
1

Concurrency in Programming
Languages

CSC 458 Presentation

Piotr Faliszewski
pf al i @cs. r ochest er . edu

Presentation Plan

Theoretical models of concurrent computation
� Nondeterministic Turing Machine

� Alternating Turing Machine

Imperative and functional programming languages

Case study:

• Concurrent ML

• Erlang

• MultiLisp

• OpenMP (Fortran/C/C++)

• Split-C

• Java

Functional versus Imperative Languages

From comp.lang.functional:
� Funct i onal pr ogr ammi ng i s a s t y l e of

pr ogr ammi ng t hat emphasi zes t he eval uat i on
of expr essi ons, r at her t han execut i on of
commands. The expr ess i ons i n t hese l anguages
ar e f or med by usi ng f unct i ons t o combi ne
bas i c val ues. A f unct i onal l anguage i s a
l anguage t hat suppor t s and encour ages
pr ogr ammi ng i n a f unct i onal s t y l e.

� On the other hand, imperatve languages specify ways of forming
simple commands for the computer to execute in a given order.

Functional versus Imperative

Haskell
sum [1. . 10]

Scheme/Lisp
(def i ne sum

(l ambda (f r om t ot al)

(i f (= 0 f r om)

t ot al

(sum (- f r om 1) (+ t ot al f r om)))))

(sum 10 0)

C/C++
t ot al = 0;

f or (i =1; i <=10; ++i)

t ot al += i ;

Case Study of Programming Languages

Interesting languages:
� Concurrent ML – concurrency added to a well-established functional

language

� Erlang – industry’s response to the need of a practical programming
language for concurrent applications

� MultiLisp – semantics for Lisp that facilitate parallel programming

� OpenMP – high performance computing community’s way of
expressing parallelism in C/C++ and Fortran

� Split-C – dialect of C that facilitates programming for distributed
memory multiprocessor

� Java – general purpose programming language

Concurrent ML – Introduction

Standard ML
� Safe, modular, strict, functional, polymorphic programming

language
� Safe – no core dumps
� Modular – mechanism for modularization of programs
� Strict – call by value
� Functional – has higher order functions
� Polymorphic – generic functions/data types (e.g., the same function

can compute the length of a list of strings and the length of a list of
ints etc.)

� Compile-time type checking
� Garbage collection
� If needed, can pretend that is not as functional as it seems at first

� C++ of functional languages

2

Standard ML – History

Originally developed in the early 70s in Edinbourgh

The name, ML, comes from Meta-Language

Combines features of Algol and Lisp-like languages

Its first goal was to facilitate the development of a theorem
proving package

Standard ML – sequential code

Simple function:
- val add2 = fn (x) => x+2;

val add2 = f n : i nt - > i nt
- add2(4);

val i t = 6 : i nt

Fibonacci Sequence (recursive function):
- val rec fib = fn 0 => 1 |

= 1 => 1 |
= N => fib(N-1) + fib(N-2);

val f i b = f n : i nt - > i nt

- fib 5;

val i t = 8 : i nt

Standard ML – Higher Order Functions

Applying a function to all elements of a list
� - val map = fn (f, nil) => nil |

� = (f, h::t) => (f h)::(map (f, t));

� val map = f n : (' a - > ' b) * ' a l i st - > ' b l i st

� - map (add2, [1,2,3]);

� val i t = [3, 4, 5] : i nt l i s t

We could also just return a function that would perform the
operation...
� ...but we are to talk about concurrency, not ML �

Concurrent ML

Concurrency in ML
� Achieved mostly by a library

� CML programs spawn processes when they need them

� Various synchronization mechanisms:
� Communication channels

� Events

� Mailboxes

� SyncVars

Concurrent ML

Communication Channels
� send/ r ecv functions (blocking)
� sendPol l / r ecvPol l functions (nonblocking)
� sendEvt / r ecvEvt – create events associated with

sending/receiving messages
� Multicast channels also available

Events
� sync – synchronize on an event
� ... and many other event related functions that could

appear in any library supporting concurrency

Concurrent ML

SyncVars
� Variables that can be either filled or empty;

� Synchronization on reading from an empty variable

� Two flavors
� Regular – a value can be put in only once

� Reusable – a value can be removed, and a new one can be put
in (a locker �)

� Blocking and nonblocking operations available

� Events for typical operations available.

3

Concurrent ML

MailBoxes
� A marriage of SyncVars and channels

� Producer may put packages into the mailbox

� Consumer may pick them up

� No limit on the amount of packages in the mailbox, so if
produces is much faster then we run out of memory

� Operations possible on a MailBox:
send – always nonblocking

recv/recvPoll – blocking/nonblocking receive

� Events associated with mailboxes (receiving)

Concurrent ML

Summary
� Nice functional programming language...
� ... but the syntax has no support for concurrency
� Concurrency was added using a well designed library,

but it did not facilitate concurrent programming too
much (no more than pthreads facilitated concurrent
programming in C/C++).

