Concurrency in Programming

L anguages

CSC 458 Presentation
Piotr Faliszewski

pfali @s.rochester. edu

Presentation Plan

m Theoretical models of concurrent computation
= Nondeterministic Turing Machine
= Alternating Turing Machine

x| mperative and functional programming languages
i Case study:

» Concurrent ML« OpenMP (Fortran/C/C++)
« Erlang « Split-C
e MultiLisp * Java

Functional versus Imperative Languages

= From comp.lang.functional:
= Functional programming is a style of

programmi ng that enphasizes the eval uation
of expressions, rather than execution of
commands. The expressions in these |anguages
are forned by using functions to conbine
basic values. A functional |anguage is a
| anguage that supports and encour ages
programming in a functional style.

On the other hand, imperatve languages specify ways of forming
simple commands for the computer to execute in agiven order.

Functional versus Imperative

Haskell & C/C++
sum [1..10] total = 0;
for (i=1; i<=10; ++i)
H Scheme/Llsp total +=i;

(define sum
(lanbda (fromtotal)
(if (=0 from
total
(sum (- from1) (+ total from))))
(sum 10 0)

Case Study of Programming Languages

= |nteresting languages:

Concurrent ML — concurrency added to a well-established functional
language

Erlang — industry’ s response to the need of a practical programming
language for concurrent applications
MultiLisp — semantics for Lisp that facilitate parallel programming

u OpenMP — high performance computing community’s way of
expressing parallelismin C/C++ and Fortran

Split-C — dialect of C that facilitates programming for distributed
memory multi processor

= Java— general purpose programming language

Concurrent ML — Introduction

i Standard ML
= Safe, modular, strict, functional, polymorphic programming
language
= Safe—no core dumps
= Modular — mechanism for modularization of programs
m Strict —call by value
= Functional — has higher order functions
= Polymorphic — generic functions/data types (e.g., the same function
can compute the length of alist of strings and the length of alist of
ints etc.)
= Compile-time type checking
= Garbage collection
= |f needed, can pretend that is not as functional asit seemsat first
m C++ of functional languages

Standard ML — History

= Originally developed in the early 70s in Edinbourgh
= The name, ML, comes from Meta-Language
= Combines features of Algol and Lisp-like languages

= |tsfirst goal was to facilitate the development of atheorem
proving package

Standard ML — sequential code

= Simplefunction:
- val add2 = fn (x) => x+2;
val add2 = fn : int ->int
- add2(4);
val Bkt =R6s=ilnt

= Fibonacci Sequence (recursive function):
- val rec fib=fn0=>1|

E s —]

= N=>fib(N1) + fib(N2);
vals fibE=SF e i-nt'e= >8int
=i D25

val it =8 : int

Standard ML — Higher Order Functions

= Applying afunction to all elements of alist
m - val map = fn (f, nil) =>nil |
m = (Wfmmmh el). S=> G0 h)des(maps (F 51)5
mval mp =fn: (‘a->"'b) * 'alist ->"'b list
m - UEpE (Wadd2ie 1552, 315
mval it =[3,45] : int |ist
= \We could also just return afunction that would perform the
operation...
= ..but we are to talk about concurrency, not ML ©

Concurrent ML

& Concurrency in ML
= Achieved mostly by alibrary
= CML programs spawn processes when they need them
= Various synchronization mechanisms:
= Communication channels
= Events
= Mailboxes
= SyncVars

Concurrent ML

= Communication Channels
= send/ r ecv functions (blocking)
= sendPol | / recvPol | functions (nonblocking)
= sendEvt / recvEvt — create events associated with
sending/receiving messages
= Multicast channels also available
= Events
= sync — synchronize on an event

= ... and many other event related functions that could
appear in any library supporting concurrency

Concurrent ML

I SyncVars
= Variables that can be either filled or empty;
= Synchronization on reading from an empty variable
= Two flavors
= Regular —avalue can be put in only once

= Reusable—avalue can be removed, and anew one can be put
in (alocker ©)

= Blocking and nonblocking operations available
= Eventsfor typical operations available.

Concurrent ML

u MailBoxes

= A marriage of SyncVars and channels
= Producer may put packages into the mailbox
= Consumer may pick them up
= No limit on the amount of packagesin the mailbox, so if

produces is much faster then we run out of memory

= Operations possible on a MailBox:
send — always nonblocking
recv/recvPol | — blocking/nonblocking receive

= Events associated with mailboxes (receiving)

Concurrent ML

X Summary

= Nice functional programming language...

