
On the Impact of Instruction Address Translation
Overhead

Yufeng Zhou1, Xiaowan Dong2, Alan L. Cox1, and Sandhya Dwarkadas2

1Department of Computer Science, Rice University
{yufengz, alc}@rice.edu

2Department of Computer Science, University of Rochester
{xdong, sandhya}@cs.rochester.edu

Abstract—Even on modern processors with their ever larger
instruction translation lookaside buffers (TLBs), we find that a
variety of widely used applications, ranging from compilers to
web user-interface frameworks, suffer from high instruction ad-
dress translation overheads. In this paper, we explore the efficacy
of different operating system-level approaches to automatically
reducing this instruction address translation overhead. Specifi-
cally, we evaluate the use of automatic superpage promotion and
page table sharing as well as a transparent padding mechanism
that enables small code regions to be mapped using superpages.
Overall, we find that the combined effects of these different
approaches can reduce an application’s total execution cycles
by up to 18%. Surprisingly, we find that improving address
translation performance in the first-level instruction TLB can
significantly reduce the address translation overhead for data
accesses. The overall reduction in execution cycles is more than
double the instruction address translation overhead on stock
FreeBSD, demonstrating that data address translation and access
synergistically benefit from less contention in the caches and
TLBs that might be shared across instruction and data.

Index Terms—Superpage, Translation Lookaside Buffer, Oper-
ating System, Microarchitecture, Memory Management, Instruc-
tion Access, Page Table, Memory Hierarchy, Address Translation,
Virtual Memory

I. INTRODUCTION

In recent years, with the growing importance of big data
workloads, many researchers have sought to reduce the over-
head of virtual-to-physical address translation during data ac-
cesses. Their work has proposed both architectural changes to
the way that address translation is performed in hardware [1]–
[6] as well as improvements to the automatic support for
superpages in operating systems [7]. However, much less
attention has been paid to the performance impact of address
translation on instruction accesses, at either the architectural or
operating system level [8]. Instead, most of the work aimed at
reducing address translation overhead for instruction accesses
has focused on compile-time techniques for code layout op-
timization [9], [10]. In this paper, we explore the efficacy of
different operating system-level approaches to automatically
reducing instruction address translation overhead.

Even on modern processors with their ever larger instruction
TLBs, we find that a variety of widely used applications, rang-
ing from compilers to web user-interface frameworks, suffer
from high instruction address translation overheads. For exam-
ple, on an Intel Xeon E3-1240 v5 (Skylake) processor [11], we

find that the PostgreSQL (version 9.6.8) database executing
a select-only workload spends up to 14.9% of its execution
cycles stalled on instruction address translation. To put this in
perspective, Intel’s VTune profiler reports instruction address
translation as a performance problem when the stall cycles
exceed 5% of the execution cycles [12]. Five out of the six
applications that we examine in detail in this paper have stall
cycles exceeding this 5% threshold. Further, these applications
are representative of multiple languages (C, Java, JavaScript)
and run-time environments.

We believe that the address translation overhead for in-
struction accesses is being exacerbated by two trends. The
first one is the ever increasing size and complexity of the
applications. For example, the Clang compiler has increased
in size from 31MB of x86-64 machine code in version 3.0
(2012) to 56MB in version 6.0.0 (2018), and a recent version
of the Node.js run-time environment uses 20 shared libraries.
Applications that make extensive use of shared libraries have
been observed to have higher instruction TLB miss rates [8],
[13]. Second, when the number of logical or physical cores
running an application increases, often its instruction address
translation overhead increases because of the greater competi-
tion for shared hardware resources, such as TLBs and caches.
These effects are most pronounced in applications that have a
multi-process architecture, such as PostgreSQL, or in multi-
process workloads, such as parallel compilation with Clang.
Essentially, because each process has its own private page
table, there is more competition for space in shared caches.
For example, during initialization, PostgreSQL (version 9.6.8)
starts 6 processes. Then, during operation, another process is
created to service each client. In one workload, as the number
of clients increased from 8 to 12, the instruction address
translation overhead grew from 7.7% to 8.3% of the execution
cycles.

The first approach that we evaluate is automatic super-
page promotion. We performed this analysis on FreeBSD
because of its existing support for automatic superpage pro-
motion on code. Notably, any sufficiently large and aligned
region of code, including code obtained from executables
and shared libraries stored in a regular file system, can be
promoted [14]. However, a promotion always requires that
every 4KB page within an eligible region be resident in

memory, and FreeBSD’s policy is never to perform I/O just
to enable promotion. Consequently, we find that only a few
eligible regions of code are actually promoted. Therefore,
we explore the effects of relaxing this policy. Essentially,
we modified the page fault handler to retrieve the remaining
non-resident pages within an eligible region from the file
system once the number of already resident pages crosses a
configurable threshold. For example, for PostgreSQL (version
9.6.8), setting this threshold to 448 out of 512 pages enabled
superpage promotions that resulted in an 8.5% reduction in
execution cycles. In this case, the additional physical memory
allocated due to this relaxed policy is negligible compared to
the applications’ memory consumption for data and is partly
compensated for by the savings in page table memory.

Code size is rarely an integer multiple of the superpage size.
Consequently, virtually all large executables have a residual
code region that is mapped using 4KB pages. In the worst case,
on a Skylake processor, mappings for this region could occupy
almost 1/3 of the entries in the second-level TLB (STLB),
displacing many mappings to data. We evaluate two techniques
to mitigate such STLB pressure. First, we evaluate the benefits
of padding, an in-kernel mechanism that transparently pads the
residual part of the code to a superpage boundary. Second,
many shared libraries used by applications are only tens to
hundreds of KBs, making them too small to use superpage
mappings. In current operating systems, although the physical
memory storing the code for a shared library is shared among
processes, each process has a private copy of the page table
entries (PTEs) mapping that shared library. Thus, the memory
occupied by these PTEs grows linearly with the number of
processes. More significantly, these PTEs compete for space
all over the memory hierarchy, because a page table walk
loads the corresponding PTEs into caches on a TLB miss.
Sharing PTEs can be an effective approach to alleviating this
duplication [8]. To share PTEs, we leverage the multi-level
structure of the x86-64 page table. Essentially, we added an
option to the kernel’s virtual memory system that utilizes a
single copy of the page table pages (PTPs) storing the PTEs
for mapping executable files into virtual memory. We find that
sharing PTPs across different processes can reduce execution
cycles by as much as 6.9%. Moreover, the combined effects
of using superpages to map the main executable and sharing
PTPs for the small shared libraries can reduce execution cycles
up to 18.2%.

In summary, our contributions are as follows:
• We show that the overhead of instruction address trans-

lation for a variety of widely used applications is non-
trivial and deserves attention. We find that this overhead
is likely to increase as the level of parallelism goes up.

• We show that improving address translation performance
in the first-level instruction TLB can reduce the address
translation overhead for data accesses, because many
modern microarchitectures, such as Skylake and Thun-
derX2 for AArch64, share the second-level TLB between
instruction and data translations.

• We analyze the performance impact of in-kernel au-

tomatic superpage promotion for code across different
levels of aggressiveness. We also apply padding to the
residual code region to further improve performance.

• We explore a page table sharing scheme for shared
libraries that are generally too small for superpages.

