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ABSTRACT
Light-weight, flexible access control, which allows software to
regulate reads and writes to any granularity of memory region,
can help improve the reliability of today’s multi-module multi-
programmer applications, as well as the efficiency of software de-
bugging tools. Unfortunately, access control in today’s processors
is tied to support for virtual memory, making its use both heavy
weight and coarse grain. In this paper, we propose Sentry, an aux-
iliary level of virtual memory tagging that is entirely subordinate
to existing virtual memory-based protection mechanisms and can
be manipulated at the user level. We implement these tags in a
complexity-effective manner using an M-cache (metadata cache)
structure that only intervenes on L1 misses, thereby minimizing
changes to the processor core. Existing cache coherence states are
repurposed to implicitly validate permissions for L1 hits. Sentry
achieves its goal of flexible and light-weight access control with-
out disrupting existing inter-application protection, sidestepping
the challenges associated with adding a new protection framework
to an existing operating system.

We illustrate the benefits of our design point using 1) an Apache-
based web server that uses the M-cache to enforce protection
boundaries among its modules and 2) a watchpoint-based tool to
demonstrate low-overhead debugging. Protection is achieved with
very few changes to the source code, no changes to the program-
ming model, minimal modifications to the operating system, and
with low overhead incurred only when accessing memory regions
for which the additional level of access control is enabled.

Categories and Subject Descriptors: B.3.2 [Memory Struc-
tures]: Design Styles—Shared memory; C.0 [General]: Hard-
ware/Software interfaces; C.1.2 [Processor Architectures]: Multi-
processors; D.2.0 [Software Engineering]: General — Protection
mechanisms

General Terms: Performance, Design, Reliability, Security

Keywords: Access control, Cache coherence, Multiprocessors,
Memory protection, Sentry, Protection domains, Safety.
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1. INTRODUCTION
Modern software are complex artifacts consisting of millions of

lines of code written by many developers. Developing correct, high
performance, and reliable code has thus become increasingly chal-
lenging. The prevalence of multi-core processors has increased the
burden on software developers. Fine-grain intra- and inter-thread
interactions via memory make it difficult for developers to track,
debug, and regulate the accesses arising from the various software
modules. Architectural features for access control that enable soft-
ware to track and regulate accesses will help develop more robust
and fault tolerant applications.

As one example, Figure 1 presents a high-level representation of
the developers’ view of Apache [31]. The system designers specify
a software interface that defines the set of functions and data that
are private and/or exported to other modules. For the sake of pro-
gramming simplicity and performance, current implementations of
Apache run all modules in a single process and rely on adherence
to the module interface to protect modules. Unfortunately, a bug or
safety problem in any module could potentially (and does) violate
the interface and affect the whole application.

Apache 
Core

1. Http request() 
2. Allocator()
3. Utilities()

D1 (M1:R/W)
D2 (M1:R/W)

 M1

Private data

...................

Mod_Cache
cache root()
insert_entry()

D3 (M2:R/W)
D4 (M2:R/W)

 M2

Private data

...................

D5 (M1:R/W) (M2:R)
D6 (M1:R) (M2:R)
setcache_size()
get_request_packet()

Mod_log

D6 (M3:R/W)
D7 (M3:R/W)

 M3

Private data

...................

...................

log_bytes()
log_filter()
...................

D8 (M1,M3:R/W) 
       (M2,R)
log_config()
insert_log()

Figure 1: Example of software modules in Apache. M1,M2,M3
— modules, D1...D8 — data elements. Dashed lines indicate data
and functions shared between modules. Tuple D: (M:P) indicates
module M has permission P on the memory location D. R - Read
only ; R/W - Read or Write

There are two key aspects in regulating the accesses to a specific
datum: (1) the domain, referring to the environment or module, that
a thread performing the access is executing in; and (2) the access
privileges, the set of permissions available to a domain for the ob-
ject [10]. Access control is used to enforce the permissions spec-
ified for the domain and object. An instance of the use of flexible
access control is enforcing the rule that a plug-in should not have
access to the application’s data or another plug-in’s data, while the
application could have unrestricted access to all data. Access con-
trol can also be used for program debugging in order to efficiently



intercept accesses and detect violations of specific invariants, such
as accesses to uninitialized or unallocated locations, dangling ref-
erences, unexpected write values, etc. Tracking memory bugs is
an intensive task and it is especially complicated in module-based
applications where memory is accessed at many different sites.

Access control mechanisms in current general-purpose proces-
sors consist of either operating system (OS) page protection bits or
a limited number of word-granularity watchpoint registers (4 on the
x86). The former is restricted to providing page-granularity protec-
tion while the latter’s usefulness is handicapped by the small num-
ber of watchpoint registers. Unfortunately, the protection targets in
most realistic applications are often more fine-grain, at the gran-
ularity of a few words. Also another consideration in protection
usage is “thread-awareness”, which would need to allow different
application threads to be regulated differently for the same location
and also allow the same thread to have different access permissions
to different locations. Finally, hardcoding the number of protec-
tion levels and semantics has lead to restricted use of the mecha-
nism. Overall, existing systems do not satisfy modular software’s
demands for flexible memory protection.

Currently, flexible access control typically relies on software in-
strumentation tools, which can cause significant slowdown (e.g.,
22—60× [14, 27]). Recent work [6] has reduced the overheads by
focusing on the integrity of data (no unsafe writes) and compromis-
ing the safety (permit unsafe reads). Software-based access con-
trol also need synchronization to ensure the atomicity of metadata
operations and data access in multi-threaded workloads. Recent
hardware proposals for fine-grain access control such as employed
by Mondrian [24] seek to provide a flexible protection framework.
However, such a design also introduces additional permission tag
structures within the highly optimized processor pipeline. The per-
mission tags are accessed on every memory operation, which re-
sults in extra work and energy consumption. Finally, they add new
layers of protection to replace OS processes and require every ap-
plication, regardless of its desire for flexible access control, to use
the new interface.

In this paper, we investigate Sentry, a hardware framework that
enables software to enforce protection policies at runtime. The core
developer annotates the program to define the policy and then the
system ensures the privacy and integrity of a module’s private data
(no external reads or writes), the safety of inter-module shared data
(by enforcing permissions specified by the application), and adher-
ence to the module’s interface (controlled function call points).

We propose a light-weight, multi-purpose access control mech-
anism that is independent of and subordinate to (enforced after)
the page protection in the Translation-Lookaside-Buffer (TLB). We
implement Sentry using a permissions metadata cache (M-cache)
that intercepts only L1 misses and resides entirely outside the pro-
cessor core. It reuses the L1 cache coherence states in a novel
manner to enforce permissions and elide checks on L1 hits. Per-
mission metadata checks thus require between 1 and 10% (depend-
ing on workload) of the energy required by the in-processor op-
tion. Since the M-cache is on the L1-miss path it places fewer con-
straints on the pipeline cycle compared to per-access in-processor
checks [24]. Finally, the M-cache also exploits cache coherence
to implicitly invalidate cached metadata on permission changes (no
need for heavyweight software shootdowns).

From the software’s perspective, Sentry is a pluggable access
control mechanism for application-level fine-grain protection. It
works as a supplement (not a replacement) to OS process-based
protection and this leads to three main advantages. First, Sentry
incurs space and performance overhead only when additional fine-
grain protection is needed as otherwise existing page-based access

control can be used. Second, the software runtime that manages the
intra-application protection can reside entirely at the user level and
can operate without much OS intervention, making the system both
efficient and attractive to mainstream OS vendors. Third, within the
same system, applications using the Sentry protection framework
can co-exist with applications that do not use Sentry’s services. We
demonstrate that Sentry can realize various intra-application pro-
tection models with simple permissions annotations and does not
require any changes to the programming model or language.

