pages

- Input: Web documents
 - Key = web document URL, Value = document content
- Output: Frequencies of individual words

Steps 1: specify a Map function

<table>
<thead>
<tr>
<th>Input:</th>
<th><key=url, value=content></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"www.abc.com", abc ab cc ab</td>
</tr>
</tbody>
</table>

Output:

<table>
<thead>
<tr>
<th><key=word, value=partialCount></th>
</tr>
</thead>
<tbody>
<tr>
<td>"abc", 1</td>
</tr>
<tr>
<td>"ab", 1</td>
</tr>
<tr>
<td>"cc", 1</td>
</tr>
<tr>
<td>"ab", 1</td>
</tr>
</tbody>
</table>

Steps 2: specify a Reduce function

- Collect the partial sums provided by the map function
- Compute the total sum for each individual word

Input: Intermediate files <key=word, value=partialCount>

```
key = "abc"  values = 1
key = "ab"   values = 1, 1
key = "cc"   values = 1
```

Output:

```
key = "abc", 2
key = "ab", 1
key = "cc", 1
```

Example: Count word frequencies from web pages
Example code: Count word

```java
void map(String key, String value):
    // key: webpage url
    // value: webpage contents
    for each word w in value:
        EmitIntermediate(w, "1");

void reduce(String key, Iterator partialCounts):
    // key: a word
    // partialCounts: a list of aggregated partial counts
    int result = 0;
    for each pc in partialCounts:
        result += ParseInt(pc);
    Emit(AsString(result));
```

How MapReduce Works?

Ref: J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, OSDI, 2004

Implementation Details: Scheduling

- One Master, many workers
 - MapReduce Library splits input data into \(M \) pieces (16MB or 64MB per piece, uses GFS)
 - Master assigns each idle worker to a map or reduce task
 - Worker completes the map task, buffers the intermediate (key, value) in memory, and periodically writes to local disk
 - Location of buffered pairs are returned to Master
 - Master assigns completed map tasks to Reduce workers
 - Reduce worker reads the intermediate files using RPC
 - Sorts the keys and performs reduction

Fault Tolerance

- Worker Failure: Master pings the workers periodically
 - If no response, then master marks the worker as failed
 - Any map task or reduce task in progress is marked for rescheduling
 - Completed reduce tasks don't have to be recomputed
- Master Failure
 - Master writes periodic checkpoints to GFS. On failure, new master recovers to that checkpoint and continues
 - Often not handled, aborts if master fails (failure of master is less probable)
Locality

- Bandwidth is an important resource
 - Communicating large datasets to worker nodes can be very expensive
- Do not transfer data to worker
 - Assign task to the worker that has the data locally
- Create multiple replications of data (Typically 3)
- Master assigns to one of these computers having the data in local file system

Other Refinements

- Task Granularity:
 - M map tasks, R reduce tasks
 - We want to make M and R larger
 - Dynamic load balancing
 - Faster recovery from failure
 - BUT, increases the number of scheduling decisions increases with M and R
 - Finally we’ll get R output files. So R should not be too large
 - Typical settings: for 2000 worker machines:
 - M = 200,000 and R = 5000

Other Refinements: Backup Tasks

- Some machines can be extremely slow ("straggler")
 - Perhaps a bad disk that frequently encounters correctable errors
- Solution: Backup tasks
 - Near the end of map reduce, master schedules some backup tasks for each of the remaining tasks
 - A task is marked as complete if either the primary or the backup execution completes

Results: Sorting

M=15k, R=4k, ~1800 machines

Figure 3: Data transfer rates over time for different executions of the sort program
Example: Word Frequency: MAP

```cpp
#include "mapreduce/mapreduce.h"
// User's map function
class WordCounter : public Mapper {
public:
  virtual void Map(const MapInput& input) {
    // perform map operation, parse input ...
    // for each word
    Emit(word, "1")
  }
};
REGISTER_MAPPER(WordCounter);
```

Word Frequency: MAIN (Simplified)

```cpp
int main(int argc, char** argv) {
  MapReduceSpecification spec;
  // Store list of input files into "spec"
  MapReduceInput* input = spec.add_input();
  input->set_mapper_class("WordCounter");
  // specify output files
  MapReduceOutput* out = spec.output();
  out->set_reducer_class("Adder");
  // Tuning parameters: use at most 2000
  spec.set_machines(2000);
  // Now run it
  MapReduceResult result;
  MapReduce(spec, &result);
  return 0;
}
```