• Contrary to prior work [15], which focuses on the cost
of TLB misses that result in page table walks, we
show that state-of-the-art instruction TLB (ITLB) designs
must pay attention both to their interaction with in-flight
instructions and with multi-level TLB designs where the
lower levels may be contended for by instruction and data
translations.

II. BACKGROUND

Today, large computing systems support terabytes of phys-
ical memory to accommodate memory-hungry applications
such as in-memory databases. However, a TLB’s size cannot
scale at the same rate as physical memory. Consequently,
virtual-to-physical address translation overhead can be signif-
icant for big memory workloads [1], [2].

Using larger page sizes (superpages) can reduce this address
translation overhead by increasing TLB coverage. Conse-
quently, modern processors support superpages of potentially
multiple sizes (e.g., 2MB and 1GB on x86 processors), and
their TLBs provide a growing number of entries for storing
these superpage mappings. For example, the number of 2MB
superpage mappings that can be stored in Intel’s second-
level TLB (STLB) has grown from 1,024 in Haswell [16]
to 1,536 in Skylake [11]. However, due to the L1 TLB
being on the instruction critical path, only a small number of
superpage mappings are supported at the L1 level. In the case
of Skylake (see Table I), only 8 entries for 2MB superpages
are supported at the instruction (I) TLB (under the assumption
that code size is usually not very large, 1GB entries are not
supported). Unless otherwise noted, we use ”superpage” and
”2MB superpage” interchangeably.

We focus here on surveying the state of the art in terms of
support for code superpages within the operating system, in
particular, in Linux and FreeBSD, and of support for sharing
instruction page tables across processes.

A. Superpage Support for Instructions

Linux does not transparently support superpages on code
from a regular file system. To map code from files with
superpages, Linux requires either (1) that the user copy
the executable and shared libraries to a special huge page
file system [17] or (2) that the user process first copies
its code from the original virtual memory region backed
by 4KB pages to superpage-backed memory (created by an
madvise(MADV HUGEPAGE) call), and then remaps the
superpage-backed memory to the original virtual memory
region using the mremap system call. Only just-in-time (JIT)
compiled code that is written to anonymous virtual memory
can enjoy the benefits of superpages automatically.

In contrast, FreeBSD supports automatic superpage pro-
motion for code from any file system. It uses a reservation-

2

based allocator to support superpages transparently [14]. When
an application faults in a (virtually) superpage-aligned region
for the first time, the page fault handler reserves contiguous
physical memory (reservations) but does not map the entire
reservation immediately. The page fault handler then allocates
base pages from the reservation on subsequent page faults in
the region, bringing in a 64KB-aligned cluster of pages in
order to improve I/O performance under the assumption of
spatial locality. When the reservation becomes fully populated,
the system performs a promotion, replacing the entire leaf-
level PTP with a single superpage mapping. Reservations that
have not been fully populated can be broken if ever there is
a shortage of free physical memory. In this paper, we use
FreeBSD to analyze the performance impact of automatic
superpage promotion on code, as its overhead is smaller than
Linux’s copying and remapping approach.

B. Support for Sharing Instruction Page Tables

There are plenty of opportunities for sharing PTPs in
desktop and server applications. These applications can share
page tables for the main executable and shared libraries across
different processes in the following scenarios:

• Multi-process applications A multi-process architecture
is widely used by desktop and server applications for
robustness and security. For example, Chromium uses
separate processes for web browser tabs to protect the ap-
plication from bugs in the rendering engine [18]. Firefox
has moved from a multi-threaded architecture to a multi-
process architecture for the same reason [19]. PostgreSQL
has been using a multi-process architecture for decades.

• Multiple instances of one application For example,
one may be simultaneously running multiple Clang pro-
cesses for a parallel build job, or invoking multiple V8
JavaScript engine instances in a multi-process browser.

• Different applications invoking the same shared li-
braries Common shared libraries are linked by different
applications. For example, almost every application relies
on the standard C library libc.so.

Dong et al. [8] share subsets of page tables for shared
library code among Android applications, with the goal of
sharing both page table pages and TLB entries. Every Android
application forks from a template process called Zygote, which
preloads all shared libraries common to typical Android appli-
cations at system initialization time. Consequently, the virtual-
to-physical mappings of the preloaded shared libraries that
are inherited from the Zygote are identical across all Android
applications, allowing TLB entries to be shared with the aid of
ARM’s protection domain support [8]. When creating a page
table for an Android application at a fork, instead of creating
duplicate copies of the PTPs, the OS populates the upper-level
PTEs with the physical addresses of existing leaf-level page
table pages (PTPs) mapping the shared libraries. Sharing PTPs
reduces overhead both at startup time due to reduction in the
number of PTPs initialized, and over the course of execution
due to fewer soft page faults (physical frames being present
in memory but with missing mappings) and more efficient

cache utilization. We design, implement, and evaluate a more
generalized approach for page table sharing that does not rely
on a process-to-process relationship.

III. EVALUATION FRAMEWORK

For our experiments we used an Intel Xeon E3-1240 v5
quad-core processor with a 3.5GHz base frequency, 8MB of
last-level cache (LLC), and hyperthreading enabled. We in-
stalled 32GB of RAM in the system. TLB-related information
is listed in Table I. The baseline system is FreeBSD 11.2-
RELEASE, which disables CPU scaling and sets the frequency
to the maximum of 3.5GHz by default. We collect information
from hardware performance-monitoring counters [12], [20],
[21] (Table II 1) using the pmcstat [22] utility. We report
the median of three runs for all benchmarks except Javac
and Derby. For Javac and Derby, we use ten runs due to
larger-than-usual variance. We find that the medians stabilize
after those numbers of runs. We assign dedicated cores to
applications with the cpuset [23] utility, and monitor only
the activity of those cores. This means that for the server-
oriented applications, we collect counters only on cores run-
ning the server processes. Unless otherwise noted, we assign
two cores (four hyperthreads) to each application evaluated.
For all benchmarks, we perform warmup runs to ensure that
the necessary code and data pages are faulted in.

In all cases, kernel code is mapped entirely using super-
pages, so that our optimizations do not directly impact kernel-
level address translation overhead. Since our optimizations
only directly impact user space address translation overhead,
unless otherwise stated, the numbers presented in the eval-
uation are for user space. For reference, Table III lists for
each benchmark the percentage of total execution cycles spent
in kernel space. In almost all cases, time spent in the kernel
is mostly due to IO and other activity unrelated to memory
management and hence remains unchanged by our optimiza-
tions. However, smaller process page tables as a result of our
optimizations make the execution of kernel-level operations
such as fork, exec, and exit cheaper. Superpage promotions
incur a one-time additional overhead. We report the impact of
these kernel operations on kernel space execution time where
significant.

We evaluated six widely used applications, including a
compiler, two database applications, and two language run-
times with JIT compilation capabilities. We believe that these
applications reflect a wide range of circumstances (Table IV).

Clang: Clang is a compiler front end that uses the LLVM
compiler infrastructure as its back end. We run Clang version
6.0 that comes with the FreeBSD 11.2 system. We run one
instance of Clang per hyperthread, each compiling the source
code of a benchmark named Dhrystone [24].

1(1) ICACHE 64B.IFTAG STALL is a counter recently introduced in
Skylake and it measures the end-to-end cost of ITLB misses. (2) Intel
processors since Broadwell can do two page walks in parallel [21]. As a
result, the ”WALK PENDING” counters can increment by up to 2 per CPU
cycle as they add 1 per cycle for each ongoing page walk. In contrast, the
”WALK ACTIVE” counter increments by up to 1 per CPU cycle as it records
the number of CPU cycles where there is at least one ongoing walk.

