
Improving Support for Locality and Fine­Grain Sharing
in Chip Multiprocessors∗

Hemayet Hossain, Sandhya Dwarkadas, and Michael C. Huang
University of Rochester

{hossain@cs, sandhya@cs, huang@ece}.rochester.edu

ABSTRACT

Both commercial and scientific workloads benefit from concur-

rency and exhibit data sharing across threads/processes. The re-

sulting sharing patterns are often fine-grain, with the modified

cache lines still residing in the writer’s primary cache when ac-

cessed. Chip multiprocessors present an opportunity to optimize for

fine-grain sharing using direct access to remote processor compo-

nents through low-latency on-chip interconnects. In this paper, we

present Adaptive Replication, Migration, and producer-Consumer

Optimization (ARMCO), a coherence protocol that, to the best of

our knowledge, is the first to exploit direct access to the L1 caches

of remote processors (rather than via coherence mechanisms) in

order to support fine-grain sharing.

Our goal is to provide support for tightly coupled sharing by

recognizing and adapting to common sharing patterns such as mi-

gratory, producer-consumer, multiple-reader, and multiple read-

write. The protocol places data close to where it is most needed and

leverages direct access when following conventional coherence ac-

tions proves wasteful. Via targeted optimizations for each of these

access patterns, our proposed protocol is able to reduce the av-

erage access latency and increase the effective cache capacity at

the L1 level with on-chip storage overhead as low as 0.38%. Full-

system simulations of 16-processor CMPs show an average (geo-

metric mean) speedup of 1.13 (ranging from 1.04 to 2.26) for 12

commercial, scientific, and mining workloads, with an average of

1.18 if we include 2 microbenchmarks. ARMCO also reduces the

on-chip bandwidth requirements and dynamic energy (power) con-

sumption by an average of 33.3% and 31.2% (20.2%) respectively.

By evaluating optimizations at both the L1 and the L2 level, we

demonstrate that when considering performance, optimization at

the L1 level is more effective at supporting fine-grain sharing than

that at the L2 level.

Categories and Subject Descriptors: B.3.2 [Memory Structures]:

∗This work was supported in part by NSF grants CCF-0702505,
CNS-0411127, CNS-0615139, CNS-0719790, CCF-0747324, and CNS-
0509270; NIH grants 5 R21 GM079259-02 and 1 R21 HG004648-01; and
an IBM Faculty Partnership Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’08, October 25–29, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-282-5/08/10 ...$5.00.

Design Styles—Cache memories; Shared memory C.1.2 [Proces­
sor Architectures]: Parallel processors

General Terms: Design, Performance

Keywords: Cache Coherence, Chip Multiprocessors, Fine­Grain
Sharing, L1­to­L1 Direct Access, ARMCO

1. INTRODUCTION
CMOS scaling trends allow increasing numbers of transistors

on a chip. In order to take advantage of the trend while staying
within power budgets, processor designers are increasingly turn­
ing toward multi­core architectures — often chip multiprocessors
(CMPs) of simultaneous multithreaded (SMT) cores [21, 26, 27].
While these initial multi­core efforts provide a limited number of
cores and contexts, future processors would allow hundreds of si­
multaneously executing threads [31, 32]. If this computing power
is to be applied to conventional workloads, previously sequential
applications will need to be rewritten as fine­grain parallel code.
To support such fine­grain code, it will be increasingly impera­
tive to devote chip real estate to mechanisms that facilitate data
communication and synchronization.

