Basics of Parallelization

• Dependence analysis
• Synchronization
 – Events
 – Mutual exclusion
• Parallelism patterns

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel iff there are no dependences between S1 and S2
– true dependences
– anti-dependences
– output dependences
Some dependences can be removed.

Types of Dependences

• True (flow) dependence – RAW
• Anti-dependence – WAR
• Output dependence – WAW

Loop-Carried Dependence

• A loop-carried dependence is a dependence that is present between statements in two different iterations of a loop
• A loop-independent dependence is a dependence between two statements in the same loop
• Loop-carried dependences limit loop iteration parallelization
Synchronization

• Used to enforce dependences
• Control the ordering of events on different processors
 – Events – signal(x) and wait(x)
 – Fork-Join or barrier synchronization (global)
 – Mutual exclusion/critical sections

Eliminating Dependences

• Privatization or scalar expansion
• Reduction (common pattern)

Example: Scalar Expansion or Privatization

```
for (I = 0; I < 100; I++)
    T = A[I];
    A[I] = B[I];
    B[I] = T;
```

Loop-carried anti-dependence on T
Eliminate by converting T into an array or by making T private to each loop iteration

Example: Scalar Expansion

```
for (I = 0; I < 100; I++)
    T[I] = A[I];
    A[I] = B[I];
    B[I] = T[I];
```

Loop-carried anti-dependence eliminated
Removing Dependences: Reduction

```c
sum = 0.0;
for( i=0; i<100; i++ ) sum += a[i];
```

- Loop-carried dependence on sum.
- Cannot be parallelized, but ...

Reduction (continued)

```c
for( i=0; i<100; i++ ) sum[i] = 0.0;
fork();
for( j=0; j<100; j++ ) sum[i] += a[j];
join();
sum = 0.0;
for( i=0; i<100; i++ ) sum += sum[i];
```

Common pattern often with explicit support
e.g., sum = reduce (+, a, 0, 100)

CAVEAT: Operator must be commutative and associative

Steps in the Parallelization

- Decomposition into tasks
 - Expose concurrency
- Assignment to processes
 - Balancing load and maximizing locality
- Orchestration
 - Name and access data
 - Communicate (exchange) data
 - Synchronization among processes
- Mapping
 - Assignment of processes to processors

Decomposition into Tasks

- Tasks may be
 - Identical computation
 - Different computation
 - Indeterminate size
- Tasks may be
 - Independent
 - Have non-trivial order
Decomposition into Tasks

- Conceptualize tasks and ordering as a task dependency DAG (for control dependency), along with a task interaction DAG (for data dependency)
 - Edges represent task serialization
 - Critical path – longest weighted path through graph (lower bound on parallel execution time)
- Measures of parallel performance: speedup, efficiency
- Tradeoff between
 - Degree of concurrency (number of tasks that can be processed in parallel)
 - Task granularity
 - Associated overheads

Patterns of Parallelism

- Decomposition views
 - Data (static) vs. recursive (dynamic) decomposition
 - Exploratory decomposition vs. speculative decomposition
 - Exploratory - Parallel formulation may perform different amounts of work resulting in super or sub-linear speedup
 - Speculative - Schedule tasks even when they may have dependencies
- Data parallelism: all processors do the same thing on different data.
 - Regular
 - Irregular
- Task parallelism: processors do different tasks or dynamically pick up data to compute on
 - Task queue
 - Pipelines

Recursive Decomposition

Suitable for problems solvable using divide-and-conquer

Example: Quicksort
1. Select a pivot
2. Partition set based on pivot
3. Recursively partition each subset in parallel

(Static) Data Parallelism

- Essential idea: each processor works on a different part of the data (usually in one or more arrays)
 - work partitioned based on “owner” computes rule, applied to either input, output, or intermediate data
- Regular or irregular data parallelism: using linear or non-linear indexing.
- Examples: MM (regular), SOR (regular), MD (irregular).
Matrix Multiplication

- Multiplication of two n by n matrices A and B into a third n by n matrix C

```
Matrix Multiply
for( i=0; i<n; i++ )
for( j=0; j<n; j++ )
c[i][j] = 0.0;
for( i=0; i<n; i++ )
for( j=0; j<n; j++ )
for( k=0; k<n; k++ )
c[i][j] += a[i][k]*b[k][j];
```

Parallel Matrix Multiply

- No loop-carried dependences in i- or j-loop.
- Loop-carried dependence on k-loop.
- All i- and j-iterations can be run in parallel.