Word Frequency: REDUCE

```cpp
// User's reduce function
class Adder : public Reducer {
  virtual void Reduce(ReduceInput* input) {
    // Iterate over all entries with the
    // same key and add the values
    int64 value = 0;
    while (!input->done()) {
      value += StringToInt(input->value());
      input->NextValue();
    }
    // Emit sum for input->key()
    Emit(IntToString(value));
  }
};
REGISTER_REDUCER(Adder);
```

MapReduce Instances at Google

Ref: PACT 06' Keynote slides by Jeff Dean, Google, Inc.
Pros: MapReduce

- **Simplicity** of the model
 - Programmers specifies few simple methods that focuses on the functionality not on the parallelism
 - Code is generic and portable across systems
- **Scalability**
 - Scales easily for large number of clusters with thousands of machines
- **Applicability** to many different systems and a wide variety of problems
 - Distributed Grep, Sort, Inverted Index, Word Frequency count, etc.

Cons: MapReduce

- Restricted programming constructs (only map & reduce)
- Does not scale well for dependent tasks (for example Graph problems)
- Does not scale well for iterative algorithms (very common in machine learning)

Summary: MapReduce

- **MapReduce**
 - Restricted but elegant solution
 - High level abstraction
 - Implemented in C++
- Many Open-source Implementation
 - Hadoop (Distributed, Java)
 - Phoenix, Metis (Shared memory, for multicore, C++)

GraphLab
GraphLab: Motivation

- MapReduce is great for Data Parallel applications
 - Can be easily decomposed using map/reduce
 - Assumes independence among the tasks
- Independence assumption can be too restrictive
- Many interesting problems involve graphs
 - Need to model dependence/interactions among entities
 - Extract more signal from noisy data
 - MapReduce is not well suited for these problems

Graph-based Abstraction

- Machine learning practitioners typically had two choices:
 - Simple algorithms + “Big data” vs
 - Powerful algorithms (with dependency)+ “Small data”
- Graph-based Abstraction
 - Powerful algorithms + “Big data”

Graph parallel programming models:

- Pregel: Bulk Synchronous Parallel Model (Google, SIGMOD 2010)
- GraphLab: asynchronous model [UAI 2010, VLDB 2012]

Bulk Synchronous Parallel Model: Pregel

[Małewicz et al. '2010]

Tradeoffs of the BSP Model

- Pros:
 - Scales better than MapReduce for Graphs
 - Relatively easy to build
 - Deterministic execution
- Cons:
 - Inefficient if different regions of the graph converge at different speed
 - Can suffer if one task is more expensive than the others
 - Runtime of each phase is determined by the slowest machine
Synchronous vs Asynchronous Belief Propagation

[Gonzalez, Low, Guestrin. '09]

GraphLab vs. Pregel (Page Rank)

[Low et al. PVLDB’12]

GraphLab Framework: Overview

- GraphLab allows asynchronous iterative computation
- The GraphLab abstraction consists of 3 key elements:
 - Data Graph
 - Update Functions
 - Sync Operation
- We explain GraphLab using PageRank example

Case Study: PageRank

- Iterate:
 \[R[i] = \alpha + (1 - \alpha) \sum_{(j,i) \in E} \frac{1}{L[j]} R[j] \]
- Where:
 - \(\alpha \) is the random reset probability
 - \(L[j] \) is the number of links on page \(j \)

PageRank (25M Vertices, 355M Edges, 16 processors)

http://graphlab.org/powergraph-presented-at-osdi/
1. Data Graph

- Data Graph: a directed acyclic graph $G = (V, E, D)$
 - Data D refers to model parameters, algorithm states and other related data

 Vertex Data:
 - User profile text
 - Current interests estimates

 Edge Data:
 - Similarity weights

Graph:
- Social Network

2. Update Functions

An update function is a user-defined program (similar to a map) applied to a vertex, transforms the data in the scope of the vertex.

```cpp
struct pagerank : public iupdate_functor<graph, pagerank> {
    void operator()(icontext_type& context) {
        double sum = 0;
        foreach (edge_type edge, context.in_edges())
            sum += 1.0 / context.num_out_edges(edge.source()) * context.vertex_data(edge.source());

        double& rank = context.vertex_data(v);
        double old_rank = rank;
        rank = RESET_PROB + (1.0 - RESET_PROB) * sum;
        double residual = abs(rank - old_rank);
        if (residual > EPSILON)
            context.reschedule_out_neighbors_of(v);
    }
};
```

1. Data Graph

- PageRank: $G = (V, E, D)$
 - Each vertex v corresponds to a webpage
 - Each edge (u, v) corresponds to a link from $u \rightarrow v$
 - Vertex data D_v stores the rank of the webpage i.e. $R(v)$
 - Edge data: $D_{u \rightarrow v}$ stores the weight of the link $(u \rightarrow v)$

$$R[v] \leftarrow \alpha + (1 - \alpha) \sum_{u \in N[v]} W_{uv} \times R[u];$$
3. Sync Operation

