Sun Fireplane System Interconnect and POWER4 System Microarchitecture

Raj Parihar
parihar@ece.rochester.edu

Why System Interconnect?

- Multiprocessor Design Objective
 - Minimize Overall Cost
 - Maximize Overall Performance
 - Higher Reliability
 - Better Scalability

- All objectives are constrained by system Interconnects
 - "Communication is the main bottleneck in high performance computing"

References

- “The Sun Fireplane System Interconnect”
 - Alan Charlesworth

- “POWER4 System Microarchitecture”
 - J. M. Tendler et al.

Multiprocessor System: Sales

- Major share is still with small scale, 8-16 cores, multiprocessors

- Key trend
 - Sales of large and mid scale multiprocessors, with > 8 cores, have doubled ever year
Outline

- Motivation and Overview
- Sun Fireplane Interconnect Generation
- IBM System Interconnect Generation
- Multiprocessor System Architecture
 - Sun Fireplane System Architecture
 - POWER4 System Microarchitecture
- Cache Coherence and Memory Organization
- Large Scale Shared Memory Multiprocessors
- Comparison and Summary

Overview: Cache Coherence

- Mechanism to deal with multiple copy of data in a shared-memory environment

Two basic types of cache coherence protocol

- Broadcast (Snoopy) Coherency
 - All addresses are send everywhere
 - Snoop results are computed and combined
 - Lowest possible latency (i.e. Cache-to-Cache)
 - Suitable for low & mid scale, Hard to scale

- Point-to-point (Directory) Coherency
 - Address sent only to "interested" nodes
 - Directory keeps track of who is "interested"
 - Suitable for generic type of large networks
 - Provides high bandwidth and better scalability

Evolution: Sun System Interconnect

System interconnect generation	1.5GHz (T)	1.5GHz (T)	1.5Mhz Parallel architecture of 4-Pc (Re)	2.5GHz Fireplane
Processor	Sunny ISRC	Sunny ISRC	Sunny ISRC-3	Sunny ISRC-4
Memory processor	16	64	64	64
Memory clock	40 MHz	40-50 MHz	50-60 MHz	50 MHz
Network clock	10-15 MHz	10-15 MHz	15-20 MHz	15 MHz
Cache coherence mechanism	Broadcast	Broadcast	Broadcast + point-to-point	Broadcast + point-to-point
Cache coherence latency	250 ns	250 ns	250 ns	250 ns
System size	32 nodes	32 nodes	32 nodes	32 nodes

Fireplane Coherency Protocol

- Scalable Shared Memory (SSM) Protocol
 - Low latency in local memory accesses (< 24 nodes)
 - Single snooping (Broadcast based) coherence domain
 - High bandwidth across the network (> 24 nodes)
 - Directory based (point-to-point) coherence protocol
- Kind of Hybrid Solution: Best of both world
- Separate address and data interconnects
Fireplane: Address Bus Implementation

- 2-level bidirectional tree-structure of address repeaters
- AR2 is kind of ordering point
 - CPU0 (AR0) -> AR2 -> AR1(I/O1)

Within a Snooping Domain

- Address Request
- Broadcast Address
- Transfer Data
- Read from Memory
- Snoop
- If found, Cache-to-cache transfer

Fireplane: Cache Coherence

- Snoopy Domain
 - MEOSI Protocol
 - Dual Tags
- Snoop-result signals
 - Shared
 - Owned
 - Mapped
- Cache Tags
 - cM, cE, cO, cS, cl
- Dual Tags
 - ds, dO, dl
 - dt (Temporary)

Among the Snooping Domains

- Address Request
- Send Address to Home SSM
- Lock line check cohesency
- Send Response
- Broadcast address on home bus
- Snoop on home bus
- Read data from Memory
- Transfer data to home data agent
- Unlock Line
- Count Responses
- Transfer data to requester
- Move data across center plane
Cache to Cache Transfers

- When data is owned (modified) in a cache
- Inside a Snooping Domain
 - Owning device asserts a snoop result of OWNED
 - Cache sends data directly to requester and memory cycle is ignored
- Between Snooping Domains
 - Three way transfer to supply the data
 - Home SSM -> Owning SSM -> Requesting Data Agent