We used Sentry to enforce a protection model for the Apache
web server. We primarily safeguard the core web server’s data
from extension modules by ensuring that modules do not violate the
specified interface. We achieved this without requiring any changes
to the programming model, with minimal source code annotations,
and moderate performance overheads ('13%). We note that our ef-
forts to compare against process-based protection (i.e., enclose the
module in a separate process and use RPC for web server to module
communication) were frustrated by the programming model and
cumbersome non-shared-memory interface. We also validate the
suitability of Sentry when employed for a watchpoint-based mem-
ory debugger. We estimate that its overheads are comparable to
proposed debugging hardware (6%) and are much lower than pro-
posed fine-grain protection hardware (half the overhead) or soft-
ware approaches.

Section 2 presents the design of the M-cache hardware and de-
scribes the M-cache operations. Section 3 describes the various
Sentry protection models and the support needed from software.
Section 4 demonstrates the applications and evaluates Sentry’s per-
formance overheads. Section 5 discusses related work and we con-
clude in Section 6.

2. SENTRY: AUXILIARY MEMORY
ACCESS CONTROL

Access control must essentially provide a way for software to
express permissions to a given location for the active threads. Hard-
ware is expected to intercept the accesses, check them against the
expressed permissions, and raise an exception if the thread does
not have the appropriate permissions. Current processors typically
implement a physical memory hierarchy through which an access
traverses looking for data. Accesses can be intercepted at any level
in the memory hierarchy: within the processor core, in the L1 miss
path (this paper), or any other level.

Why not within the processor?
Most protection schemes (e.g., Mondrian [24], Loki [26], TLB)

adopt the logically simple option of intercepting all memory ac-
cesses within the processor. However, this requires additional
structures in highly optimized stages of the processor pipeline.
Since the access control hardware is consulted in parallel with L1
access on every load and store, the hardware design is constrained
by the need to stay within the 1-2 cycle L1 access latency. High-
performance transistor technology will likely be employed, leading
to a noticeable energy and area budget.

Access Control on L1 misses
In Sentry, we have chosen to place the access checks on the L1

miss path to avoid processor core modifications. The L1 miss rate
in most applications is a small percentage of the total accesses (1-
4% for PARSEC, 4-9% for SPLASH2, 16% for Apache). Since the
checks occur only on L1 misses and in parallel with L2 accesses
(which can take 30—40 cycles), we have a longer time window to
complete the checks and can trade performance for energy. Em-
ploying energy-optimized transistor technology [13] can save leak-



age and dynamic power. We found that all things equal (granular-
ity of protection, number of entries), the L1 miss path option con-
sumes only 1—10% of the power of an approach implementing the
checks within the processor. Placing the access control hardware
any further down (say on the L2 miss path) complicates the pro-
cessor interface (for example, when propagating exceptions back
to software). Furthermore, protection changes which require inval-
idation of in-cache data causes higher overhead, since an eviction
at the higher cache level incurs higher penalty.

Our design choice to intercept L1 misses implies that the small-
est protection granularity we support is an L1 cache line. Sub-
cache-line granularity can be supported at the cost of either addi-
tional bits in the L1 or software disambiguation. To accommodate
L1 cache line granularity monitoring (typically 16 - 64 bytes), the
memory allocator can be modified to create cache-line-aligned re-
gions with the help of software annotations (compiler or program-
mer). Software can also further disambiguate an access exception
in order to implement word granularity monitoring if necessary.

2.1 Metadata Hardware Cache (M-Cache)

User Registers

Processor Core

Tag State Data

Private L1 Cache

Tag1 Data Tag2
Metadata 

Physical addr
Data 

Virtual addrMetadata

M-Cache

Fwd. Coherence 
Request

L1 miss

L1-Shared L2
Interface

VA PA attr  Owner Dom. F V

TLB Entry

Metadata
Dom.

C

Thread 
Domain

Figure 2: M-cache Mechanism. Dark lines enclose add-ons. Dom.:
Domain.

In Sentry, we maintain the invariant that a thread is allowed to
access the L1 cache without requiring any checks i.e., L1 accesses
are implicitly validated. To implement this we include a new hard-
ware metadata cache (M-cache) that controls whether data is al-
lowed into the L1.

Figure 2 shows the M-cache positioned in the L1 miss path out-
side the processor core. Each entry in the M-cache provides per-
mission metadata for a specific virtual page. The per-page metadata
varies based on the intended protection model (see Section 3). In
general, it is a bitmap data structure that encodes 2 bits of access
permission (read-only, read/write, no access, execute) per cache
line. Note that these are auxiliary to the OS protection scheme since
the access has to pass the TLB checks before getting to the mem-
ory system. This ensures that the M-cache’s policies don’t interfere
with the OS protection scheme. An M-cache entry is tagged on the
processor side using the virtual address (VA) of the page requir-
ing the permission check. Using virtual addresses allows user-level
examination and manipulation of the M-cache entries and avoids
the need to purge the M-cache on a page swap. The M-cache also
contains a network-side tag consisting of the physical address of
the metadata (MPA) to ensure entries are invalidated if the meta-
data is changed (more details in Section 2.4). The domain id fields
included in the processor register, TLB entry, and M-cache, imple-
ment the concept of protection domains (we discuss this in more
detail in Section 3). Table 1 lists the ISA interface of the M-cache.

Dual tags
The dual tagging of the M-cache does introduce an interesting

challenge. We need to ensure that when the entry in one of the tag
arrays is invalidated (VA due to processor action or MPA due to
network message), the corresponding entry in the other tag array
is also cleaned up. One option is to use a fully associative MPA
tag array, but this is expensive in terms of both energy and area.
Assuming limited associativity, the VA, the data address using the
access control metadata, and the MPA, the metadata word’s phys-
ical address, may index into different positions in their respective
tag arrays. To solve this issue, we include forward and back point-
ers similar to those proposed by Goodman [7] — a VA tag (with
which the metadata is associated) includes a pointer (set index and
way position) to the corresponding entry in the MPA array and the
MPA tag entry includes a back pointer. The dual tagging could re-
sult in additional conflict evictions due to collisions in the VA and
MPA mappings.

2.2 When is the access checked?
Sentry creates permissions metadata only when an application

requires fine-grain or user-level access control. To achieve this,
we use an unused bit in the page-table entry to encode an “F” bit
(Fine-grain). If the software doesn’t need the checks, it leaves the
‘F” bit unset and hardware bypasses the M-cache for accesses to
the page. 1 If the bit is set, on an L1 miss, the M-cache is indexed
using the virtual address of the access to examine the metadata.
The virtual address needed by the M-cache lookup is available at
the load-store unit for the L1 miss. Once a cache block is loaded
into the processor’s L1 cache, we use coherence’s MESI states to
transparently enforce permissions (i.e., cache hits don’t check the
M-cache). Without involving any modifications to the coherence
protocol, M or E can support read/write permissions, S can enforce
read-only, and I can check any permission type. An attempt to
access data without the appropriate coherence state will result in an
L1 miss, which checks the M-cache.

Data persistence in caches does introduce a challenge; data
fetched into the L1 by one thread continues to be visible to other
threads on the processor. Essentially, if two threads have different
access permissions, the L1 hits could circumvent the access control
mechanism. Consider two threads T1 and T2, which the applica-
tion has dictated to have read-write and read-only rights to location
A. T1 runs on a processor, stores A, and caches it in the “M” state.
Subsequently, the OS switches in T2 to the same processor. Now,
if T2 was allowed to write A, the permission mechanism would
be circumvented. To ensure complexity-effectiveness, we need to
guard against this without requiring that all L1 hits check the M-
cache. We employ two bits, a “V” (Verify) bit in the page-table
to indicate whether the page has different permissions for different
threads and “C” (checked) bit in the cache tag, which indicates if
the cache block has already been verified (1 yes, 0 no). All ac-
cesses (hit or miss) check permissions if the TLB entry’s “V” bit
is set and the “C” bit in the L1 cache tag is unset, indicating first
access within the thread context. Once the first access verifies per-
missions, the “C” bit is set. This ensures that subsequent L1 hits
to the cache line need not access the M-cache. The “C” bit of all
cached lines is flash-cleared on context switches.

