
DIMM: Architectural Support for Data Isolation and Memory Monitoring
Arrvindh Shriraman

ashriram@cs.rochester.edu, 4th year graduate student
Department of Computer Science, University of Rochester

Advisor: Sandhya Dwarkadas

1 Introduction
In recent years, multi-core and many-core processors based

on the shared-memory model have become increasingly common
and appear to be the choice of hardware platform for future sys-
tems. Typical software kernels load all extensible modules into a
single address space for fast shared memory based communica-
tion. This improves the performance but compromises the safety
and reliability aspects. The naive shared memory paradigm is par-
tially at fault; it makes it very expensive to defend against memory
corruption since hardware coherence and value propagation is al-
most completely transparent to software. Ideally the underlying
system would sandbox the module, locally exposing an untrusted
module’s updates, but hiding it from the core kernel address space
until the system approves.

With the influx of multi-core processors, “Parallel Program-
ming” is another challenge that programmers have to contend
with. There is a general consensus that writing multi-threaded
code with all the synchronization presents a significant challenge
for the average programmer. The transactional memory (TM)
programming paradigm hopes to ease some of these concerns
and there is significant pressure on hardware vendors to include
support components in future processors. Our research develops
generic hardware support that seeks to support these seemingly
unrelated requirements from the TM, security, reliability, and de-
bugging application domains. We propose decoupled hardware
mechanisms for (1) memory monitoring and (2) data isolation.
Our thesis is that,

Hardware primitives for memory monitoring and data isolation
will facilitate wide-spread usage of shared memory multiproces-
sors via enhanced concurrent programming models. It is possible
to export these primitives to software in a manner that enables
flexible use of hardware support for multiple purposes.

We informally define these terms below.
Data Isolation allows software to control the visibility of a

write in a shared memory system, i.e., execute a write operation,
make it visible to the local thread, but hide the written value from
remote threads until some commit point in the future.

Memory Monitoring provides support for (1) summarizing
the read/write accesses of the program and (2) event-based notifi-
cation of remote memory operations on special addresses marked
by software.

2 Work in Progress
Our proposal explores lightweight, generic, fine-grained sup-

port for DIMM (Data Isolation and Memory Monitoring).

Phase 1: Bounded DIMM- Our first implementation of the hard-
ware support was under the umbrella of the “RTM” transactional
memory (TM) project [2]. We developed architectural mecha-
nisms for bounded capacity DIMM, (1) Alert-on-update (AOU)
marks the L1 cache lines and leverages cache coherence for event

notification, and (2) Programmable data isolation (PDI) allows
the L1 cache to hold speculative data until software decides to
make them visible. These components provided acceleration for
a hardware-software based TM system. We also began exploring
API extensions that would allow use in non-transactional appli-
cations (e.g., security, debugging).

Phase 2: Unbounded DIMM- The results from the RTM project
seemed to indicate that software metadata management required
to handle L1 overflows is a significant performance overhead.
We extended the DIMM components to target these overheads by
adding (1) a hardware bloom-filter based signature that can repre-
sent an unbounded number of locations for monitoring, and (2) an
overflow buffer (in virtual memory) filled by hardware to support
cache overflows. We also included a new hardware event-logger,
Conflict Table, which noted the processors from which accesses
were made to monitored locations. These DIMM components
aided in constructing (1) a high performance transactional mem-
ory system that could virtualize effectively [1] and (2) a memory
bug detector tool [1].

Phase 3: Using DIMM hardware- Most recently, our research
has focused on employing DIMM components to provide fine-
grain monitoring and isolation support for applications in the re-
liability and security domain. We are employing DIMM to check-
point, bound resource usage, and buffer memory state of un-
trusted/unverified modules to allow easy safe reclamation (e.g.,
when killing a thread). In the past these requirements have been
met using the large-granularity OS process paradigm that makes it
difficult to share state through memory and introduces significant
performance penalty.

3 Summary
The success of multi-core chips depends strongly on convinc-

ing the software vendors of their value. Our research work has
defined and developed two generic hardware primitives, memory
monitoring and data isolation, which we believe software devel-
opers will be able to deploy across different application domains
(e.g., security, reliability, programming models). Decoupling the
DIMM components and giving each a well defined API will also
make it easier for hardware vendors to implement and refine them.
We think ASPLOS with its confluence of software and hardware
developers is the right platform to advertise our research.

References
[1] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott.

Flexible Decoupled Transactional Memory Support. Technical
Report TR 910, Department of Computer Science, University of
Rochester, December 2006.

[2] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain, Sandhya
Dwarkadas, and Michael L. Scott. An Integrated Hardware-Software
Approach to Flexible Transactional Memory. In Proc. of the 34th
Intl. Symp. on Computer Architecture, Jun 2007.