SYNC @ CS, UofR: Specs

- System Interconnect
 - SunFire V880
- Operating System
 - SunOS 5.8
- CPU Architecture
 - Eight 900 MHz UltraSPARC – III Processors
 - 64 KB L1 D Cache, 32 KB L1 I Cache / Processor
 - 8 MB unified (Data + INS) cache / Processor
 - 16 GB Main Memory

UltraSPARC T1 (Niagara) Processors

- Objective
 - To run as many as concurrent threads possible
 - Maximize the utilization of each core’s pipeline
- UltraSPARC Architecture 2005
 - SPARC V9 ISA (PSO and RMO Memory Model)
- Multicore and Multithreaded
 - 4, 6, 8 CPU cores; each with 4 concurrent threads
 - Optimized for Power: 72 W at 1.4 GHz
- Mainly for server applications
 - i.e. Web servers, smaller database applications

Rock Processors (Shipping: 2009)

- Higher per-thread performance
 - Oppose to Niagara: Maximize the # of threads
 - Greater SMP scalability than Niagara family
 - 1st production processor to support transactional memory
- SPARC V9, 64-bit ISA + VIS 3.0 SIMD MISA
- 16-cores/processors (4 cores/cluster)
 - Each core can run 2 threads simultaneously
 - Chip power consumption: 250 W at 2.3 GHz
- Target Application
 - Back-end database server
 - Floating point intensive HPC workloads
Fireplane: Conclusion

- Two level of cache-coherence protocol
- Small and mid scale multiprocessors
 - Use snooping protocol
- Large scale multiprocessors
 - Use directory based point-to-point protocol
 - Use Hybrid solution: Best of both world
- Cache-to-cache transfer to hide latency

POWER4: Overview

- System Architecture
 - Processor Microarchitecture
 - Interconnect Architecture
- According to IBM
 - Not only a Chip
 - Also refers to System Structure

Evolution: IBM Microprocessor

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Op Freq</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS/6000</td>
<td>1990</td>
<td>20-30 MHz</td>
<td>RISC based</td>
</tr>
<tr>
<td>POWER2</td>
<td>1993</td>
<td>55-71.5 MHz</td>
<td>8 ins/ cycle</td>
</tr>
<tr>
<td>PowerPC 601</td>
<td>1993</td>
<td>55-72 MHz</td>
<td>32,64-bit</td>
</tr>
<tr>
<td>RS64-II,III,IV</td>
<td>1997</td>
<td>125-750 MHz</td>
<td>Commercial Application</td>
</tr>
<tr>
<td>POWER3,-II</td>
<td>1998</td>
<td>200-450 MHz</td>
<td>2-FP, 3-Fixed function units</td>
</tr>
<tr>
<td>POWER4</td>
<td>2001</td>
<td>1.1-1.3 GHz</td>
<td>Multicore, On-chip L2 cache</td>
</tr>
<tr>
<td>POWER5</td>
<td>2005</td>
<td>1.1-1.9 GHz</td>
<td>SMT, On-die memory controller</td>
</tr>
<tr>
<td>POWER6</td>
<td>2007</td>
<td>3.5-4.7 GHz</td>
<td>65nm, in-order execution</td>
</tr>
<tr>
<td>POWER7</td>
<td>2010</td>
<td>4.0 GHz</td>
<td>Under development, 45 nm</td>
</tr>
</tbody>
</table>

POWER6 (Latest)

- A dual core design
 - Operating frequency: 3.5, 4.2, 4.7 and 5 GHz
 - 64KB L1 INS and Data cache; 4MB L2 shared cache
 - L3 cache: Off Die, 32 MB, Bus BW – 80 Gbps
 - Capable of Two-way SMT operation
 - Scalability: up to 64 physical processors
- POWER5 (Out-of-order) → POWER6 (In-Order)
- POWER6 based products
 - Blade servers: JS12 and JS22 blade modules: 6 cores
 - POWER 575: Up to 448 cores, up to 256 GB RAM/ frame
POWER4: High Level Features

- Extension of 64-bit PowerPC architecture
- 0.18 um – lithography and SOI technology
- “Speed demons” VS “Braniacs”
 - While UNIX based RS/6000 are of later kind
 - POWER4 clearly falls in former category
- Operating Frequency Range
 - 1.1 GHz – 1.3 GHz
- Up to 32-way SMP using POWER4