Exception Trigger
When an access does not have appropriate rights, the hardware

triggers a permission exception, which occurs logically before the
access. These exceptions are entirely at the user level and can use
1We also use this technique to prevent accesses on the permissions metadata
from having to look for metadata.



Registers
%mcache_handlerPC: address of handler to be called on a user-space alert
%Domain1_Handler: address of handler to be called within user-level supervisor (see Section 3.3)
%mcache_faultPC: PC of faulting instruction
%mcache_faultAddress: virtual address that experienced the access exception
%mcache_faultInstructionType: read, write, or execute
%mcache_faultType: M-cache miss or permission exception
%mcache_entry: per-page permissions metadata; 2 bits / cache line to represent Read-only, Read/Write, Execute, and No

access)
%mcache_index index into the M-cache
Instructions
get_entry vaddr,%mcache_index get an entry for vaddr and store its index in %mcache_index
inv_entry vaddr,%mcache_index evict vaddr’s metadata from M-cache and return its position in %mcache index
LD vaddr, %mcache_index load vaddr into M-cache position pointed to by %mcache_index
LL vaddr, %mcache_index Load Linked version of the above
LD_MPA vaddr,%mcache_index load physical address of cache block corresponding to vaddr into MPA
ST %mcache_index,%mcache_entry store the data in %mcache_entry into the M-cache entry pointed to by %mcache_index
SC %mcache_index,%mcache_entry Store-Conditional version of the above
switch_call %R1, %R2 Effects a subroutine call to the address in %R1 and changes thread domain to that specified in %R2 (see

Section 3.3)

Table 1: M-cache Interface. The %Domain1 Handler register and switch call instruction are discussed in detail in Section 3.3.

the same stack, privilege level, and address space as the thread mak-
ing the access. Our design reuses the exception mechanism on
modern processors. The M-cache response marks the instruction
as an exception point in the reorder buffer. The permissions checks
are enforced at instruction retirement, at which time the exception
type is checked and a software handler is triggered, if needed. The
permission check, which is performed by looking up either the L1
cache state on a hit or the M-cache metadata on a miss, has poten-
tial impact only at the back end of the pipeline in the case of a miss.
Pipeline critical paths and thereby cycle time consequently remain
unaffected. Note that permission violations can be detected at the
execution stage and the line will be brought into the appropriate
state if it doesn’t have permissions. (e.g., read-only permissions
means line is in "S" state, no permissions means the line is not al-
located).

On a permission exception, the M-cache provides the fol-
lowing information in registers: the program counter of the in-
struction that failed the check (%mcache faultPC) , the address
accessed (%mcache faultAddress), and the type of instruction
(%mcache faultInstructionType). There are separate sets of reg-
isters for kernel and user-mode exceptions.

2.3 How is the M-cache filled?
The M-cache entries can be indexed and written under software

control similar to a software TLB. Allowing software to directly
write M-cache entries (1) allows maintenance of the metadata in
virtual memory regions using any data structure and (2) permits
flexibility in setting permission policies. The former decouples the
metadata size from the limitations of the hardware M-cache size,
allowing the protection metadata to grow arbitrarily under software
control and to be structured to suit the specific applications’ need.
Hardware never updates the M-cache entries and it is expected that
software already has a consistent copy. Hence, any evictions from
the M-cache are silently dropped (no writebacks). Since no con-
troller is required to handle refills or eviction, the implementation
is simplified.

The ISA extensions (see Table 1) required are similar to the
software-loaded TLB found across many RISC architectures (e.g.,
SPARC, Alpha, MIPS). There are separate load and store instruc-
tions that access the metadata using an index into the M-cache. In
addition, to fill the MPA (not typically found in the TLB) we use
an instruction (LD MPA) that specifies the virtual address of the
physical address for which a tag needs to be set up in the MPA.2

2Hardware also sets up pointer to the virtual address tags so that invalida-
tions can cleanup entries consistently in both tag arrays (see Section 2.1).

M-Cache Fill Routine()
/*X: Virtual address of data */
1. get_entry X,%mcache_index
2. LL X,%mcache_index
3. P = get_permissions(X)
4. LD P,%mcache_entry
5. LD_MPA P,%mcache_index
6. SC %mcache_index,%mcache_entry
7. if failed(SC) goto 1;

Figure 3: Pseudocode for inserting a new M-cache entry.

The MPA is used by the hardware to ensure the entry is invalidated
if the metadata changes, i.e., when a store occurs anywhere in the
system to the MPA address. Typically, the metadata is maintained
in the virtual address space of the application. Figure 3 shows the
pseudo code for the insert routine: lines 1 — 2 get an entry from the
M-cache and set up the virtual address of the data to be protected,
lines 3 — 5 set up the permissions metadata in the corresponding
entry, and the final two instructions 6 — 7 try to update the meta-
data in the M-cache entry. An exception event between 1 — 6 (e.g.,
context switch) will cause line 7 to fail which restarts the routine.

2.4 Changing Permissions
The permissions metadata structure is in virtual memory space

and this allows software to directly access and modify it. When
changes to the access permissions (metadata) are made, we need to
ensure that subsequent accesses to the data locations check the new
permissions metadata. For example, assume there are two threads
T1 and T2 on processors P1 and P2 that have write permissions on
location A. If T1 decides to downgrade permissions to read-only,
we need to ensure that (1) the old metadata entry in P2’s M-cache is
invalidated and (2) since P2 could have cached a copy of A in its L1
before the permissions changed, this copy is also invalidated. Both
actions are necessary to ensure that P2 obtains new permissions on
the next access. We deal with these in order.

Shooting down M-cache entries
This operation is simplified by the MPA field in the M-cache,

which is used by hardware to ensure coherence of the cached meta-
data. These set of tags snoop on coherence events and any meta-
data updates result in invalidation of the corresponding M-cache
entry. Hence all software has to do is update the metadata and
the resulting coherence operations triggered will clean up all M-
cache entries. The most straightforward option uses the physical
address of the metadata as the MPA tag for the M-cache entry, but
in essence software can set up any address. It is even valid and use-
ful to have multiple M-cache entries managed by the same physical



address. For example, locations X and Y could each have an en-
try in the M-cache where the VA is tagged with the page addresses
of X and Y while both their corresponding MPA entries could be
tagged with MPA P. When P is written, a lookup in the MPA ar-
ray would match two entries each with a back pointer to the corre-
sponding VA entries of X and Y, which can then be invalidated —
an efficient bulk invalidation scheme. Most previously proposed
permission lookaside structures (e.g., TLB, Mondrian [24]) typi-
cally use interprocessor interrupts and sophisticated algorithms to
shootdown the entry [19].

Checks of future accesses
Sentry moves permission checks to the L1 miss path and al-

lows L1 hits to proceed without any intervention. Hence, when
permissions are downgraded, the appropriate data blocks need to
be evicted from all the L1 caches to ensure future accesses trigger
permission checks. To cleanup the blocks from all L1s, software
can perform prefetch-exclusives, which will result in invalidation
of the cache blocks at remote L1s, and follow this by evicting the
cache line from the local L1 (e.g., using PowerPC’s dcb-flush in-
struction). A final issue to consider is that the cleanup races with
other concurrent accesses from processors and the system needs to
ensure that these accesses get the new permissions. To solve this
problem, software must order the permission changes (including
cleaning up remote M-cache entries) before the L1 cache cleanup
so that subsequent accesses will reload the new permissions.