3

TABLE I
TLB CONFIGURATION (SKYLAKE)

ITLB
4KB 128 entries 8-way set associative
2MB 8 entries per thread fully associative

DTLB
4KB 64 entries 4-way set associative
2MB 32 entries 4-way set associative
1GB 4 entries fully associative

Shared TLB
4KB + 2MB 1536 entries 12-way set associative
1GB 16 entries 4-way set associative

TABLE II
HARDWARE PERFORMANCE COUNTERS

Descriptions Counters & Equations
of instructions retired INST RETIRED.ANY P
Execution cycles CPU CLK UNHALTED.THREAD P
Inst addr translation cycles ICACHE 64B.IFTAG STALL
(ITLB stall)
Inst addr translation ICACHE 64B.IFTAG STALL /
overhead CPU CLK UNHALTED.THREAD P
% of inst addr translation ITLB MISSES.WALK ACTIVE /
cycles spent on instruction ICACHE 64B.IFTAG STALL
page table walk
Inst page table walk cycles ITLB MISSES.WALK PENDING
of inst page table walks ITLB MISSES.WALK COMPLETED
Avg. cycles per inst ITLB MISSES.WALK PENDING /
page table walk ITLB MISSES.WALK COMPLETED
Data page table walk cycles DTLB LOAD MISSES.WALK PENDING +

DTLB STORE MISSES.WALK PENDING
of data page table walks DTLB LOAD MISSES.WALK COMPLETED +

DTLB STORE MISSES.WALK COMPLETED
LLC stall cycles CYCLE ACTIVITY.STALLS L3 MISS

PostgreSQL: PostgreSQL is an object-relational database
system [25]. We run version 9.6.8 of PostgreSQL, and use pg-
bench [26] to perform select-only transactions. The server pro-
cesses and the client process run on two separate but identical
FreeBSD systems as described above with a dedicated Gigabit
Ethernet link. Unless stated otherwise, we configure pgbench
to simulate 10 clients, resulting in 10 worker processes (5 per
physical core) on the server side. In this way, the cores are
kept busy by overlapping computation at the database with
network and I/O activities. A fixed number of back-to-back
transactions are performed on a 5GB database, and we use the
-C option of pgbench to toggle between reconnecting after
each transaction (reconnect mode) and using one persistent
connection per client (persistent connection mode). We use
the reconnect mode by default unless stated otherwise.

Javac and Derby: We use OpenJDK 8 [27], which is a Java
runtime supporting JIT compilation, to run Compiler.compiler
and Derby from the SPECjvm2008 benchmark suite [28],

TABLE III
PERCENTAGE OF TOTAL EXECUTION CYCLES SPENT IN KERNEL SPACE

Benchmarks Percentage
Clang 7%
PostgreSQL (reconnect) 65%
PostgreSQL (persistent connection) 17%
Javac 1%
Derby 0.7%
Node.js 0.4%
MySQL 20%

[29]. Compiler.compiler compiles a set of .java files using
the javac compiler. We refer to the benchmark as “Javac”
for simplicity. Derby uses an open-source database written
in Java and stresses the use of (bigger-than-64-bit) decimal
arithmetic computations and the locking behavior. We use
the specjvm.hardware.threads.override option to
allow the benchmarks to scale appropriately with the number
of cores allocated. We also use the XX:+AlwaysPreTouch
option to pretouch the java heap during JVM initialization
and fix the number of operations. We pay attention to both
the large 11.220MB JVM proper (which comes in the form of
a shared library libjvm.so) and JIT-compiled code. When
we disable automatic code superpage promotion or employ
more aggressive code superpage promotion, they are applied
to both the JVM and the JIT-compiled code.

Node.js: Node.js is a JavaScript runtime built on Chrome’s
V8 JavaScript engine [30]. We run version 8.11.1 of Node.js,
and use the React server-side rendering benchmark [31]. We
modified the benchmark to run a fixed number of iterations for
roughly the same duration as it would originally. We run one
Node.js process per hyperthread, which is typical of a master-
worker configuration of Node.js on a multi-core system.

MySQL: MySQL is a relational database management sys-
tem [32]. We run version 8.0.2 of MySQL, and use the read-
only OLTP test of sysbench [33] to test the MySQL server. We
run the server process and the client process on two separate
but identical FreeBSD systems as described above with a
dedicated Gigabit Ethernet link. We allow 14 worker threads
per physical core for the server process (in order to saturate
the cores without incurring a significant increase in queueing
delay). We perform 1,600,000 back-to-back transactions in
total on a 1.2G database.

IV. INSTRUCTION ADDRESS SPACE AND TRANSLATION
OVERHEAD ANALYSIS

Table IV lists the main executable sizes, linked shared
libraries, and concurrency models of the applications we
examined. (For Javac and Derby, the main executable refers
to JIT-compiled code.) The main executables range in size
from 5.953MB to as large as 55.895MB, all of which are
large enough for superpages. All applications except for
Clang link shared libraries. The applications that do rely on
shared libraries each link at least 13, with Node.js using as
many as 20 libraries. Most shared libraries are too small
for superpages, except for a few larger shared libraries, such
as libcrypto.so.8 (2.27MB) linked by PostgreSQL
and Node.js, We note that PostgreSQL is a multi-process
application. The PostgreSQL server consists of 6 processes
plus one worker process per client. For a parallel build,
multiple instances of Clang will run concurrently.

As outlined in Section II-A, FreeBSD loads 64K-aligned
regions of data/instructions into memory (64KB clusters) on a
page fault. Any 2MB superpage-sized region of code contains
32 such clusters, resulting in a likelihood of code superpages
that are mostly populated. Figure 1 provides a cumulative
histogram of the number of 64KB clusters resident in memory

4

0

5

10

15

20

25

30

048121620242832

C
u

m
u

la
ti

ve
 #

 o
f

Su
p

e
rp

ag
e

-s
iz

e
d

 R
e

gi
o

n
s

of physically resident 64KB clusters in a superpage-sized region

Clang PostgreSQL Javac/Derby Node.js MySQL

Fig. 1. Cumulative histogram of the # of superpage-sized regions with respect
to the # of physically resident 64KB clusters within a region

in each code superpage-sized region for our applications. We
use one plot for both Javac and Derby since they have the same
results. Under FreeBSD’s conservative superpage promotion
policy, Clang and Node.js each have one code superpage
promotion. Javac, Derby, and PostgreSQL have none. MySQL
has five superpage promotions.

Figure 2 illustrates the instruction address translation over-
head (ITLB stall, including cycles servicing ITLB hits, STLB
hits, and STLB misses) as a percentage of the overall execution
cycles on two different kernels, one stock FreeBSD and
the other a modified kernel that does not create superpage
mappings for code (resulting in only 4KB code mappings).
PostgreSQL does not have any superpage-sized regions that
qualify for automatic promotion; “Postgres-p” and “Postgres-
r” refer to the persistent connection mode and the reconnect
mode of pgbench respectively. As the figure shows, even with
FreeBSD’s automatic superpage promotion, up to 14.9% of
the application’s execution time can be spent on instruction
address translation.