� Functional properties of ML seem to be leaving a lot of
space for advanced support of parallel programming
templates, but CML does not have them (at least not in
a out-of-the-box fashion)

Erlang

Erlang – developed by Ericsson to facilitate the
development of their telecommunication systems.

Designed as a functional, concurrent programming
language
� Designed by a company – a very pragmatic approach was taken

� Language design went together with language implementation
� Features that Ericsson programmers did not use were being removed

from the language;

� Features solving common problems were being added.

First implementation had only a Prolog based interpreter.
� Currently, compilers are available.

Erlang – Sequential Code

Erlang Tutorial: Simple nonrecursive function
(and typical layout of a source file)

- modul e(dbl) .

- expor t ([doubl e/ 1]) .

doubl e(X) - >

2 * X.

Erlang – Sequential Code

Recursive Function:

- modul e(t ut) .

- expor t ([f i b/ 1]) .

f i b(1) - >

1;

f i b(2) - >

2;

f i b(N) - >

f i b(N- 2) + f i b(N - 1) .

Erlang – Sequential Code

Erlang Tutorial: Length conversion function:

- modul e(t ut 3) .

- expor t ([conver t _l engt h/ 1]) .

conver t _l engt h({ cent i met er , X}) - >

{ i nch, X / 2. 54} ;

conver t _l engt h({ i nch, Y}) - >

{ cent i met er , Y * 2. 54} .

4

Erlang – Concurrency

Erlang can spawn many processed
� No support for shared memory

� All communication through messages

� Messages may be addressed to specific PIDs...

� ...or sent to special named processes

Remember! This language was developed by a
telecommunication company to satisfy its own
needs �

Erlang – Concurrency

Erlang Tutorial: Spawning a process:
- modul e(t ut 14) .
- expor t ([s t ar t / 0, say_somet hi ng/ 2]) .

say_somet hi ng(What , 0) - >
done;

say_somet hi ng(What , Ti mes) - >

i o: f or mat (" ~p~n" , [What]) ,
say_somet hi ng(What , Ti mes - 1) .

st ar t () - >
spawn(t ut 14, say_somet hi ng, [hel l o, 3]) ,

spawn(t ut 14, say_somet hi ng, [goodbye, 3]) .

Erlang – Concurrency

Erlang Tutorial: Result:

1> t ut 14: s t ar t () .

hel l o

goodbye

<0. 63. 0>

hel l o

goodbye

hel l o

goodbye

Erlang – Message Passing

Simple message passing
� Ping sends a series of messages to Pong

� Pong sends them back

Program will run on two different nodes

We will handle the case when no reply arrives in
sensible time

Erlang – Message Passing (Erlang
Tutorial)

pi ng(0, Pong_Node) - >

i o: f or mat (" pi ng f i ni shed~n" , []) ;

pi ng(N, Pong_Node) - >

{ pong, Pong_Node} ! { pi ng, sel f () } ,

r ecei ve

pong - >

i o: f or mat (" Got Pong~n" , [])

end,

pi ng(N - 1, Pong_Node) .

pong() - >

r ecei ve

{ pi ng, Pi ng_PI D} - >

i o: f or mat („ Got pi ng~n" , []) ,

Pi ng_PI D ! pong,

pong()

af t er 5000 - >

i o: f or mat (" Ti med out ~n" , [])

end.
st ar t _pong() - >

r egi s t er (pong, spawn(t ut 19, pong, [])) .

st ar t _pi ng(Pong_Node) - >

spawn(t ut 19, pi ng, [3, Pong_Node]) .

MultiLisp

Extension to Lisp developed at MIT for their parallel
computer
� (pcal l A B C)

� Evaluates A, B, and C in parallel

� Futures
� (f ut ur e X)

� Returns immediately, and returns a value „ future”

� When X evaluates, the actual result is substituted for the „ future”

� If the value is needed earler then the program waits

No presentation about functional programming languages
is complete without a reference to Lisp �

5

OpenMP

Not a language as such
� A set of compiler directives to express parallelism

Support for:
� Fortran (77, 90, 95)

� C/C++

Goals:
� Simplify development of shared-memory parallel

programs

� Facilitate parallelization of old sequential programs

OpenMP – History

ReleaseHistory
� October 1997: Fortran version 1.0

� Late 1998: C/C++ version 1.0

� June 2000: Fortran version 2.0

� April 2002: C/C++ version 2.0

� ...currently version 2.5 is being prepared

OpenMP – Ideas

Fork-Join programming model
� Driven by compiler directives
� ... and some helper functions
� ... and environment variables

Parallel sections executed by a team of threads
� Threads numbered from 0 to N-1.
� Master thread always has number 0
� Master Thread is the only one to continue after the

parallel section
� Nested parallelism (not necessarily implemented)

OpenMP – Ideas

Very easy to use. Most important directives:
� par al l el – start a parallel section