3. SENTRY PROTECTION MODELS
The protection framework in most previously proposed systems

is dependent on hiding the protection metadata from manipulation
by user-level applications. For example, the TLB, Mondrian, and
Loki [24, 26] are all exclusively managed by low-level operating
system software. To utilize the protection framework, every ap-
plication in the system must cross protection boundaries via well-
defined (system call) interfaces and abstractions to convey the ap-
plication’s protection policy to system software.

Our objective is to support low-cost and flexible protection
models, with an emphasis on application-controlled intra-process
protection. Hence, Sentry supplements the existing process-based
protection provided by the TLB. It leaves the process-based pro-
tection untouched and permits relocation of the software routines
that manage the M-cache to the user level (within each application
itself). This eliminates the challenge of porting a new protection
framework to the OS and reduces the risk of one application’s pol-
icy affecting another application. Each application can indepen-
dently choose whether to use the Sentry framework or not.

3.1 Foundations for Sentry Protection Models
A key concept in realizing protection is the protection domain

— the context of a thread that determines the access permissions
to each data location [10]. Every executing thread at any given in-
stant belongs to exactly one protection domain and multiple threads
can belong to the same protection domain. Furthermore, a thread
can dynamically transition between different protection domains if
the system policy permits it. Sentry uses integer values to iden-
tify protection domains. Domain 0 is reserved for the operating
system while domain 1 and larger identifiers are used by applica-
tions. Within a process, different application domains must carry
different identifiers, but domains in different processes may share
the same identifier. Sentry is focused on intra-application protec-
tion and the M-cache entries are flushed on address space (process)
context switches.

There are three fields that allow the hardware to recog-
nize and restrict accesses based on domains: a per-thread
%Thread_Domain register, a per-entry Metadata_Domain
field in the M-cache, and a per-entry Owner_Domain field in the
TLB (all illustrated earlier in Figure 2). %Thread_Domain is a
new CPU register that identifies the protection domain of the cur-
rently executing thread. Metadata_Domain is a per-entry field
in the M-cache identifying the protection domain that the entry’s
access permission information applies to. On an M-cache check,
the %Thread_Domain register and the access address are both
used to index into the M-cache. The M-cache entry with match-
ing Metadata_Domain and virtual address tag is identified and
its access permission information is then checked. The M-cache
entries for a particular protection domain can be thought of as a
capability list — they specify the data access permissions for a
thread running in the domain. The ability to dynamically change a
thread’s protection domain gives software the flexibility to perform
permissions changes over large regions without changing per-entry
permissions.

The privilege of filling M-cache entries must be carefully regu-
lated. If the M-cache were allowed to be modified by any domain,
then a thread would be able to grant itself arbitrary permissions to
any location. We introduce a per-entry Owner_Domain field in
the TLB, which identifies the domain that “owns” the page corre-
sponding to that entry. Only a thread in the page’s owner domain or
the exception handler in domain 1 can fill the M-cache for the loca-
tions in that page. The hardware enforces this by guaranteeing that
an M-cache entry can be filled only when the %Thread_Domain
register matches the target page’s Owner_Domain 3 or when the
%Thread_Domain is 1. Note that ownership is maintained at
a coarser page granularity while the access control mechanism is
managed at cache line granularity.

Domain 1 serves as an application-level supervisor, with the
main thread of execution at the time of process creation being as-
signed to this domain. Specifically, Domain 1 enjoys the following
privileges:

1. Page Ownership : Domain 1 controls page (both code and
data) ownership; all requests for ownership change must be
directed to the operating system via Domain 1.

2. Thread Domain : Domain 1 handles the tasks of adding,
removing, and changing the domain of a thread during its
lifetime.

3. M-cache updates by non-owner domains : M-cache excep-
tions (e.g., no metadata entry) triggered on accesses to non-
owner locations (addresses owned by a different domain) are
handled by Domain 1.

4. Cross-Domain Calls : Domain 1 ensures cross-domain calls
(code that is in pages owned by a different domain) can oc-
cur only at specific entry points (according to application-
specified policies registered with Domain 1).

In the following subsections we describe a few example protec-
tion models that can be realized using Sentry. We start from the
simple case of one protection domain per process. Even in this de-
generate case, we show Sentry’s versatility in supporting low-cost
watchpoints and protection of memory shared across OS processes.
We then present a compartment model that can isolate various soft-
ware modules and improve the safety of an application.
3The page table entry for the filled address needs to be in the TLB when
filling the M-cache. If needed, we ensure that an M-cache fill instruction
(see Table 1) triggers a TLB reload for the filled address.



3.2 One Domain Per Process
In this model, the existing process-based protection domain

boundaries are inherited without any further refinement. Sentry’s
primary benefit is to support flexible cache-line granularity access
control. All threads within a process belong to protection domain 1.
The domain identifiers 0 and 1 differentiate between operating sys-
tem and application. Sentry supports two modes of access con-
trol. The mode is determined by each page’s owner domain (0
or 1) loaded into the TLB’s Owner_Domain field. In the first
mode (Owner_Domain is 1), the application threads retain own-
ership of all the pages, the privileges of filling the M-cache con-
tent, and handling permission exceptions. In the second mode
(Owner_Domain is 0), only the operating system can perform
these tasks.

The application-managed model incurs much less overhead than
the OS-managed model. For instance, the cost of permission ex-
ception handling appears as an unconditional jump in the instruc-
tion stream (tens of cycles). In comparison, an OS-level excep-
tion incurs the cost of a privilege switch (hundreds of cycles),
which requires switching privilege levels and saving registers. The
application-managed model is useful for supporting cache-line-
grain watchpoints. Reads and writes to specific locations can be
trapped by setting appropriate M-cache permissions. The low-cost,
cache-line-grain watchpoints can help with detecting various buffer
overflow and stack smashing attacks, as well as with debugging
code [15,29]. This model has weak protection semantics since any
part of the application can modify the M-cache.

In the OS-managed model, low-level system software directly
manages the M-cache contents. This allows for a controlled shar-
ing of cache-line granularity regions between processes. For ex-
ample, in remote procedure calls (RPCs), the argument stack can
be mapped between an RPC client and server process with differ-
ent permissions (currently, a page granularity is used [1], incurring
significant space or copy overhead). Sentry can be used to imple-
ment a safe kernel-user shared memory region without the need to
ensure page alignment and can eliminate expensive memory copies
between the operating system and applications.

3.3 Intra-Process Compartments
This model supports multiple protection domains within a sin-

gle process. A real-world use of this model is the Apache appli-
cation (see Figure 1) that supports various features (like caching
pages fetched from the disk) in modules loaded into the web
server’s address space. The core set of developers set an interface
between independently developed modules; isolating these mod-
ules into separate domains and enforcing the interface between
them (data and functions) can improve reliability and safety.

In the compartment model, each domain owns a set of data and
executable code regions. Threads in a protection domain can set
up the permissions, execute code, and access the data owned by
the domain. The domain can set up a handler to process M-cache
misses and fill the M-cache.

Cross-Domain Data Accesses and Code Executions
Threads in a protection domain may need to access data that

is not owned by the domain and we call these cross-domain data
accesses. For instance, a web server module accesses some request
data structure from the core application in order to apply output
filters. Threads in a domain may also want to call functions that
are not owned by the domain and we call these cross-domain calls.
Individual domains may set up specific permissions for authorizing
non-owner accesses and they must be carefully checked for safety.