Moreover, when we increase the level of parallelism, the
instruction address translation overhead becomes even worse,
since the contention over TLB and cache space becomes
more intense across logical and physical cores. For Clang, in
one test the instruction address translation overhead increases
from 4.6% when using a single hyperthread on one core
to 5.5% when using both hyperthreads, and to 5.8% of the
execution cycles when increasing the number of cores (using
both hyperthreads on each) from 1 to 4. For PostgreSQL under
persistent connection mode, the instruction address translation
overhead increases from 14.6% to 15.4% when the number
of cores goes from 1 to 4. As the parallelism demanded
by modern applications and supported by modern hardware
continues to grow, attention to the efficiency of instruction
address translation is paramount.

TABLE IV
APPLICATIONS’ MAIN EXECUTABLE AND SHARED LIBRARIES LINKED

Main # of # of Large shared Multi- Multi-
executable shared shared library thread process
size (MB) libraries libraries size (MB)

linked <1MB
Clang 55.895 0 0 N/A N N
PostgreSQL 5.953 15 10 1.53 to 2.88 N Y
Javac 20.000 13 11 1.59 and 11.22 Y N
Derby 12.000 15 13 1.59 and 11.22 Y N
Node.js 23.836 20 16 1.59 to 2.88 N N
MySQL 40.094 15 13 1.59 and 2.27 Y N

 -

 2.00

 4.00

 6.00

 8.00

 10.00

 12.00

 14.00

 16.00

%
 o

f
Ex

ec
u

ti
o

n
 C

yc
le

s FreeBSD

FreeBSD W/O Automatic Superpage

Fig. 2. Percentage of execution cycles servicing instruction address translation

V. AUTOMATIC SUPERPAGE PROMOTION FOR
INSTRUCTIONS

Motivated by Figure 1, we explore more aggressive code
superpage promotion policies. Aggressive promotion policies
trade additional physical memory consumption with reduced
address translation overhead (both page table size and TLB
occupancy). We accomplish this by using a threshold of
occupancy of superpage-sized and aligned reservations, which
when exceeded results in the kernel automatically filling in
the missing clusters and performing a promotion. We evaluate
the impact on performance when varying this threshold. The
kernel keeps track of the number of resident 64KB clusters in
each reservation and checks the occupancy when handling a
hard page fault (when both the physical page and the mapping
are missing). If the miss handling results in the number of
resident clusters being above the threshold, the remaining
missing clusters in the reservation are also loaded, and a
superpage promotion is performed.

In effect, FreeBSD’s default superpage promotion policy has
a threshold of 32, promoting a reservation if and only if all 32
clusters within a reservation are made resident over the course
of execution. It is clear from Figure 1 that once we lower
the threshold to 16, we would have all reservations promoted
for PostgreSQL, Node.js, Javac, and Derby. Clang would still
have 6 out of 27 reservations not promoted at a threshold
of 16, suggesting that its access to code is relatively spread
out. Moreover, PostgreSQL requires only 7 more clusters
(= 448KB) to be brought into memory for both of its 2
reservations to be promoted.

For the JVM applications, in addition to more aggressively
mapping the JVM (libjvm.so), we also modified the JVM
to expand its JIT-compiled code heap in 2MB increments and

5

 0.50
 0.55
 0.60
 0.65
 0.70
 0.75
 0.80
 0.85
 0.90
 0.95
 1.00

Ex
e

cu
ti

o
n

 c
yc

le
s

n
o

rm
al

iz
e

d
 t

o
 S

to
ck

 F
re

e
B

SD

27 18 15 1

Fig. 3. Normalized execution cycles under 4 different promotion thresholds
(Legend shows the # of 64KB clusters that are required to be physically
resident before the corresponding superpage-sized region can be promoted)

 -

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

P
ag

e
 T

ab
le

 W
al

k
C

yc
le

s
N

o
rm

al
iz

e
d

 t
o

 S
to

ck
 F

re
e

B
SD Inst Data

Fig. 4. Normalized page table walk cycles when code superpage promotion
heuristic requires 18 64KB clusters to be physically resident

to pre-touch its code heap upon expansion. This way, the JIT-
compiled code is entirely mapped with superpages. In the rest
of this section, we focus on only the JVM when analyzing the
impact of different superpage promotion thresholds, while the
entire JIT-compiled code is always mapped by superpages.

In Figure 3, we show the normalized execution cycles at
four different thresholds. A threshold of 1 represents the most
aggressive superpage promotion policy where any superpage-
sized region that is touched is immediately faulted in and
promoted into a superpage. Across the board, the best per-
formance is achieved at the most aggressive threshold of 1.
However, we find that a less aggressive threshold of 18 can
achieve performance very close to the optimal performance.
In fact, for PostgreSQL and MySQL, where we see densely
accessed regions, a relatively conservative threshold of 27
gives us 100% and 85% of the maximum possible performance
gains respectively. In contrast, for Clang the performance gains
at threshold 18 is double the gains at threshold 27 because
Clang’s access to superpage regions is relatively spread out.

In addition, we find that improving instruction address trans-
lation performance is beneficial for data address translation, as
the STLB is shared between code and data. Figure 4 shows
the normalized cycles spent on instruction and data page table
walk at threshold 18. Instruction page table walk cycles goes
down as low as only 2% of stock FreeBSD; data page table
walk cycles also decrease to as low as 50% of stock FreeBSD.

0

20

40

60

80

100

120

140

160

0 3 5 7 8 9 11 12 14 21 27

C
yc

le
s

(b
ill

io
n

)

of Superpages Promoted

Data page table walk

Inst page table walk

Inst address translation/ITLB stall

Fig. 5. Clang TLB performance with incrementally more aggressive code
superpage promotion

0

100

200

300

400

500

600

700

0 5 7 8 9 20
C

yc
le

s
(b

ill
io

n
)

of Superpages Promoted

 Data page table walk

 Inst page table walk

 Inst address translation/ITLB stall

Fig. 6. MySQL TLB performance with incrementally more aggressive code
superpage promotion

We present more detailed trend lines for Clang and MySQL.
These two applications are particularly interesting because
they can use more than 8 superpages for their respective main
executable, exceeding the capacity for 2MB entries in the L1
ITLB (Table I).

Figures 5 and 6 show the way TLB performance changes as
we get more aggressive in creating superpages. Each data point
corresponds to an upward step in Figure 1. It is clear that both
instruction and data page table walk cycles keep decreasing
as we increase the number of superpages. The reduction rates
gradually drop, reflecting a diminishing margin of return. We
note that being more aggressive in code superpage promotion
costs little to no extra memory for two reasons.

• When aggressively promoting reservations, the nearly
fully populated reservations require only a small number
of extra code pages to be brought into memory. In fact,
MySQL needs only 5.6% more 4KB pages (or 1,152KB
in absolute terms) over FreeBSD’s default policy to
achieve 85% of the best possible gains in performance.

• The use of superpages saves page table memory since an
entire 4KB leaf-level page table is replaced by a single
upper-level PTE. This saving scales up with the number
of processes.