- Global operation, usually performed periodically in the background
 - Useful for maintaining some global statistics of the algorithm
 - Example: PageRank may want to return a list of 100 top ranked web pages
- Determine the global convergence criteria. For example, estimate log-likelihood.
 - Estimate total log-likelihood for Expectation Maximization
- Similar to Reduce functionality in MapReduce

GraphLab: Hello World!

```cpp
#include <graphlab.hpp>
int main(int argc, char** argv) {
    graphlab::mpi_tools::init(argc, argv);
    Graphlab::distributed_control dc;
    dc.cout() << "Hello World!\n";
    graphlab::mpi_tools::finalize();
}
```

- Let the file name: my_first_app.cpp
- Use “make” to build
- Execute: mpiexec -n 4 ./my_first_app

dc.cout() provides a wrapper around standard std::cout
When used in a distributed environment, only one copy will print, even though all machines execute it.

Scheduling

Algorithm 2: GraphLab Execution Model

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(v \leftarrow \text{RemoveNext}(\mathcal{T}))</td>
</tr>
<tr>
<td>2</td>
<td>((\mathcal{T}, S_v) \leftarrow f(v, S_v))</td>
</tr>
<tr>
<td>3</td>
<td>(\mathcal{T} \leftarrow \mathcal{T} \cup \mathcal{T}')</td>
</tr>
</tbody>
</table>

Output: Modified Data Graph \(G = (V, E, D') \)

[Low et al. PVLDB’12]

GraphLab Tutorials

- For more interesting examples, check:
 - http://docs.graphlab.org/using_graphlab.html
- A step by step tutorial for implementing PageRank in GraphLab
Few Additional Details

- Fault Tolerance using checkpointing
- The GraphLab described here is GraphLab 2.1
 - GraphLab for distributed systems
- The first version was proposed only for multicore systems
- Recently, PowerGraph was proposed
 - GraphLab on Cloud

Tradeoffs of GraphLab

- **Pros:**
 - Allows dynamic asynchronous scheduling
 - More expressive consistency model
 - Faster and more efficient runtime performance
- **Cons:**
 - Non-deterministic execution
 - Substantially more complicated to implement

Summary

- **MapReduce:** efficient for independent tasks
 - Simple framework
 - Independence assumption can be too restrictive
 - Not scalable for graphs or dependent tasks, or iterative tasks
- **Pregel:** Bulk Synchronous Parallel Models
 - Can model dependent and iterative tasks
 - Easy to Build, Deterministic
 - Suffers from inefficiencies due to synchronous scheduling
- **GraphLab:** Asynchronous Model
 - Can model dependent and iterative tasks
 - Fast, efficient, and expressive
 - Introduces non-determinism, relatively complex implementation

References

- **MapReduce:** Simplified Data Processing on Large Clusters, Jeffrey Dean & Sanjay Ghemawat, OSDI 2004.
- **GraphLab:** A new framework for parallel machine learning, Low et al., UAI 2010.
- **GraphLab:** a distributed framework for machine learning in the cloud, Low et al., PVLDB 2012.
- **Pregel:** a system for large-scale graph processing, Malewicz et al., SIGMOD 2010.
Disclaimer

- Many figures and illustrations were collected from Carlos Guestrin's GraphLab tutorials

 http://docs.graphlab.org/using_graphlab.html

Additional GraphLab Implementation Issues

Scheduler

Consistency Model

Scheduling

The scheduler determines the order that vertices are updated

The process repeats until the scheduler is empty

- What happens for boundary vertices (across machines)?
- Data is classified as edge data and vertex data
- Partition a huge graph across multiple machines
 - Ghost vertices (along the cut) maintains adjacency information
 - Graph must be cut efficiently. Use parallel graph partitioning tools (ParMetis)
Consistency Model

- Race conditions may occur if updating shared data
- If overlapping computations run simultaneously

Consistency Model: How to Avoid Race?

- Ensure update functions for two vertices simultaneously operate only if
two scopes do not overlap

- Three consistency models:
 - Full consistency
 - Edge consistency
 - Vertex consistency

Consistency vs Parallelism

(b) Consistency Models

(c) Consistency and Parallelism
Consistency Model: Implementation

- **Option 1: Chromatic Engine:**
 - Graph coloring: neighboring vertices have different colors
 - Simultaneous update only for vertices with the same color

![Graph Coloring Diagram]

Consistency using Distributed Locks

- **Distributed Locking**
 - Non-blocking locks allow computation to proceed while locks/data are requested.
 - Request locks in a canonical order to avoid deadlock

![Distributed Locking Diagram]