Parallel Matrix Multiply (contd.)

- If we have P processors, we can give n/P rows or columns to each processor.
- Or, we can divide the matrix in P squares, and give each processor one square.
SOR

- SOR implements a mathematical model for many natural phenomena, e.g., heat dissipation in a metal sheet
- Model is a partial differential equation
- Focus is on algorithm, not on derivation
- Discretized problem

Relaxation Algorithm

- For some number of iterations
 for each internal grid point
 compute average of its four neighbors
- Termination condition:
 values at grid points change very little
 (we will ignore this part in our example)

Discretized Problem Statement

```c
/* Initialization */
for( i=0; i<n+1; i++ ) grid[i][0] = 0.0;
for( i=0; i<n+1; i++ ) grid[i][n+1] = 0.0;
for( j=0; j<n+1; j++ ) grid[0][j] = 1.0;
for( j=0; j<n+1; j++ ) grid[n+1][j] = 0.0;
for( i=1; i<n; i++ )
  for( j=1; j<n; j++ )
    grid[i][j] = 0.0;
```

Discretized Problem Statement

```c
for some number of timesteps/iterations {
    for (i=1; i<n; i++ )
        for( j=1, j<n, j++ )
            temp[i][j] = 0.25 *
                ( grid[i-1][j] + grid[i+1][j]
                  grid[i][j-1] + grid[i][j+1] );
    for( i=1; i<n; i++ )
        for( j=1; j<n; j++ )
            grid[i][j] = temp[i][j];
}
Parallel SOR

- No dependences between iterations of first (i,j) loop nest.
- No dependences between iterations of second (i,j) loop nest.
- Anti-dependence between first and second loop nest in the same timestep.
- True dependence between second loop nest and first loop nest of next timestep.

Parallel SOR Dependences

- First (i,j) loop nest can be parallelized.
- Second (i,j) loop nest can be parallelized.
- We must make processors wait at the end of each (i,j) loop nest.
- Natural synchronization: fork-join.

Parallel SOR Decomposition

- If we have P processors, we can give n/P rows or columns to each processor.
- Or, we can divide the array in P squares, and give each processor a square to compute.

Molecular Dynamics (MD)

- Simulation of a set of bodies under the influence of physical laws.
- Atoms, molecules, celestial bodies, ...
- Have same basic structure.
Molecular Dynamics (Skeleton)

for some number of timesteps {
    for all molecules i
        for all other molecules j
            force[i] += f( loc[i], loc[j] );
        for all molecules i
            loc[i] = g( loc[i], force[i] );
}

Molecular Dynamics (continued)

• To reduce amount of computation, account for interaction only with nearby molecules.

for some number of timesteps {
    for all molecules i
        for all nearby molecules j
            force[i] += f( loc[i], loc[j] );
        for all molecules i
            loc[i] = g( loc[i], force[i] );
}

for each molecule i
    number of nearby molecules count[i]
    array of indices of nearby molecules index[j]
    ( 0 <= j < count[i])
Molecular Dynamics (continued)

for some number of timesteps {
    for( i=0; i<num_mol; i++ )
        for( j=0; j<count[i]; j++ )
            force[i] += f(loc[i],loc[index[j]]);
    for( i=0; i<num_mol; i++ )
        loc[i] = g( loc[i], force[i] );
}

Molecular Dynamics (continued)

• No loop-carried dependence in first i-loop.
• Loop-carried dependence (reduction) in j-loop.
• No loop-carried dependence in second i-loop.
• True dependence between first and second i-loop.

Molecular Dynamics (continued)

• First i-loop can be parallelized.
• Second i-loop can be parallelized.
• Must make processors wait between loops.
• Natural synchronization: fork-join.

Molecular Dynamics (continued)

for some number of timesteps {
    for( i=0; i<num_mol; i++ )
        for( j=0; j<count[i]; j++ )
            force[i] += f(loc[i],loc[index[j]]);
    for( i=0; i<num_mol; i++ )
        loc[i] = g( loc[i], force[i] );
}
Irregular vs. regular data parallel

• In SOR, all arrays are accessed through linear expressions of the loop indices, known at compile time [regular].
• In MD, some arrays are accessed through non-linear expressions of the loop indices, some known only at runtime [irregular].

Molecular Dynamics Decomposition

• Parallelization of first loop:
  – has a load balancing issue
  – some molecules have few/many neighbors
  – more sophisticated loop partitioning necessary

Irregular vs. regular data parallel

• No real differences in terms of parallelization (based on dependences)
• Will lead to fundamental differences in expressions of parallelism:
  – irregular difficult for parallelism based on data distribution
  – not difficult for parallelism based on iteration distribution.
Patterns of Parallelism

- Decomposition views
  - Data (static) vs. recursive (dynamic) decomposition
  - Exploratory decomposition vs. speculative decomposition
    - Exploratory - Parallel formulation may perform different amounts of work resulting in super or sub-linear speedup
    - Speculative - Schedule tasks even when they may have dependencies
- Data parallelism: all processors do the same thing on different data.
  - Regular
  - Irregular
- Task parallelism: processors do different tasks or dynamically pick up data to compute on
  - Task queue
  - Pipelines

Task Parallelism

- Each process performs a different task.
- Two principal flavors:
  - pipelines
  - task queues
- Program Examples: PIPE (pipeline), TSP (task queue).

Pipeline

- Often occurs with image processing applications, where a number of images undergo a sequence of transformations.
- E.g., rendering, clipping, compression, etc.

Sequential Program