One of our key design objectives is to minimize the role of the

operating system and allow much of the management tasks to be
performed directly by the application. This affords the most flexi-
bility in terms of application-specific protection policies. It also in-
curs low management cost, since it keeps application-specific poli-
cies out of critical operating system components. Domain 1 in each
process is designated as the user-level supervisor. Domain 1 is re-
sponsible for coordinating cross-domain data accesses and code in-
vocation. It is implicitly given the ownership role for all memory
in the process address space that the OS does not care about, and
has the rights to fill M-cache content and handle M-cache permis-
sion exceptions. Domain 1 can also dynamically change the do-
main (anything other than domain 0) of a running thread by mod-
ifying the %Thread_Domain register. Given its privileges, do-
main 1 guards its own data and code against unauthorized accesses
by owning those pages.

Domain X: Caller Domain Y: Callee

Domain 1: User Level Supervisor 

Domain 0: Operating System

Call Y_PC Return

1 2 34

Steps of a cross-domain call when a thread in domain X invokes a
function whose code is owned by domain Y:

1. Domain X tries to jump into a code region that it does
not own. The hardware intercepts the call by recogniz-
ing a mismatch between the %Thread_Domain register
and the Owner_Domain field in the TLB entry associ-
ated with the target instruction. The target instruction Y_PC
is saved. The hardware then effects an exception into the
%Domain1_Handler while simultaneously changing the
current domain to domain 1.

2. If the target address has been registered as a cross-domain
call, the domain 1 exception handler marshals the argu-
ments on the stack, grants the appropriate data access per-
missions to the callee domain, and invokes the function
through a special switch_call instruction. The instruc-
tion jumps into Y_PC and changes the protection domain
context (%Thread_Domain) to Y.

3. On return, the function tries to jump back to the caller. Since
the return target is owned by domain X, an exception is trig-
gered into domain 1 and the return target address is saved.

4. Domain 1 finally executes switch_call back to X.

Figure 4: Cross-domain call execution flow.

Non-owner data accesses that trigger M-cache miss excep-
tions (i.e., no M-cache entry) need to be handled carefully. The
thread itself lacks the privilege to set up the metadata. Hence,
these operations are handled by domain 1. The address to this
exception handler in domain 1 is located in a CPU register
(%Domain1_Handler), which is managed exclusively by do-
main 1. On a non-owner M-cache exception, hardware changes
the domain context (i.e., %Thread Domain register) to domain 1
and traps to the %Domain1_Handler. Based on application spe-
cific policies, the domain 1 exception handler can let the non-owner
data access progress (finish or raise an exception) by filling the ap-



propriate M-cache entry. When the miss handler has finished its
operations, domain 1 reverts back to the original domain context
to continue execution. Subsequent accesses to the same location
(from the non-owner domain) can proceed without interruption.

Cross-domain calls are registered with domain 1. A cross-
domain call and its return are redirected and managed by do-
main 1 in a four-step process illustrated in Figure 4. The indi-
rection through domain 1 for cross-domain calls does impose a
minor performance penalty. Unlike earlier work that speeds up
cross-address space calls by using shared-memory segments [1],
our cross-domain call remains in the same address space and the
complete execution flow utilizes the same stack. This allows us to
achieve efficiencies comparable to a function call.

4. EVALUATIONS
Our base hardware is a 16-core chip (1 GHz clock frequency),

which includes private L1 instruction and data write-back caches
(32KB, 4-way, 1 cycle) and a banked, shared L2 (8MB, 8-way,
30 cycle), with a memory latency of 300 cycles. The cores are
connected to each other using a 4× 4 mesh network (3 cycle link
latency, 64 byte links). The L2 is organized on one side of this
mesh and the cores interface with the 16-banked L2 over a 4× 16
crossbar switch. The L1s are kept coherent with the L2 using a
MESI directory protocol. This coherence protocol is based on the
SGI ORIGIN 3000 3-hop scheme with silent evictions. Our in-
frastructure is based on the full-system GEMS-Simics framework.
We faithfully emulate the Sentry hardware/software interface and
model the latency penalty of the software handlers from within the
simulator. We simulate all memory references made by the handler
and use instruction counts to estimate the latency of non-memory
instructions.

We begin by evaluating the M-cache implementation (area and
latency) cost and basic management costs (software and hardware).
We then evaluate the use of Sentry for three applications: Apache,
remote procedure call (RPC), and memory debugging. Via the
Apache and RPC benchmarks, we demonstrate the flexibility, us-
ability, and performance efficiency of utilizing Sentry to implement
application-level protection. In evaluating Sentry for debugging,
we compare its performance overheads against MemTracker [21]
and Mondrian [24].

4.1 M-cache Implementation
Area, Latency, and Energy

The M-cache area implications are a function of its size and or-
ganization. All known cache and TLB optimizations apply (bank-
ing, associativity, etc.). Most importantly, the M-cache intercepts
only L1 misses, thereby reducing its impact on the processor crit-
ical path. While dual-tagged, each tag array is single-ported. The
virtual tag is accessed only from the processor side (for check-
ing permissions and filling M-cache entries) and the MPA is ac-
cessed only from the network side (for snoop-based coherence).
We used CACTI 6 [13] to estimate cycle time for a 256-entry M-
cache (4KB, 4 way, 16 bytes per entry) that provides good coverage
(fine-grain permissions for a 1MB working set). We estimate that in
65 nm high-performance technology (ITRS HP), the M-cache can
be indexed within 0.5ns (1 processor cycle using our parameters).
Furthermore, since the M-cache is located outside the processor
core and is accessed in parallel with a long latency L1 miss we can
trade latency for energy benefits. If we use the low power transistor
technology in CACTI (ITRS LOP) , the access latency increases
by 2-3× (to ∼3 cycles) compared to high-performance transistor
technology (ITRS HP). There is a significant energy reduction: an
M-cache with ITRS LOP consumes 1% of the leakage power and
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Figure 5: TLB vs. M-cache. M-cache N measures execution cycles
for changing permissions on N cache lines. L1 handles stores in
order. In M-cache Parallel 64, the L1 can sustain 64 concurrent
misses.

33% of the dynamic access power of an M-cache employing ITRS
HP. On average (geometric mean), across the PARSEC, SPLASH2,
and Apache workloads, the M-cache with ITRS LOP consumes
0.029nJ, 0.037nJ, and 0.27nJ respectively per operation; in com-
parison a TLB with the same number of entries consumes 3nJ.

Operation cost
There are two main management costs associated with any hard-

ware protection mechanism: (1) the cost of switching to the privi-
lege level that can manipulate it and (2) the cost of maintaining the
coherence of the cached copies of the metadata. The M-cache can
be managed entirely at user level. In addition, the metadata phys-
ical address (MPA) tag allows the M-cache to exploit coherence
to propagate metadata invalidations to remote processors. This
simplifies the software protocol required to manage the M-cache
and improves performance compared to existing protection mech-
anisms that use the interprocessor interrupt mechanism.

We compare the cost of changing the metadata associated with
the M-cache against the cost of manipulating page-attribute protec-
tion bits in the TLB. We set up a microbenchmark that creates K
threads (varied from 1—16) on the machine, and every 10,000 in-
structions a random thread is picked to make permission changes.
To test the TLB, we change permissions for a page, and to test
the M-cache we change permissions for N cache lines within a
page. Overall, modifying permissions with the M-cache is 10—
100× faster than TLB shootdowns (see Figure 5). The dominant
cost with the M-cache is that of purging the data from the L1
caches (see Section 2.4). The routine needs to prefetch the data
cache blocks in exclusive mode in order to invalidate all L1s, and
this typically results in coherence misses. In our design, each L1
cache allows only one outstanding miss and hence the invalidation
of each cache line directly appears on the critical path. The latency
of the permission change is directly proportional to the number of
cache blocks that are invalidated (M-cache 1, M-cache 16 and M-
cache 64 bars). We also evaluate performance when 64 outstand-
ing L1 prefetches are allowed (M-cache Parallel 64) and show that
overlapping the latency of multiple misses is sufficient to signifi-
cantly reduce permission change cost.