POWER4: Processor

- Two-way On-Chip SMP
- Core Microarchitecture
 - Speculative superscalar
 - Out-of-order execution
 - Issue: 8 INS/ Cycle
 - Completion: 5 INS/ Cycle
 - In-flight: > 200 INS
 - 8 Execution units
 - 2 FP Execution units
 - 2 LD/ST units
 - 3 Fix point Execution units
 - 1 BR Ex, 1 CR Ex unit

POWER4: Chip

POWER4: Die Photograph

POWER4: Core

- Branch Prediction Unit
- Instruction Fetch Unit
- Decode, Crack, Group
- Issue Queues
- LD/ ST Queue
- Execution units
 - FP Execution units
 - Fixed Point EX units
 - BR Execution unit
 - CR Execution unit
Conditional Branches

- High performance systems use multi-level branch predictors
- Two aspects of conditional branch prediction
 - Branch outcome: Taken or Not Taken
 - Branch Address: if Taken then to Where?
- What about unconditional branches?
 - Don’t even bother!
 - Compilers are smart enough to deal with them

Decode, Crack, & Group Formation

- INS are split to ensure the high frequency operation
 - Cracking: load with update (index) => Load + Add
- Group: To keep track of program order
 - Also used for imprecise exceptions (group states)
 - Group contains up to 5 IOPs (Internal Operations)
 - Slots are used to preserve the ordering
 - Only one group can be dispatched per cycle
- Dispatch: Into the issue queues (in-order)
- Issue: From issue queue to EX unit (out-of-order)
- Commit: Upon group completion (in-order)

Load/Store Unit Operation

- Crucial to ensure memory consistency in out-of-order machine
- SRQ and SDQ keeps the results till commit
 - Upon group completion SDQ is written to cache
- Hazards in LD/ST Queue (should be avoided)
 - Load hit Store
 - Younger load gets the data from SDQ if an older store is present to the same address
 - In case SDQ doesn’t have data loads are killed and reissued
 - Store hit Load
 - Store checks the LRQ; if younger load found, group is flushed
 - Load hit Load
 - If younger load gets the old data older load shouldn’t get new

Instruction Execution Pipeline

- Instruction flows in groups in program order
- If miss predicted
 - All dependent INS in pipeline are squashed
Storage Hierarchy: Organization

- L1 cache (Sort of directory protocol)
 - Low latency is achieved by low Associativity
- L2 cache (Kind of snoopy protocol)
 - High Associativity reduces the miss rate
- L3 cache
 - Directory is On-chip; Memory is external

<table>
<thead>
<tr>
<th>Component</th>
<th>Organization</th>
<th>Capacity per chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 instruction cache</td>
<td>Direct-mapped, 128-byte line</td>
<td>128 KB (64 KB per processor)</td>
</tr>
<tr>
<td>L1 data cache</td>
<td>2-way, 128-byte line</td>
<td>64 KB (32 KB per processor)</td>
</tr>
<tr>
<td>L2</td>
<td>8-way, 128-byte line</td>
<td>1.5 MB</td>
</tr>
<tr>
<td>L3</td>
<td>8-way, 128-byte line managed as four 128-byte sectors</td>
<td>32 MB</td>
</tr>
<tr>
<td>Memory</td>
<td>—</td>
<td>0-16 GB</td>
</tr>
</tbody>
</table>

L1 Caches

- L1 Instruction Cache
 - Single-ported, Cache line: 32-byte
- L1 Data Cache
 - Triple-ported, Cache line: 32-byte
 - Two 8-byte read and one 8-byte write per cycle
 - Non-blocking data caches
- L1 caches are parity-protected
 - Error causes invalidation and reloading from L2
- L1 and L2 follow “cache-inclusion” property
- Two possible states in L1: Valid or Invalid

L2 Cache

- Shared unified L2 cache
 - Unified = Data + Instruction
 - Shared between 2 cores
 - 128-byte every 4 cycle
- Data is ECC protected
- Directory protocol with CPU
- Coherency processor
 - L2 and CPU data transfer
 - Fabric controller to CPU
 - L2 directory update
- Snoopy protocol with L3 fabric