More interestingly, there is an anomaly in the cycles spent
on instruction address translation. The instruction address
translation cycles in both applications actually hit optimal
value at a small number of aggressively promoted super-

6

0% 10% 20% 30% 40% 50%

Clang

PostgreSQL

Javac

Derby

Node.js

MySQL

% of Instruction Address Translation Cycles

Fig. 7. Percentage of instruction address translation cycles spent on instruction
page table walk (stock FreeBSD)

pages. As the number of superpages increases beyond that
optimal point, ITLB performance regresses. This is because
the ITLB has only 8 2MB entries per thread (Table I).
When the number of ITLB entries increases, contention for
2MB slots in the ITLB goes up. Eventually the diminishing
returns from more instruction STLB hits is overshadowed
by the increasing cost of servicing ITLB misses. Note that
despite this performance regression on the ITLB side, overall
execution cycles don’t necessarily deteriorate. In particular,
both Clang’s and MySQL’s overall performance (as shown in
Figure 3) keeps improving even as ITLB performance starts to
worsen, thanks to the fact that the second-level TLB is shared
between instruction and data. A reduction in the number of
ITLB entries frees up slots in the STLB for the data side.
Performance gains on the DTLB side then make up for the
loss in the ITLB. In conclusion, increasing the number of code
superpages will most likely net us an overall performance gain
due to reduced contention in the STLB.

Finally, we note that the heterogeneous structure of the
ITLB that is the root cause of this anomaly in instruction
address translation cycles is an artifact of Intel’s microarchitec-
ture. In particular, AMD’s ITLB does not distinguish between
4KB and 2MB entries [34].

A. Cost within the TLB

A closer look at Figure 5 reveals that instruction address
translation cycles can be huge relative to page table walk
for instruction access. When we have 0 resident superpages
for Clang, instruction address translation cycles is 5.8 times
instruction page walk cycles. When we adopt the most ag-
gressive superpage promotion scheme, that ratio increases to
29.3. The large ratios suggest that page table walk is not the
predominant cost in some cases. Figure 7 more comprehen-
sively illustrates this point. We find that in most cases, page
table walk is less than 30% of instruction address translation
cycles.

More interestingly, we find that the end-to-end cost of an
ITLB miss can be substantially higher than the 7-cycle cost of
hitting in the STLB, as claimed by Intel’s documentation [12].
In fact, when we multiply the number of ITLB misses by
7, the result does not even come close to accounting for
the gap between ITLB stalls and instruction page table walk
cycles. As it turns out, an in-flight instruction can hold onto

its corresponding ITLB entry and prevent an STLB hit that
needs to replace the held-onto ITLB entry from progressing.
As a result, the cost of an ITLB miss increases.

We designed a microbenchmark as an extreme to show how
much the ITLB replacement cost can potentially increase in
a filled pipeline. Essentially, the benchmark program tries to
repeatedly stream through a set of 2MB executable mappings.
The main program is made of trivial functions that do nothing
but increment a local variable and call the next trivial function
(with the last one calling the first one and forming a recursion).
The functions are mapped into different but back-to-back
superpages. As a result, the number of 2MB code mappings is
the same as the number of distinct trivial functions. We made
sure that within their respective superpages, the functions
start at incrementally higher offsets such that collectively the
functions would fully fit in the cache.

When the number of distinct functions increases from 8
to 9, we exceed the L1 ITLB’s capacity for 2MB entries
(Table I). As a result, instruction address translation overhead
increases from virtually 0% of execution time to more than
70%, slowing down overall execution to take 5X more cycles
to complete. In the case of 9 2MB mappings (or functions),
virtually 100% of the ITLB misses still hit in the STLB. Yet,
we calculated the average cost of an ITLB miss to be 28.7
cycles with 9 superpages. Assuming the best-case 7-cycle cost
of hitting in the STLB, there would be an average stall of
nearly 22 cycles in the ITLB for a replacement to occur.

VI. RESIDUAL MAPPINGS

In this section, we discuss two techniques that deal with
situations when a code region is not an integer multiple of the
superpage size. Padding deals with the residual code region
when code size is not an integer multiple of the superpage
size (as is dominantly the case). Page table sharing deals with
shared libraries, which are usually too small to justify the use
of superpages.

A. Padding

Code size is rarely an integer multiple of the superpage size.
Consequently, executables typically have a residual region at
the end that is too small to be mapped using superpages.
For example, the residual region of PostgreSQL’s code is
500 pages, sufficiently large to be problematic. Specifically,
the number of 4KB page mappings in PostgresSQL’s residual
region by itself exceeds the 128 4KB entries in the ITLB,
so accesses to more than a quarter of these pages will
result in 4KB page mappings spilling into the STLB, perhaps
displacing 2MB page mappings for data.

We propose instead to use “padding” in order to allow the
residual code region to be converted into a superpage. There
are two main ways in which “padding” can be achieved.

• The first one is to modify the linker script so that
the linker bloats the executable segment up to the next
superpage boundary, and then updates the program header
to reflect the padding. In this method, the linker is
actually filling extra content (e.g. sequences of no-ops)

7

into the executable file. When the image activator loads
the program, it will be instructed by the updated program
header to end the executable mapping at a superpage
boundary. Since the ”padding” is backed by actual file
content, this method requires no kernel modification.

• Alternatively, the kernel can automatically extend the
executable mapping up to the next superpage boundary,
back it with a physical reservation, and then fill in the
gap following residual code with no-ops or zeros. This
method requires no linker modification.

We implement the approach where the kernel transparently
and automatically handles the padding. In order to reduce
the memory consumed by padding, our implementation uses
the pages that come after the executable segment (the data
segment) in the executable file to pad out the residual code.
These pages are mapped twice: once within the residual code
superpage (which is read-only by default) and once within
the data segment, where they are mapped copy-on-write by
default. Extending the residual code mapping to the end of
a superpage is made possible because the data segment is
separated from the code by 2MB of unused virtual address
space (Table V).

B. Shared Page Table Pages

Most libraries are not large enough for executable super-
pages to apply. Moreover, common libraries are referenced
across different processes, as described in Section II-B. This
combination of circumstances makes sharing page tables a
perfect fit for libraries for two reasons.

• From the perspective of the MMU, shared PTPs work
just like ordinary PTPs, meaning that they can map code
at base page granularity just as well.

• Shared PTPs can be shared across processes running
different main executables. In the best case, only one copy
of the PTPs mapping a library’s executable code ever
needs to exist in memory. The more processes referencing
the library and using the shared PTPs, the more the
savings in physical memory.

Every active file has an associated vm object [35] that tracks
its resident pages. We attach the shared PTP to the vm object.
When mapping a file, its vm object is looked up and if a
shared PTP already exists in the corresponding vm object, it
is inserted into a process’s higher level entry in the multi-
level page table. An unused and non-reserved bit in the higher
level entry can be used to mark the presence of a lower-level
shared PTP in the page table hierarchy. There are three main
code paths through which PTP sharing happens: page fault
handling, exec-time pre-faulting, and fork().