Teller et al. [19] discuss hardware support to keep TLBs coher-
ent and recently, concurrent with our work, UNITD [16] explored
the performance benefits of coherent TLBs. Both these works
mainly seek to reduce the overheads of conventional OS TLB man-
agement routines while Sentry employs coherence to enable user-
level software routines to manage the M-cache.



4.2 Compartmentalizing Apache
In this section, we use Sentry’s intra-process compartment pro-

tection model (see Section 3.3) to enforce a safety contract be-
tween a web server (Apache) and its modules. Apache includes
support for a standard interface to aid module development; the
“Apache Portable Runtime” (APR) [31] exports many services in-
cluding support for memory management, access to Apache’s core
data structures (e.g., file stream), and access to intercept fields in
the web request. Apache’s modules are typically run in the same
address space as the core web server in the interest of efficiency
and the desire to maintain a familiar programming model (conven-
tional procedure calls between Apache and the module). A module
therefore has uninhibited access to the web server’s data structures,
resulting in the system’s safety relying on the module developers’
discipline.

Our goal is to (1) isolate each module’s code and data in a sep-
arate domain and ensure that the APR is enforced. This protects
the web server’s data and ensure that modules can access the web
server’s data only through the exported routines; and (2) achieve
this isolation with simple annotations in the source code without
requiring any source revisions. While the definition of a module
may be abstract, here we use the term to refer to the collection of
code that the developers included to extend the functionality of the
web server. To enable protection, Sentry annotates the source to
perform the following tasks: (1) specify the ownership (domain) of
code and data regions, (2) assign permissions to the various data
regions for the different domains, and (3) assign domains to pre-
forked threads that wait for requests. To simplify our evaluation,
we set up the core Apache code (all folders other than module/ ) to
directly execute in domain 1 and emulate all the actions required
by domain 1 (those that would be provided in the form of a library)
for cross-domain calls from within the simulator. The only modifi-
cations required to Apache’s source code were the instructions that
set up the domains and permissions.

The modules we compartmentalized are mod_cache and
mod_mem_cache, which work in concert to provide a caching
engine that stores pages in memory that were previously fetched
from disk. “mod cache” consists of two parts: (1) module-
Apache interface (mod_cache.c) and (2) the cache im-
plementation (cache_cache.c[.h],cache_hash.c[.h],
and cache_pqueue.c[.h]). “mod cache” also needs to inter-
face with a storage engine, for which we use mod_mem_cache
(cache_storage.c, mod_mem_cache.c). We compiled
the modules into the core web server and compartmentalized the
storage engine (mod mem cache) into domain 2 and the cache en-
gine (mod cache) into domain 3, respectively.

Compartmentalizing Code
Our primary goal was to enforce the APR interface and ensure

that module domains cannot call into non-APR functions. First,
we compiled in the modules and did a static object code analysis
to determine the module boundaries. We then added routines to
the core Apache web server that (1) registered the APR code re-
gions as owned by Apache and set up read-write permissions for
Apache (domain 1) and read-only permissions for the modules and
(2) declared the individual module code regions as owned by the
appropriate domains. The modules expose only a subset of the
functions to other modules (e.g., the storage module exports the
cache_create_entity() to the cache module as read-only
while it hides the internal cleanup_cache_mem, which is used
for internal memory management). The module’s entire code is ac-
cessible to the Apache web server. Finally, the pre-forked worker
threads are started in domain 1. When the threads call into a mod-
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Figure 6: Performance of Sentry-protected Apache with compart-
mentalized modules.

ule’s routines, the exception handler in domain 1 transitions the
thread to the appropriate domain if the call is made to the module’s
exported APR. Non-APR calls from the module would be caught
by Sentry.

Since memory ownership is assigned at the page granularity, we
have to ensure that code from two different modules or the core web
server are not linked into the same page. While current compilers
do not provide explicit support for page alignment, it is fortunate
that our compiler (gcc) allows code generated from an individual
source file to remain contiguous in the linked binary. Given the
contiguity of each module’s code segment, we added appropriate
padding in the form of no-ops (asm volatile nops) to the
end of the source (.h and .c files) to page align each module.

Compartmentalizing Data
Assigning ownership to data regions proved to be a simpler task.

The core web server and modules all use the APR provided mem-
ory allocator (srclib/apr/memory/unix/apr_pools.c).
With this allocator, it was possible to set up different pools of mem-
ory regions and request allocation from a specific pool. We spec-
ified separate pools for each of the domains: Apache web server
(domain 1), mod mem cache module (domain 2), and mod cache
module (domain 3). We then assigned ownership of the pool to the
domain that it served. The allocator itself is part of the APR inter-
face (domain 1). The permissions rules we set up were (1) Apache’s
core (domain 1) can read/write all memory in the program, (2) each
module can read/write any memory in their pool, and (3) a module
has read-only access to some specific variables exported by other
external modules — this is where fine-grain permission assignment
was useful. In some cases, a variable exported by a module (read-
only for remote domains) was located in the same page as a local
variable (no permissions). For example, the cache object in the
storage engine (mem cache object) contained two different sets of
fields, those that described the page being cached (e.g., html head-
ers) and those that described the actual storage (e.g., position in the
cache). The former needs to be readable from the cache engine,
while the latter should be inaccessible.

Performance Results
We now estimate the overheads of compartmentalizing the mod-

ules in Apache. In this experiment, we pre-compiled modules
into the core kernel, disabled logging, and used POSIX mutexes
for synchronization. The specific configuration we used is -with-
mpm=worker -enable-proxy -disable-logio -enable-cgi -enable-



cgid -enable-suexec –enable-cache. We configured the Surge client
for two different loads: 10 or 20 threads per processor (total of 160
or 320 threads) and set the think time to 0ms. Our total webpage
database size was 1GB with the file sizes following a Zipf distri-
bution (maximum file size of 10 MB). We warmed up the soft-
ware data structures (e.g., OS buffer cache) for 50,000 requests and
measured performance for 10,000 requests. Sentry permits incre-
mental adoption of compartment-based protection. In our experi-
ments we protect apache’s modules in two stages: we first moved
mod_mem_cache into a separate domain leaving mod_cache
within domain 1 (along with the core webserver). Subsequently,
we moved both mod_mem_cache and mod_cache out of do-
main 1, each into a separate domain.

Figure 6 shows relative performance. Sentry protection im-
poses an overhead of '13% when compartmentalizing both
mod_cache and mod_mem_cache and a '6% when compart-
mentalizing just the mod_mem_cache. The primary overheads
with Sentry are the execution of the handlers required to set up data
permissions in the M-cache and the indirection through domain 1
needed for cross-domain calls. Approximately 20% of the func-
tions invoked by the module are APR routines, which involve a
domain crossing. We believe the overhead is acceptable given the
safety guarantees and the level of programmer effort needed.

Process-based Protection vs. Sentry
To evaluate the protection schemes afforded by OS process-

based protection, we develop mod case (a module that changes
the case of ASCII characters in the webpage) using process-based
protection and compare it against Sentry’s compartment model.
To employ process-based protection we needed to make signifi-
cant changes to the programming model and reorganize the code
and data. We had to implement a mod case specific shim (imple-
mented as an Apache module) that communicates with mod case
through IPC (inter-process communication), requiring a shared-
memory segment. All interaction between Apache and mod case
passes through the shim, which converts the function calls between
Apache and mod case into IPC. Although Apache’s APR helps
with setting up shared-memory segments between the shim and the
mod case process, the shim and the module still needed to write
explicit memory routines (for each interface function) to copy from
and to the shared argument passing region. The conversion of even
this simple module to use IPC was frustrated by the inability to
pass data pointers directly between the processes and the need to
use a specific interface between the shim and the module itself. As
Figure 7 shows, the process-based protection adds significant over-
head (33%) compared to Sentry (7%). To summarize, we believe
the programming rigidity, need to customize the interface for indi-
vidual modules, and performance overheads are major barriers to
adoption of process-based protection.