```java
for (i=0; i<num_pic; read(in_pic[i]); i++) {
 int_pic_1[i] = trans1(in_pic[i]);
 int_pic_2[i] = trans2(int_pic_1[i]);
 int_pic_3[i] = trans3(int_pic_2[i]);
 out_pic[i] = trans4(int_pic_3[i]);
}
```
Parallelizing a Pipeline

- For simplicity, assume we have 4 processors (i.e., equal to the number of transformations).
- Furthermore, assume we have a very large number of pictures (>> 4).

Sequential vs. Parallel Execution

- Sequential
- Parallel

(Color -- picture; horizontal line -- processor).

Parallelizing a Pipeline (part 1)

Processor 1:

```c
for(i=0; i<num_pics; read(in_pic[i]); i++) {
 int_pic_1[i] = trans1(in_pic[i]);
 signal(event_1_2[i]);
}
```

Parallelizing a Pipeline (part 2)

Processor 2:

```c
for(i=0; i<num_pics; i++) {
 wait(event_1_2[i]);
 int_pic_2[i] = trans2(int_pic_1[i]);
 signal(event_2_3[i]);
}
```

Same for processor 3
Parallelizing a Pipeline (part 3)

Processor 4:

```c
for(i=0; i<num_pics; i++) {
 wait(event_3_4[i]);
 out_pic[i] = trans4(int_pic_3[i]);
}
```

Another Sequential Program

```c
for(i=0; i<num_pic, read(in_pic); i++) {
 int_pic_1 = trans1(in_pic);
 int_pic_2 = trans2(int_pic_1);
 int_pic_3 = trans3(int_pic_2);
 out_pic = trans4(int_pic_3);
}
```

Can we use same parallelization?

Processor 2:

```c
for(i=0; i<num_pics; i++) {
 wait(event_1_2[i]);
 int_pic_2 = trans1(int_pic_1);
 signal(event_2_3[i]);
}
```

Same for processor 3

Can we use same parallelization?

- No, because of anti-dependence between stages, there is no parallelism
- Another example of privatization
- Costly in terms of memory
In-between Solution

- Use n>1 buffers between stages.
- Block when buffers are full or empty

Perfect Pipeline

- Sequential
- Parallel

(Color -- picture; horizontal line -- processor).

Things are often not that perfect

- One stage takes more time than others
- Stages take a variable amount of time
- Extra buffers can provide some cushion against variability

Acknowledgements

Slides reflect content from Willy Zwaenepoel and from Grama/Gupta/Karypis/Kumar that accompany their corresponding course/textbooks and have been adapted to suit the content of this course.