Although the design is flexible enough to support sharing at
all levels of the page table hierarchy, we share only leaf-level
PTPs in the current implementation due to orders of magnitude
diminishing returns in memory savings and in the ability to
share at higher levels. To make sure that we get maximal usage
of shared PTPs across processes with different address space
layouts, we modified the dynamic linker and the ”exec” family

TABLE V
POSTGRESQL MAIN EXECUTABLE LAYOUT IN VIRTUAL ADDRESS SPACE

Default With in-kernel padding
Region Start End Prot. Start End Prot.
Code 0x400000 0x9f4000 r-x 0x400000 0xa00000 r-x
Data 0xbf4000 0xc00000 rw- 0xbf4000 0xc00000 rw-

 -
 0.10
 0.20
 0.30
 0.40
 0.50
 0.60
 0.70
 0.80
 0.90
 1.00

 Execution
cycles

 Inst page
table walk

cycles

 Data page
table walk

cycles

 Inst address
translation

cycles

 LLC stall
cycles

N
o

rm
al

iz
e

d
 t

o
 S

to
ck

 F
re

e
B

SD

 Superpage Superpage + padding

 Superpage + ptp sharing Superpage + padding + ptp sharing

Fig. 8. PostgreSQL user-space results

of system calls to make sure that mappings for text sections
start at 2MB-aligned virtual addresses. 2 In addition, the shared
PTPs are managed using copy-on-write (COW). A new copy
will be created when the shared PTP is written due to, for
example, COW on the underlying shared physical memory, or
modification to permissions or mapping in the shared PTP.

This scheme is more general than the one described in the
work of Dong et al. [8]: (1) we do not rely on the presence of
a template process that has a set of commonly used libraries
pre-loaded, and (2) we allow sharing on a per-library basis
as opposed to constraining page table sharing to a set of pre-
loaded libraries.

C. Evaluation

We use PostgreSQL for our evaluation, since it is the only
application that heavily accesses its residual code. Node.js
touches only one page in its residual part, while the rest of the
applications do not execute their respective residual code at all.
Moreover, PostgreSQL is a naturally multi-process application
that dynamically links a reasonable number of shared libraries.
We apply shared PTPs on libraries. We pad out the main
executable, and map it with superpages entirely.

Table V presents snapshots of the layout of the PostgreSQL
main executable in its virtual address space before and after
padding is applied. After padding, the executable segment’s
end address of 0x9f4000 is extended up to 0xa00000. As
a result, the executable segment can then be mapped by 3
superpages, avoid hundreds of 4KB mappings.

Figure 8 shows the user-space impact of page table sharing
and padding. For the rest of this section, the numbers presented
are normalized to stock FreeBSD. The four bars with different

2The requirement of 2MB alignment reduces available bits for address
layout randomization (ASLR).

8

 - 20.00 40.00 60.00 80.00 100.00

1

2

3

4

Average cycles per inst page table walk

o

f
P

h
ys

ic
al

 C
o

re
s

With PTP sharing Without PTP sharing

Fig. 9. PostgreSQL average cycles per instruction page table walk with and
without sharing page table (with padding and superpages enabled in both
cases)

shadings under each counter, from left to right, represent four
slightly different configurations. (1) No padding. No page
table sharing. Aggressive promotion leads to 2 superpages in
the main executable. (2) Padding is applied. No page table
sharing. Aggressive promotion leads to 3 superpages in the
main executable. (3) No padding. Page table sharing is applied
on libraries. Aggressive promotion leads to 2 superpages
in the main executable. (4) Padding is applied. Page table
sharing is applied on libraries. Aggressive promotion leads
to 3 superpages in the main executable.

It is clear that the application sees improvement in TLB
performance and overall execution cycles as we pad out the
residual code and map it with superpages. Note that in this
particular case, improvements brought by padding come at no
extra memory consumption since the residual part is only 12
4KB pages short of being a superpage, and so the padding is
backed by the data segment. In fact, since an entire PTP is now
replaced by a single upper-level PTE, we save 4KB worth of
page table memory for each process referencing the residual
code. The more worker processes we run in PostgreSQL, the
greater the savings.

Page table sharing also improves both TLB performance and
overall execution cycles by (1) de-duplicating page table data
in the LLC, thereby reducing LLC contention and incurring
significantly fewer LLC stall cycles; and (2) incurring signifi-
cantly fewer data and instruction page table walk cycles, due
to more LLC hits when there is a walk. Figure 9 demonstrates
the reduced average instruction page table walk cost after we
share page tables. The more cores and worker processes, the
greater the improvement in cycles per walk.

Figure 10 shows the impact of padding and page table
sharing in kernel space. Padding visibly reduces the number of
instructions retired and execution cycles, reflecting less work
for process creation and teardown as we replace the processing
of hundreds of PTEs with just a single upper-level PTE. Page
table sharing has a similar effect in reducing OS work. We
insert entire shared PTPs directly at process creation (instead
of inserting each 4KB mapping individually), and we skip over
shared PTPs during process teardown. The effect is evidenced
by 10.5% fewer OS-space retired instructions, resulting in a

 - 0.20 0.40 0.60 0.80 1.00

 Execution cycles

 # of inst retired

Normalized to Stock FreeBSD

 Superpage + padding + ptp sharing Superpage + ptp sharing

 Superpage + padding Superpage

Fig. 10. PostgreSQL kernel-space results

4.8% reduction in OS-space execution cycles.
The rightmost bars under each counter in Figure 8 show the

result of simultaneously applying padding, page table sharing,
and aggressive superpage promotion. User-space execution cy-
cles reduce by over 18%. As comparison, instruction address
translation cycles accounts for 8.8% of execution cycles on
stock FreeBSD. The 18% reduction in execution cycles is more
than twice that. This observation directly demonstrates the
fact that a 1% improvement in instruction address translation
cycles could be significantly amplified in overall runtime
reduction due to the data side synergistically benefiting from
less contention in the STLB and caches.

VII. RELATED WORK

Superpages To the best of our knowledge, existing research
on superpages often overlooks the code side. Most prior work
is based on Linux, which does not provide automatic and
transparent support for superpage mappings on executable
files. On the data side, Ingens [7] promotes/demotes su-
perpages based both on the number of physically resident
pages and on their access frequency. SmartMD [36] examines
the impact of using superpages on memory deduplication in
virtual environments. Superpages can reduce the effectiveness
of memory deduplication techniques if not carefully used.
SmartMD’s superpage promotion/demotion heuristic is based
on a combination of access frequency and duplication of each
page within a superpage region. Carrefour-LP improves the
performance of superpages in NUMA systems by dynamically
splitting superpages as needed to balance the load across
memory controllers [37]. Illuminator [38] and Gorman et
al. [39] improve the ability to allocate superpages by grouping
pages that are immovable in order to avoid the possibility of
fragmentation. In subsequent work, Gorman et al. [40] provide
APIs for applications to request superpage allocation explicitly
as in libhugetlbfs [41] and evaluate the performance
impact of using superpages. Ausavarungnirun et al. proposed
a new GPU memory manager that allocates contiguous virtual
pages to contiguous physical pages in GPU memory to allow
the use of superpages [42].

Compile-Time Optimizations Ottoni et al. explored the
performance benefits of using superpages on code using

9

libhugetlbfs [9], [41]. They show that mapping the hot
functions into superpages further improves performance of the
server applications tested. Their evaluation uses the Ivy Bridge
processor, which does not support 2MB mappings in the L2
STLB, requiring their judicious use of the 8 2MB mapping L1
ITLB entries for hot functions. Lavaee et al. [10] also explored
the performance improvement of mapping hot functions to
superpages. On their Haswell processor where the L2 STLB
supports 2MB superpages, superpages improve performance
by 1% to 2% across the applications they tested. Our work
shows that despite the L2 STLB support for 2MB superpages,
the problem of performance regression in the L1 ITLB when
code superpages are overused is not entirely eliminated on
Intel processors. The limited capacity for 2MB entries in the
ITLB can still lead to sizeable cumulative end-to-end costs for
missing in the ITLB. Compile-time optimizations that improve
the locality of code should in principle reduce the likelihood
of such interaction, and thus reduce the average cost of ITLB
replacement. Future work can explore the effects of compile-
time optimizations in this regard.