= ... but the syntax has no support for concurrency

= Concurrency was added using awell designed library,
but it did not facilitate concurrent programming too
much (no more than pthreads facilitated concurrent
programming in C/C++).

m Functional properties of ML seem to be leaving alot of
space for advanced support of parallel programming
templates, but CML does not have them (at least not in
a out-of-the-box fashion)

Erlang

= Erlang — developed by Ericsson to facilitate the
development of their telecommunication systems.
= Designed as afunctional, concurrent programming
language
= Designed by acompany — avery pragmatic approach was taken
= Language design went together with language implementation

= Features that Ericsson programmers did not use were being removed
from the language;

= Features solving common problems were being added.
= First implementation had only a Prolog based interpreter.
= Currently, compilers are available.

Erlang — Sequential Code

i Erlang Tutorial: Simple nonrecursive function
(and typical layout of a sourcefile)

-modul e(dbl).
-export ([double/1]).

doubl e(X) ->
2

Erlang — Sequential Code

® Recursive Function:

-nodul e(tut).
-export ([fib/1]).

fib(1) ->
ik

fib(2) ->
2%

fib(N) ->

fib(N-2)+ fib(N - 1).

Erlang — Sequential Code

x Erlang Tutorial: Length conversion function:

-nodul e(tut3).
-export ([convert_length/1]).

convert _length({centineter, X}) ->
HEin e X s BN

convert _l ength({inch, Y}) ->
{centineter, Y * 2.54}.

Erlang — Concurrency

u Erlang can spawn many processed
= No support for shared memory
= All communication through messages
= Messages may be addressed to specific PIDs...
= ...0r sent to special named processes
1 Remember! This language was developed by a
telecommunication company to satisfy its own
needs ©

Erlang — Concurrency

®x Erlang Tutorial: Spawning a process:
-nodul e(tut14).
-export([start/0, say_something/2]).

say_sonet hi ng(What, 0) ->
done;

say_sonet hi ng(What, Tines) ->
io:format("~p~n", [Wat]),
say_sonet hi ng(What, Times - 1).

start() ->
spawn(tut 14, say_sonething, [hello, 3]),
spawn(tut 14, say_sonet hing, [goodbye, 3]).

Erlang — Concurrency

& Erlang Tutorial: Result:

1> tutl4:start().
hel l o

goodbye

<0. 63. 0>

hel l o

goodbye

hel l o

goodbye

Erlang — Message Passing

i Simple message passing
= Ping sends a series of messages to Pong
= Pong sends them back
= Program will run on two different nodes
= \We will handle the case when no reply arrivesin
sensible time

Erlang — Message Passing (Erlang

Tutorial)
pi ng(0, Pong_Node) -> pong() ->
io:format("ping finished-n", []); recei ve

pi ng(N, Pong_Node) ->

{pong, Pong_Node} ! {ping, self()}, {piing: “RiUTRILTEC =

recei ve io:format(,Got ping~n",
pong - > Ping_PID ! pong
io:format("Got Pong~n",[]) pong()
end,

after 5000 ->
ping(N - 1, Pong_Node) .
io:format("Tined out~n",

end.
start_pong() ->

register(pong, spawn(tut19, pong, [])).
start_ping(Pong_Node) ->

spawn(tut19, ping, [3, Pong_Node]).

1.

[n

MultiLisp

i Extension to Lisp developed at MIT for their parallel
computer
= (pcall ABQ
m Evaluates A, B, and C in parallel
= Futures
= (future X)
= Returnsimmediately, and returns a value , future”
= When X evaluates, the actual result is substituted for the , future”
m If the valueis needed earler then the program waits
= No presentation about functional programming languages
is complete without areference to Lisp ©

OpenMP

u Not alanguage as such

= A set of compiler directives to express parallelism
= Support for:

= Fortran (77, 90, 95)

m C/C++
® Goals:

= Simplify development of shared-memory parallel
programs
= Facilitate parallelization of old sequential programs

OpenMP — History

i Release History
= October 1997: Fortran version 1.0
= Late 1998: C/C++ version 1.0
= June 2000: Fortran version 2.0
= April 2002: C/C++ version 2.0
= ...currently version 2.5 is being prepared

OpenMP — Ideas

#®& Fork-Join programming model
= Driven by compiler directives
= ... and some helper functions
= ... and environment variables
1 Parallel sections executed by ateam of threads
= Threads numbered from O to N-1.
= Master thread always has number O

= Master Thread is the only one to continue after the
parallel section

= Nested parallelism (not necessarily implemented)