� f or – distribute loop iterations between threads (data
parallelism)

� sect i ons – distribute fragments of code between
threads (functional/task parallelism)

� cr i t i cal – critical section

� mast er / si ngl e – section executed only by the
master thread/one thread

OpenMP

Simple OpenMP program (OpenMP Tutorial)

#i ncl ude <omp. h>

mai n () {

i nt nt hr eads, t i d;
#pragma omp parallel private(tid)

{

t i d = omp_get_thread_num();
pr i nt f (" Hel l o Wor l d f r om t hr ead = %d\ n" , t i d) ;

i f (t i d == 0) {

nt hr eads = omp_get_num_threads();
pr i nt f (" Number of t hr eads = %d\ n" , nt hr eads) ;

}

}
}

OpenMP

Parallel loop (OpenMP Tutorial)

#pragma omp parallel shared(a,b,c,chunk) \
private(i)

{

#pragma omp for schedule(dynamic,chunk) nowait

f or (i =0; i < N; i ++)

c [i] = a[i] + b[i] ;

}

}

6

OpenMP

Parallel loop, but shorter (OpenMP Tutorial)

#pragma omp parallel for \

shared(a,b,c,chunk) private(i) \

schedule(static,chunk)

f or (i =0; i < n; i ++)

c [i] = a[i] + b[i] ;

OpenMP

Functional/Task parallelism
#pragma omp sections nowait

{
#pragma omp section

f or (i =0; i < N/ 2; i ++)

c [i] = a[i] + b[i] ;

#pragma omp section

f or (i =N/ 2; i < N; i ++)

c [i] = a[i] + b[i] ;
}

OpenMP – Synchronization

Implicit barrier at the end of most of the
constructs.

Some explicit constructs exist, though.

#pragma omp parallel shared(x)

{

. . .

#pragma omp critical

x = x + 1;

. . .

}

#pragma omp parallel shared(x)
{

. . .
i f (x == 0)
{
#pragma omp barrier

}
. . .

}

OpenMP

... and many other cool features:
� Reduce operation

� Local/shared variables
� How to initialise thread-local variables

� How to restore values in the master thread variables after all
threads finish a parallel section

� etc.

Split-C

Parallel C for distributed memory machines

Access to underlying machine "with no surprises„

All programs are parallel from the start to the end
� There are always PROCS threads.

� Every thread has a MYPROC ranging from 0 to PROCS- 1

Small set of synchronization primitives.

Two dimensional address space
� Local memory

� Global memory
� gl obal pointers

Split-C

New language features:
� Global pointers

� Spread pointers (for pointer arithmetic on global pointers)

� Signalling assignment (store)
� al l _s t or e_sync

� st or e_sync

� Split-phase assignment
� sync

� Bulk assignment

� Atomic operations

7

Split-C

Sample program computing P

spl i t c_mai n() {

i nt t r i al s , myt r i al s, i , hi t s;

i nt t ot al ;
doubl e pi ;

t r i al s = . . . / / obt ai n gl obal number of t r i al s

myt r i al s = t r i al s / PROCS + 1;
f or (i nt i =0; i <myt r i al s ; i ++)

hi t s += hi t () ;

t ot al = all_reduce_to_one_add(hits);
on_one {

pi = 4. 0* t ot al / (myt r i al * PROCS) ;

}
}

Split-C

Summary
� A little similar to OpenMP for C

� ... but for distributed memory machines

� Not so much fun to program with

Java

We all know what Java is...
Supports synchronization via monitors
� Every object is a monitor
� Every synchr oni zed method becomes owner of the

monitor upon entry, and releases it upon return
� But there are also functions to manage who the monitor

Fun Fact: Java does not even guarantee that
threads make forward progress
� But, we can hope that JavaVM tries to be fair, and

respects thread priorities

Java

Communication between threads
� Shared memory
� Interruptions

Synchronization
� Monitors

� Synchronized methods (lock on yourself)
� synchr oni zed is not a part of method’ s signature

� Synchronized blocks (lock on a given object)
� Locking static fields by locking on the Cl ass object

� Join operation

Java

Monitor functions:
� wai t – thread holding the monitor releases it and waits

to be notified;
� not i f y – wakes up one waiting thread, but does not

give him the monitor; it has to compete for it as
everyone else;

� not i f yAl l – as above, but for all waiting threads

Java 1.5

New cool libraries in Java 1.5
� j ava. ut i l . concur r ent

� Thread pools

� Concurrent collections

� Timing

� Synchronization classes
� Semaphores

� Barriers

� Futures (representation of the results of asynchronous
computation)

� Etc.

8

Summary

Different languages, different applications
� Erlang – satisfies industry’s need of a language for

quick development of distributed systems

� OpenMP – high performance computing on shared
memory multiprocessors

� Split-C – high performance computing on distributed
memory multiprocessors

� Java – general purpose programming language with
native support for parallel computation