We briefly compare Sentry’s cross domain calls against existing
IPC mechanisms. Despite considerable work to reduce the cost of
IPC [1, 8, 12], it is still 103 slower than an intra-process function
call. In contrast, Sentry focuses on functions calls between protec-
tion domains established within a process. They have lower over-
heads since they share the OS process context and crossing domains
does not involve address-space switches. The indirection through
the user-level supervisor domain 1 adds 2 call instructions (to jump
from caller→ to domain 1 and then into callee) and 9 instructions
to align the parameters to a cache line boundary and set appropri-
ate permissions to the stack for the callee domain (i.e., permissions
to access only the parameters and its own activation records). The
overhead at runtime varies between 20 and 30 cycles (compared to
5 cycles required for a typical function call).
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Figure 7: Comparing process-based protection with Sentry. Base:
Apache with mod case.

4.3 Lightweight Remote Procedure Call
RPC is a form of inter-process communication where the caller

process invokes a handler exported by a callee process. We first
describe the scheme used to implement RPC in current OS ker-
nels (e.g., Solaris): (1) The caller copies arguments into a mem-
ory buffer and generates a trap into the OS. (2) The OS copies the
buffer content into the address space of the callee. It then context
switches into the callee. (3) To return, the callee traps into the ker-
nel, which unblocks the caller process. The main overhead is due to
the four privilege switches (two from user→kernel space and two
from kernel→user space) and the memory copy required. Earlier
proposals [1] have optimized RPC by using a shared memory seg-
ment (i.e., shmem()) to directly pass data between the caller and
callee process. The minimum size of the shared memory segment is
a page and a copy is still needed from the argument location to the
shared page. More recently, Mondrian [24] postulated that word
granularity permission and translation can eliminate the argument
passing region.

We use the M-cache to provide fine-grain access control of the
locations that need to be passed from the the caller to the callee
process and eliminate the copying entirely. The caller process must
align the arguments to a cache line boundary and request the kernel
to map the argument memory region into the callee’s address space
(requiring a user-kernel and kernel-user crossing). We experiment
with a client that makes RPC calls to a server periodically (every
30,000 cycles). The server is passed a 2 KB random alphabet string
that it reverses while switching the case of characters. We compare
the cost of argument passing using several approaches — Sentry,
the implementation in the Solaris RPC library, and an optimized
implementation that uses page sharing [1]. Our results indicate that
completely eliminating the copying provides a (∼9–10×) speedup
compared to the optimized page sharing approach. The unopti-
mized RPC implementation has 103–104 × higher latency.

4.4 Debugger: Sentry-Watcher
We developed Sentry-Watcher, a C library that applications call

into for watchpoint support. A watchpoint is usually set by the
programmer to monitor a specific region of the memory and when
an access occurs to this region, it raises an exception. Sentry-
Watcher employs the one-domain per process model and operates
in the application mode (permissions metadata and M-cache man-
aged by a library in the application space). It exports a simple inter-
face: insert_watchpoint(), delete_watchpoint(),
and set_handler(), with which the programmer can specify



the range to be monitored, type of accesses to check, and the han-
dler to trigger.

Apart from fine granularity watchpoints, there are three addi-
tional benefits with Sentry-Watcher: (1) it supports flexible thread-
specific monitoring, allowing different threads to set up different
permissions to the same location 4, (2) it supports multi-threaded
code efficiently since the hardware watchlist can be propagated in
a consistent manner across multiple processors at low overhead
(also supported by MemTracker [21]), and (3) it effectively vir-
tualizes the watchpoint metadata and allows an unbounded number
of watchpoints.

Benchmark Mallocs/1s Heap Size Heap Access % Bug Type
BC 810K 60KB 75% BO

Ncom 2 8B 0.6% SS
Gzip 0 0 0% BO,IV
GO 10 294B 1.9% BO
Man 350K 210KB 89% BO,SS
Poly 890 11KB 27% BO
Squid 178K 900KB 99.5% ML

B-Bytes, KB-Kilobytes, MB-Megabytes
BO-Buffer Overflow SS-Stack Smash, ML-Memory Leak, IV-
Invariant Violation. Squid is multi-threaded.

Table 2: Application Characteristics
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Figure 8: Sentry-Watcher vs. Binary instrumentation. N/A -
Discover is not compatible with multi-threaded code. Gzip1 de-
tects Buffer-Overflow bugs. Gzip2 detects memory leak, buffer
overflow, and stack smash bugs.

Debugging Examples
Generic unbounded watching of memory can help widen the

scope of debugging. Here, we use the system to detect four types
of bugs: (1) Buffer Overflow — this occurs when a process ac-
cesses data beyond the allocated region. To detect it we pad all
heap buffers with an additional cache line and watch the padded
region. (2) Stack Smashing — A specific case of buffer overflow
where the overflow occurs on a stack variable and manages to mod-
ify the return address; we watch the return addresses on the stack.
Dummy arguments need to be passed to the functions to set up
the appropriate padding and eliminate false positives. (3) Mem-
ory Leak — We monitor all heap allocated objects and update a
per-location timestamp on every access. Any location with a suf-
ficiently old access timestamp is classified as a potential memory
leak. (4) Invariant Violation—Monitor application-specific vari-
ables and check specified assertions. We demonstrate the prototype
on the benchmark suite provided with iWatcher [29] — Table 2 de-
scribes the benchmark properties. We compare the performance of
4Since all threads run in the same domain, this would require a flush of the
M-cache on a thread switch.

Sentry-Watcher against Discover (a SPARC binary instrumentation
tool [32]). Sentry-Watcher is evaluated on our simulator. Discover
is set up on the Sun T1000. Compared to the binary instrumentation
technique, Sentry-Watcher provides 6–75× speedup. Sentry still
incurs noticeable overhead compared to the original applications—
varying between 3–50% for most applications. At worst, we en-
counter up to ∼2× overhead on the memory-leak detector experi-
ments, which instrument all heap accesses (see Squid in Figure 8).

Comparing with Other Hardware
To understand the performance overheads of Sentry-Watcher,

we further compared it against the performance of Mem-
Tracker [21], a hardware mechanism tuned for debugging, and
Mondrian [24], a fine- and variable-grain flexible protection mech-
anism placed within the processor pipeline.

MemTracker Sentry Mondrian
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Figure 9: Effect of software handlers and cost of manipulating
metadata in the OS.

In MemTracker, a software-programmable hardware controller
maintains the metadata, fetching and operating on it in parallel with
the data access. To emulate the controller’s operations, we assign a
0 cycle penalty for all operations other than the initial setup of the
metadata. This is an optimistic assumption since typically metadata
misses in MemTracker also add to the overhead. In Mondrian, set-
ting up or changing the metadata require privilege mode switches
into and out of the operating system kernel. To estimate the cost
of a fast privilege switch, we measure the latency of an optimized
low overhead call (e.g., gethrtimer()) on three widely avail-
able microarchitectures (SPARC, x86, and PowerPC). We observed
280 cycles (SPARC), 312 cycles (x86) and 450 cycles(PowerPC).
To emulate Mondrian, we add a penalty of 300 cycles to every per-
mission exception and metadata modification; we assign a 0 cy-
cle penalty to metadata operations. To limit the number of vari-
ables, we keep the metadata cache size fixed across all the systems
(256 entries). For this comparison, we implemented the debug-
ger tool discussed by the MemTracker paper [21], which checks
for heap errors, buffer overflow, and stack smashing. The work-
loads we use are from the SPECCPU 2006 suite [21]. We also
include the SPLASH2 benchmarks to verify that our findings are
valid for multi-threaded workloads. Figure 9 shows that the over-
head of Sentry-Watcher averages 6.2%, compared to the idealized
MemTracker’s 2.6% and Mondrian’s 14%. Since MemTracker re-
quires a hardware controller to fetch and manipulate the metadata
while we leave all such operations in software, we believe that our
system is more complexity-effective.