OpenMP — Ideas

= Very easy to use. Most important directives:

m paral | el —start aparallel section

= f or —distribute loop iterations between threads (data
parallelism)

m sect i ons — distribute fragments of code between
threads (functional/task parallelism)

mcritical —critical section

= mast er/ si ngl e —section executed only by the
master thread/one thread

OpenMP

1 Simple OpenMP program (OpenMP Tutorial)

#i ncl ude <onp. h>
min () {
int nthreads, tid;
#pragma onp paral l el private(tid)
{
tid = onp_get _thread_nun();
printf("Hello Wrld fromthread = %\ n", tid);
if (tid'==0){
nthreads = onp_get _num threads();
printf("Nunber of threads = %\ n", nthreads);
}
}
}

OpenMP

u Parallel loop (OpenMP Tutorial)

#pragnma onp paral lel shared(a,b,c, chunk) \
private(i)
{
#pragma onp for schedul e(dynani c, chunk) nowai t
TloTe (=0, US<ENAS S2E))
o] ki e L]
}
}

OpenMP

u Parallel loop, but shorter (OpenMP Tutorial)

#pragma onp parallel for \
shared(a, b, c,chunk) private(i) \
schedul e(stati c, chunk)
for (i=0; i < n; i++4)

c[i] = a[i] + b[i];

OpenMP

®m Functional/Task parallelism

#pragma onp sections nowai t
{
#pragma onp section
for (i=0; i < N2; i++)
cliitl =rallifl=+" b
#pragma onp section
for (i=NV2; i < N; i++)
c[il = a[i] =+ b[i];
}

OpenMP — Synchronization

& |mplicit barrier at the end of most of the
constructs.

= Some explicit constructs exist, though.

#pragma onp paral l el shared(x) #pragma onp paral | el shared(x)
{

a3 if(x == 0)

#pragnmae onp critical {

S T #pragma onp barrier

OpenMP

& ... and many other cool features:
= Reduce operation
= Local/shared variables
= How to initidise thread-local variables

= How to restore valuesin the master thread variables after all
threads finish aparallel section

= efc.

Split-C

Parallel C for distributed memory machines
= Access to underlying machine "with no surprises,
All programs are parallel from the start to the end

= There are always PROCS threads.

= Every thread has a MYPROC ranging from O to PROCS- 1
Small set of synchronization primitives.
= Two dimensional address space
= Loca memory

= Globa memory
= gl obal pointers

Split-C

i New language features:
= Globa pointers
= Spread pointers (for pointer arithmetic on global pointers)
= Signalling assignment (store)
m all _store_sync
m store_sync
m Split-phase assignment
m sync
= Bulk assignment
= Atomic operations

Split-C

= Sample program computing P

splitc_main(){
int trials, nytrials,i,hits;
int total;
doubl e pi;
trials = ... [// obtain global number of trials
nytrials = trials/PROCS + 1;
for(int i=0; i<nytrials; i++)
hits += hit();
total = all_reduce_to_one_add(hits);
on_one {
pi = 4.0*total/(nytrial *PROCS);
}
}

Split-C

= Summary
m A little similar to OpenMP for C
m ... but for distributed memory machines
= Not so much fun to program with

Java

= Weall know what Javais...
#® Supports synchronization via monitors

= Every object isamonitor

= Every synchr oni zed method becomes owner of the

monitor upon entry, and releases it upon return
= But there are also functions to manage who the monitor
® Fun Fact: Java does not even guarantee that
threads make forward progress

= But, we can hope that JavaVM ftries to be fair, and
respects thread priorities

Java

 Communication between threads
= Shared memory
= [nterruptions
& Synchronization
= Monitors
= Synchronized methods (lock on yourself)
= synchroni zed isnot a part of method' s signature

= Synchronized blocks (lock on agiven object)
= Locking static fields by locking on the O as's object

= Join operation

Java

= Monitor functions:

= wai t — thread holding the monitor releasesit and waits
to be notified;

m not i fy —wakes up one waiting thread, but does not
give him the monitor; it has to compete for it as
everyone else;

= noti f yAl | —asabove, but for al waiting threads

Javalb

2 New cool librariesin Java 1.5
mjava.util.concurrent
= Thread pools
= Concurrent collections
= Timing
= Synchronization classes
= Semaphores
= Barriers

= Futures (representation of the results of asynchronous
computation)

= Etc.

Summary

u Different languages, different applications

m Erlang — satisfies industry’ s need of alanguage for
quick development of distributed systems

= OpenMP — high performance computing on shared
memory multiprocessors

= Split-C — high performance computing on distributed
memory multiprocessors

= Java— general purpose programming language with
native support for parallel computation