Hardware Techniques to Improve TLB Performance
To improve address translation efficiency, Direct segments
and Redundant Memory Mapping support large segments of
various lengths, each of which can be translated by a single
translation entry [1], [2]. Existing research also improves
address translation performance by leveraging memory con-
tiguity and coalescing page translations [3]–[6].

Sharing Page Tables Previous works have focused on
sharing page tables for applications handling a large amount
of data [43], [44].Dong et al. [8], [45] shares page tables
among Android application processes forked from a template
process called Zygote. In contrast, we implement a general
approach to page table sharing that does not rely on a special
fork model. In principle, our design can be implemented on
any standard Unix system. Moreover, page table sharing is
proposed to be used for address translation deduplication in
next-generation computing systems with ample memory [46].

VIII. CONCLUSIONS

In this paper, we examine the instruction address translation
overhead of six widely used applications, and up to seven
different workloads. It is clear that the overhead of instruction
address translation for a variety of widely used applications is
non-trivial. This overhead increases as the level of parallelism
goes up in modern applications and hardware platforms.

Three techniques help reduce instruction address translation
overhead and therefore reduce overall execution cycles. First,
relaxing the superpage promotion policy for code can reduce
execution cycles by as much as 8.5% compared to stock
FreeBSD. Second, padding the residual part of code out to
a superpage boundary further reduces execution cycles by up
to 4% under a sufficiently relaxed promotion policy. Third, for
small code regions such as small shared libraries, page table
sharing complements superpages by reducing contention over
the entire memory hierarchy and by reducing the cost of page

walks. The three techniques combined reduce execution cycles
by over 18% compared to stock FreeBSD.

Somewhat unexpectedly, improving address translation per-
formance in the first-level instruction TLB can reduce the ad-
dress translation overhead for data accesses. This concomitant
improvement in data address translation is due to the fact that
many modern microarchitectures share the second-level TLB
between instruction and data translations.

Finally, we make two observations about the design of the
instruction TLB. First, future TLB designs should pay atten-
tion to interactions within the pipeline to avoid substantially
increasing the cost of first-level instruction TLB replacement.
Second, a level-one instruction TLB that has separate capacity
for base page entries and superpage entries can see regression
in its performance when the number of superpages exceeds
the capacity for superpage entries. Fortunately, the regression
can be made up for by reduced pressure on the second-level
shared TLB and all across the memory hierarchy.

ACKNOWLEDGEMENTS

This work was funded in part by National Science Founda-
tion (NSF) Awards CNS-1319353, CNS-1618497, and CNS-
1618588.

REFERENCES

[1] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser. ISCA
’13. New York, NY, USA: ACM, 2013, pp. 237–248. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485943

[2] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant
memory mappings for fast access to large memories,” in Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 66–78. [Online].
Available: http://doi.acm.org/10.1145/2749469.2749471

[3] B. Pham, A. Bhattacharjee, Y. Eckert, and G. Loh, “Increasing tlb reach
by exploiting clustering in page translations,” in High Performance Com-
puter Architecture (HPCA), 2014 IEEE 20th International Symposium
on, Feb 2014, pp. 558–567.

[4] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt:
Coalesced large-reach tlbs,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-45. Washington, DC, USA: IEEE Computer Society, 2012, pp.
258–269. [Online]. Available: https://doi.org/10.1109/MICRO.2012.32

[5] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid tlb coalescing:
Improving tlb translation coverage under diverse fragmented memory
allocations,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), June 2017, pp. 444–456.

[6] Y. Du, M. Zhou, B. R. Childers, and D. M. R. Melhem, “Supporting
superpages in non-contiguous physical memory,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 223–234.

[7] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated
and efficient huge page management with ingens,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). Savannah, GA: USENIX Association, 2016, pp. 705–721. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/kwon

[8] X. Dong, S. Dwarkadas, and A. L. Cox, “Shared address translation
revisited,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16. New York, NY, USA: ACM,
2016, pp. 18:1–18:15. [Online]. Available: http://doi.acm.org/10.1145/
2901318.2901327

[9] G. Ottoni and B. Maher, “Optimizing function placement for large-scale
data-center applications,” in 2017 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), Feb 2017, pp. 233–244.

10

http://doi.acm.org/10.1145/2485922.2485943
http://doi.acm.org/10.1145/2749469.2749471
https://doi.org/10.1109/MICRO.2012.32
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
http://doi.acm.org/10.1145/2901318.2901327
http://doi.acm.org/10.1145/2901318.2901327

[10] R. Lavaee Mashhadi, “Profile-guided memory layout: Theory and prac-
tice,” Ph.D. dissertation, 2018.

[11] “Skylake (client) - Microarchitectures - Intel,” https://en.wikichip.org/
wiki/intel/microarchitectures/skylake (client).

[12] “Using Intel VTune Amplifier XE to tune software on the 6th
generation Intel Core processor family,” 2014, https://software.intel.
com/sites/default/files/managed/dc/3a/Using Intel VTune Amplifier
XE on 6th Generation Intel Core Processors 1.0.pdf.

[13] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver, “Full-system analysis and characterization of
interactive smartphone applications,” in Proceedings of the 2011 IEEE
International Symposium on Workload Characterization, ser. IISWC
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 81–90.
[Online]. Available: http://dx.doi.org/10.1109/IISWC.2011.6114205

[14] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, transparent
operating system support for superpages,” SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 89–104, Dec. 2002. [Online]. Available:
http://doi.acm.org/10.1145/844128.844138

[15] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. M.
Swift, “Performance analysis of the memory management unit under
scale-out workloads,” 2014 IEEE International Symposium on Workload
Characterization (IISWC), pp. 1–12, 2014.

[16] “Haswell - Microarchitectures - Intel,” https://en.wikichip.org/wiki/intel/
microarchitectures/haswell (client).

[17] H. Lu, K. Doshi, R. Seth, and J. Tran, “Using hugetlbfs for mapping
application text regions,” in Linux Symposium, 2006.

[18] “Multi-process architecture,” https://www.chromium.org/developers/
design-documents/multi-process-architecture.

[19] “Multiprocess firefox,” https://developer.mozilla.org/en-US/docs/
Mozilla/Firefox/Multiprocess Firefox.

[20] Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel,
September 2016, vol. 3.

[21] Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel,
April 2018, vol. 3.

[22] “PMCSTAT(8) FreeBSD System Manager’s Manual,” 2018,
https://www.freebsd.org/cgi/man.cgi?query=pmcstat&apropos=0&
sektion=0&manpath=FreeBSD+11.2-RELEASE+and+Ports&arch=
amd64&format=html.

[23] “CPUSET(1) FreeBSD General Commands Manual,” 2018,
https://www.freebsd.org/cgi/man.cgi?query=cpuset&apropos=0&
sektion=0&manpath=FreeBSD+11.2-RELEASE+and+Ports&arch=
amd64&format=html.