5. RELATED WORK
5.1 Access Control for Data Protection

Access control mechanisms are commonly exploited to protect
data against inappropriate accesses from buggy programs or mali-
cious attacks. Most modern processors and operating systems as-
sociate a protection domain (or a process) with a separate, linear
page-based address space. Multiple threads in a process typically
see the same access permission to a location. With the coupling of
the protection domain and address space, an inter-domain commu-
nication requires operating system intervention and pointer swiz-
zling [23]. Furthermore, domains are assigned at process creation
and persist for a process’ lifetime. OS processes are widely used in
fault isolation applications to sandbox software components [25].
Unfortunately, processes also impose complete isolation between
sandboxes and the programmer has to use custom library interfaces
to enable data sharing.

Efforts were made to separate protection from the address space
using a protection lookaside buffer [9] and page tagging labels and
protection identifiers (in HP’s PA-RISC [22]). These designs are
confined to a page or larger granularity and cannot provide the fine
granularity of control over protection needed by current modular
software. While x86 segmentation hardware [4] allows variable
granularity, the number of segment registers available is small.
Moreover, the PA-RISC and x86 hardware hardcode the relation-
ship among domains. Sentry is highly flexible and allows each
application to choose its protection model independently.

Several approaches specifically target protection within the op-
erating system but they lack the flexibility to support application-
level protection. For instance, SPIN takes advantage of type-safe
languages in constructing safe OS extensions [2]. The required
use of certain type-safe languages can restrict general application
development. As another example, Nooks uses lightweight pro-
cesses and page protection to guard the kernel against device driver
bugs [18]. Unfortunately, when data is shared between domains,
these schemes require the programmer to use custom wrapper li-
braries to enable the protection framework to capture and marshal
the accesses.

Capability systems [3,5,11,17] augment object reference point-
ers to include information on access control. The capabilities
shared between threads are marshaled by the OS and can support
generalized protection models. Typical capability implementations
change the layout of memory and fatten pointers. Software devel-
opers need to be aware of the modified layout and typically need
code rewrites, which lessens their appeal. More importantly, the
relatively large management cost for a capability (e.g., when revok-
ing access rights) makes it ill-suited to protecting fine-grain data
elements. Typically, capability-protected objects are external re-
sources such as files, or memory segments at large granularity.

Recently, Mondrian [24] decoupled protection from a conven-
tional paging framework and implemented it using segments. An
application’s address space is described by a collection of variable-
sized segments, each capable of supporting word granularity. This
flexibility comes at the cost of additional hardware and operating
system modifications. This work replaces the existing protection
framework (TLB) with a new permissions-lookaside-buffer (PLB)
that checks all accesses in the pipeline and needs add-ons (e.g.,
sidecar registers) to reduce the performance overheads. Further-
more, it introduces new layers in the operating system to imple-
ment all protection (intra-process and inter-process) based on the
PLB approach. This requires every application to communicate its
policy to the low-level supervisor.

Loki [26] adopted a different tagging strategy, choosing to tag
physical memory with labels that further map to a set of permis-
sion rules. Loki allows system software to translate application
security policies into memory tags. Threads must have the cor-
responding entry in the permissions cache in order to be granted
access permission. If the threads need to be segregated into sepa-
rate domains, then this would require software support to convert
inter-thread function calls into cross-domain call gates. Permission
cache modifications must be performed within the operating sys-
tem. Permission revocation in the case of page swapping would
require a sweep of all process/thread’s permissions caches.

Our Approach
While we share the goals of Mondrian and Loki to allow more

flexible protection models, Sentry employs an auxiliary protection
architecture that supplements existing mechanisms on commod-
ity platforms. Specifically, Sentry’s hardware is implemented en-
tirely outside the processor core, is subordinate to the existing TLB
mechanism, and intercepts only L1 misses. Sentry uses coherence
states to implicitly verify all L1 hits, which saves the energy and
performance overhead of checking the metadata for a large fraction
of the accesses. Further, it also maintains coherence of the pro-
tection metadata across multiple processors, simplifying software
management (no need for interprocessor interrupts to ensure con-
sistency of the metadata). Finally, no changes are made to the exist-
ing process-based protection and the intra-process protection mod-
els may be implemented at the user level. Compared to Mondrian
and Loki, Sentry reduces the changes required to the core hardware
and operating system software. It enables flexible, low-cost pro-
tection within individual applications. Finally, it incurs space or
time overhead only when auxiliary intra-application protection is
needed.

5.2 Access Control for Debugging
When used for debugging applications, the space and perfor-

mance overheads are directly proportional to the number of loca-
tions being watched. Prior proposals mainly focus on reducing
the overhead of intercepting memory operations and manipulating
some debugger-specific metadata. This capability is sufficient to
detect a variety of memory bugs [14].

Hardware proposals seek to eliminate the performance over-
heads of software-based debugging by intercepting and checking
accesses in a transparent manner. A common feature of all these
works is that they intercept all loads and stores in the processor
pipeline. They also share the metadata among different threads,
which makes it difficult to set up thread-specific access control.
The major differences among these systems is the hardware state
bits used to track the watchpoint metadata: bloom filters [20], ad-
ditional cache-tag bits [30], ECC bits [15, 29], or separate looka-
side structures [21]; which have varying levels of false positives
and coverage characteristics. They also vary in whether the hard-
ware semantics are hardcoded for a specific tool [28] or support a
general-purpose state machine [21].

Our Approach
The M-cache mechanism proposed in this paper is a more

complexity-effective implementation since it resides entirely out-
side the processor core and intercepts only L1 cache misses. It uses
cache coherence to enable low-cost maintenance of the metadata
scattered across multiple processors (without requiring hardware
controllers to coordinate data and metadata movement [21]). Fur-
thermore, it supports thread-specific monitoring, allowing different
threads to have different permissions to the same location.



6. CONCLUSIONS
Light-weight and flexible data protection is highly desirable for

the improved reliability and debugging support of modular soft-
ware. Sentry provides a protection framework using virtual mem-
ory tagging that is completely subordinate to the existing OS-TLB
framework. The main hardware component, the metadata cache
(M-cache), implements permission checks entirely outside the pro-
cessor core. It intervenes only on L1 misses, transparently reusing
the L1 coherence states to enforce permissions on hits. Compared
to previously proposed protection hardware that intercepts all ac-
cesses in the pipeline, the M-cache is a complexity-effective design
that provides significant energy reduction (consuming 1—10% of
the energy of the in-core approach).

Sentry realizes intra-application protection models with pre-
dominantly user-level software, requires very little OS intervention,
and makes no changes to process-based protection. We developed
an intra-application compartment protection model and used it to
isolate the modules of a popular web server application (Apache),
thereby protecting the core web server from buggy modules. Our
evaluation demonstrated that Apache’s module interface can be en-
forced at low overhead ('13%), with few application annotations,
and in an incremental fashion. Finally, the user-level management
of Sentry also supports low-overhead, fine-grain watchpoints. We
developed a memory debugger to demonstrate that Sentry’s flexibil-
ity and overheads are comparable to previously proposed hardware-
based debuggers. We show that user-level management (as opposed
to OS-level management) is an important design choice to limit the
overheads in such applications.
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