MESI Protocol: L1-L2

- Enhanced Version of MESI Protocol (Seven states)
 - I (invalid state)
 - SL (Shared state, can be source to local requester)
 - S (Shared state)
 - M (Modified state)
 - Me (Exclusive state)
 - Mu (Unsolicited modified state)
 - T (Tagged state)

<table>
<thead>
<tr>
<th>L2 state</th>
<th>L1 data cache</th>
<th>State in other L2s</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>Any</td>
</tr>
<tr>
<td>S</td>
<td>I, S, S' , T</td>
<td></td>
</tr>
<tr>
<td>M, Me, or Mu</td>
<td>I, V</td>
<td>I, S, S'</td>
</tr>
<tr>
<td>T</td>
<td>I, V</td>
<td>I, S, S'</td>
</tr>
</tbody>
</table>
L3 Cache

- L3 Cache
 - L3 Controller (on-chip)
 - L3 Data array (off-chip)
 - 8-way Associativity
 - Block size: 512-byte

- Five coherency states
 - I (invalid state)
 - S (shared state)
 - T (tagged state)
 - Trem (remote tagged)
 - O (pre-fetch data state)

Memory Subsystem: Logical View

- Memory controller
 - Attached to L3 eDRAM
 - Synchronous wave pipeline
 - Bus speed
 - 1/3 of CPU speed
 - Protection
 - 2-bit ECC correction
 - Memory port
 - 4-byte bidirectional
 - Speed: 400 MHz

POWER4 based 8-way SMP

- Chip-to-chip fabric
 - 4, 16B bus/ chip
 - Total BW: 38.4 GBps

POWER4: Multi-chip Module

- MCM-MCM fabric
 - 2, 8B bus/ MCM
 - Total BW: 9.6 GBps
IBM Interconnects: Future Roadmap

- 2+ GHz clock rate for future processors
- Increased parallelism at all levels
- Incorporation of larger caches

Sun Fireplane VS POWER4

Sun Fireplane
- TSO, PSO and RMO
- Memory consistency model
- Network BW
 - System Clock: 150 MHz
 - 9.6 GBps/ Address bus
 - 172 GBps/ Max possible
- Peak Memory BW
 - 2.4 GBps

POWER 4
- Weakly ordered
- PowerPC consistency model
- Network BW
 - On/off bus: 600 MHz
 - MCM: 9.6 GBps/ MCM
 - Chip-to-chip: 38.4 GBps
 - L2 BW: 100 GBps
 - Memory Port (400 MHz)
 - BW: ~ 11 GBps

Sun Fireplane
- Two level of coherence protocol
 - Snoopy protocol
 - Directory based protocol
- Better Scalability
 - Possible to implement system with 8-96 UltraSPARC – III processors
 - Separate network for data and addresses

POWER 4
- On-chip two level of cache
 - L1 (sort of point-to-point)
 - L2 (kind of snoopy)
 - L3 is generally directory based
- Good for mid scale
 - Up to 32-way SMP implementation
- High Speed Design

Sun Fireplane VS POWER4

Sun Fireplane
- CPU: UltraSPARC-III
 - RISC based
 - In-order execution
 - Multiple independent pipeline
 - Clock: 900 MHz
- Network Latency
 - Addr: 15 sys cy (150 ns)
 - Data: Sys cy (14, 9, 5)
 - 93, 60, 33 ns

POWER 4
- CPU: POWER4
 - 64-bit PowerPC based
 - Out-of-order execution
 - Multicore: 2-cores/ chip
 - Clock: 1.1 – 1.3 GHz
 - 2-way SMP for software
- Network Latency
 - MCM: 10% greater than best case memory access latency
UltraSPARC-III VS POWER4

<table>
<thead>
<tr>
<th>UltraSPARC-III</th>
<th>POWER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINT2000 base/ peak</td>
<td>CINT2000 base/ peak</td>
</tr>
<tr>
<td>470/533</td>
<td>790/ 814</td>
</tr>
<tr>
<td>CFP2000 base/ peak</td>
<td>CFP2000 base/ peak</td>
</tr>
<tr>
<td>629/ 731</td>
<td>1098/ 1169</td>
</tr>
</tbody>
</table>

Source: IBM