[24] “Dhrystone, The Classic Benchmark,” http://www.ct.se/dhrystone/.
[25] “PostgreSQL: The World’S Most Advanced Open Source Relational

Database,” 1996 - 2018, https://www.postgresql.org/.
[26] “pgbench – run a benchmark test on PostgreSQL,” 1996 - 2018, https:

//www.postgresql.org/docs/9.6/static/pgbench.html.
[27] “Openjdk 8,” 2014, http://openjdk.java.net/projects/jdk8/.
[28] “SPECjvm2008,” 1995 - 2008, https://www.spec.org/jvm2008/.
[29] “SPECjvm2008 Benchmarks,” 1995 - 2008, https://www.spec.org/

jvm2008/docs/benchmarks/index.html.
[30] “Node.js,” https://nodejs.org/en/.

[31] “React server-side rendering benchmark,” 2016, https://www.npmjs.com/
package/react-ssr-benchmarks.

[32] “MySQL,” 2018, https://www.mysql.com/.
[33] “MySQL Benchmark Tool,” 2018, https://dev.mysql.com/downloads/

benchmarks.html.
[34] “Software optimization guide for AMD family 17h processors,” 2017,

https://developer.amd.com/wordpress/media/2013/12/55723 SOG
Fam 17h Processors 3.00.pdf.

[35] M. K. McKusick, G. Neville-Neil, and R. N. Watson, The Design and
Implementation of the FreeBSD Operating System, 2nd ed. Addison-
Wesley Professional, 2014.

[36] F. Guo, Y. Li, Y. Xu, S. Jiang, and J. C. S. Lui, “Smartmd: A
high performance deduplication engine with mixed pages,” in 2017
USENIX Annual Technical Conference (USENIX ATC 17). Santa
Clara, CA: USENIX Association, 2017, pp. 733–744. [Online].
Available: https://www.usenix.org/conference/atc17/technical-sessions/
presentation/guo-fan

[37] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova, and
V. Quema, “Large pages may be harmful on NUMA systems,” in 2014
USENIX Annual Technical Conference (USENIX ATC 14). Philadelphia,
PA: USENIX Association, 2014, pp. 231–242. [Online]. Available: https:
//www.usenix.org/conference/atc14/technical-sessions/presentation/gaud

[38] A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages actually
useful,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18. New York, NY, USA: ACM, 2018, pp. 679–
692. [Online]. Available: http://doi.acm.org/10.1145/3173162.3173203

[39] M. Gorman and P. Healy, “Supporting superpage allocation without
additional hardware support,” in Proceedings of the 7th International
Symposium on Memory Management, ser. ISMM ’08. New York,
NY, USA: ACM, 2008, pp. 41–50. [Online]. Available: http:
//doi.acm.org/10.1145/1375634.1375641

[40] ——, “Performance characteristics of explicit superpage support,” in
WIOSCA 2010 - Sixth Annual Workshorp on the Interaction between
Operating Systems and Computer Architecture, 01 2012.

[41] “Huge Pages/libhugetlbfs: 2010,” 2010, https://lwn.net/Articles/374424/.
[42] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi,

C. J. Rossbach, and O. Mutlu, “Mosaic: A gpu memory manager
with application-transparent support for multiple page sizes,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA:
ACM, 2017, pp. 136–150. [Online]. Available: http://doi.acm.org/10.
1145/3123939.3123975

[43] J. Mauro and R. McDougall, Solaris Internals (2Nd Edition). Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2006.

[44] D. McCracken, “Sharing page tables in the linux kernel,” in Linux
Symposium, 2003, p. 315.

[45] X. Dong, S. Dwarkadas, and A. L. Cox, “Characterization of shared
library access patterns of android applications,” in 2015 IEEE Inter-
national Symposium on Workload Characterization, poster paper, Oct
2015, pp. 112–113.

[46] M. M. Swift, “Draft : Towards o(1) memory,” 2017.

11

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://software.intel.com/sites/default/files/managed/dc/3a/Using_Intel_VTune_Amplifier_XE_on_6th_Generation_Intel_Core_Processors_1.0.pdf
https://software.intel.com/sites/default/files/managed/dc/3a/Using_Intel_VTune_Amplifier_XE_on_6th_Generation_Intel_Core_Processors_1.0.pdf
https://software.intel.com/sites/default/files/managed/dc/3a/Using_Intel_VTune_Amplifier_XE_on_6th_Generation_Intel_Core_Processors_1.0.pdf
http://dx.doi.org/10.1109/IISWC.2011.6114205
http://doi.acm.org/10.1145/844128.844138
https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)
https://www.chromium.org/developers/design-documents/multi-process-architecture
https://www.chromium.org/developers/design-documents/multi-process-architecture
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Multiprocess_Firefox
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Multiprocess_Firefox
https://www.freebsd.org/cgi/man.cgi?query=pmcstat&apropos=0&sektion=0&manpath=FreeBSD+11.2-RELEASE+and+Ports&arch=amd64&format=html
https://www.freebsd.org/cgi/man.cgi?query=pmcstat&apropos=0&sektion=0&manpath=FreeBSD+11.2-RELEASE+and+Ports&arch=amd64&format=html
https://www.freebsd.org/cgi/man.cgi?query=pmcstat&apropos=0&sektion=0&manpath=FreeBSD+11.2-RELEASE+and+Ports&arch=amd64&format=html
https://www.freebsd.org/cgi/man.cgi?query=cpuset&apropos=0&sektion=0&manpath=FreeBSD+11.2-RELEASE+and+Ports&arch=amd64&format=html
https://www.freebsd.org/cgi/man.cgi?query=cpuset&apropos=0&sektion=0&manpath=FreeBSD+11.2-RELEASE+and+Ports&arch=amd64&format=html
https://www.freebsd.org/cgi/man.cgi?query=cpuset&apropos=0&sektion=0&manpath=FreeBSD+11.2-RELEASE+and+Ports&arch=amd64&format=html
http://www.ct.se/dhrystone/
https://www.postgresql.org/
https://www.postgresql.org/docs/9.6/static/pgbench.html
https://www.postgresql.org/docs/9.6/static/pgbench.html
http://openjdk.java.net/projects/jdk8/
https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/docs/benchmarks/index.html
https://www.spec.org/jvm2008/docs/benchmarks/index.html
https://nodejs.org/en/
https://www.npmjs.com/package/react-ssr-benchmarks
https://www.npmjs.com/package/react-ssr-benchmarks
https://www.mysql.com/
https://dev.mysql.com/downloads/benchmarks.html
https://dev.mysql.com/downloads/benchmarks.html
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://www.usenix.org/conference/atc17/technical-sessions/presentation/guo-fan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/guo-fan
https://www.usenix.org/conference/atc14/technical-sessions/presentation/gaud
https://www.usenix.org/conference/atc14/technical-sessions/presentation/gaud
http://doi.acm.org/10.1145/3173162.3173203
http://doi.acm.org/10.1145/1375634.1375641
http://doi.acm.org/10.1145/1375634.1375641
https://lwn.net/Articles/374424/
http://doi.acm.org/10.1145/3123939.3123975
http://doi.acm.org/10.1145/3123939.3123975

	Introduction
	Background
	Superpage Support for Instructions
	Support for Sharing Instruction Page Tables

	Evaluation Framework
	Instruction Address Space and Translation Overhead Analysis
	Automatic Superpage Promotion for Instructions
	Cost within the TLB

	Residual Mappings
	Padding
	Shared Page Table Pages
	Evaluation

	Related Work
	Conclusions
	References