Several recent proposals [4, 6, 8, 37] have examined enhance­
ments to a non­uniform level­2 (L2) cache architecture both for
improved locality and sharing. Victim replication [37] proposes a
shared L2 cache (distributed among the tiles of a CMP) as the base
design but replicates lines evicted from the level­1 (L1) to the local
L2 bank. Private L2 tags and shared data is another option used
in CMP­NuRAPID [8]. Their design replicates data based on ap­
plication access patterns, i.e., repeated accesses to the same cache
line by a processor result in a replica in the closest cache bank.
They also use in­situ communication for read­write shared data by
pinning down the cache line at one location when this access pat­
tern is detected. Adaptive selective replication [4] improves on the
above protocol by controlling replication based on a cost/benefit
analysis of increased misses versus reduced hit latency. Cooper­
ative caching [6] starts with private L2 banks as the base design
and attempts to increase the effective capacity by cooperatively
keeping cache lines in other cores’ L2s. However, all of these
efforts require communication through the L1­L2 hierarchy in the
presence of fine­grain communication.

Prior research [7, 13, 18, 19, 29, 33] has also demonstrated the
benefits of protocols that can detect and adapt to an application’s
sharing patterns for specific cache lines. Chip multiprocessors
present an additional unique opportunity for direct access to remote
processor components through low­latency on­chip interconnects.
In this paper, we explore direct access to the L1 caches of remote
processors (rather than via coherence mechanisms). Similar to

most of the L2­level proposals, we use a non­uniform­shared L2
(L2S) as our base design point in order to maximize capacity. Our
goal is to provide support for tightly coupled sharing by recog­
nizing and adapting to common sharing patterns such as migra­
tory, producer­consumer, multiple reader, and multiple read­write,
while at the same time addressing locality and capacity issues.

We present Adaptive Replication, Migration, and producer­
Consumer Optimization (ARMCO), a protocol that adaptively op­
timizes data communication for migratory, producer­consumer,
multiple­readers, multiple­writers, and false­shared data via hard­
ware mechanisms. ARMCO uses a predictor table at the L1 level to
predict the closest L1 containing the requested cache line, thereby
reducing expensive L2 data accesses by getting the data directly
from the predicted L1. Last reader and last writer ID tags per
L1D cache line help determine the access pattern of the cache line.
This information is used by the controller in determining the action
that will minimize overall communication in the critical path of
the application. One new state, migratory (MG), is added to the
base MSI/MESI protocol to switch between migrate­on­read and
replicate­on­read. The use of distributed logic and low storage
overhead (0.38% of on­chip storage bits for our design) allows
ARMCO to scale as the number of cores is increased.

In summary, the contributions of ARMCO are:

• high accuracy in predicting adjacent L1 for missed shared
data with low storage overhead (0.38% of on­chip storage
bits).

• lower latency, reduced bandwidth requirements, and reduced
on­chip energy (and power) consumption in the memory
hierarchy due to improved locality of access.

• adaptive detection of migratory, producer­consumer, multi­
ple readers, and multiple writers data.

• adaptive switching between migrate­on­read and replicate­
on­read for migratory and non­migratory data.

• in­place writes for multiple writer/false­write­shared data.

Our results on a 16­core CMP with 64KB L1 split­cache
and 16MB L2 cache (in 16 different banks) show performance
speedup over L2S ranging from 1.04 to 2.26. For the 12 commer­
cial [12, 16], scientific [35], mining [5], and branch­and­bound
benchmarks, average (geometric mean) speedup of ARMCO is
1.13 (1.18 including the 2 micro benchmarks) over L2S. ARMCO
is able to reduce interconnect network packets by 33.3% on av­
erage, dynamic energy consumption in the on­chip memory hi­
erarchy by 31.2% (and dynamic power consumption by 20.2%),
and shows better scalability than the base L2S. We also compare
ARMCO to one example adaptive protocol at the L2 level — victim
replication [37]. Our results demonstrate that when considering
performance, optimization at the L1 level shows better promise in
supporting fine­grain sharing than that at the L2 level.

2. DESIGN OVERVIEW

Caches are very effective at exploiting memory access locality.
However, latency and capacity tradeoffs, in addition to active shar­
ing among processors or cores, limit their effectiveness. Figure 1
presents a high­level view of the multicore architecture we base our
design on. Our baseline platform is a CMP with distributed nodes
interconnected by a general­purpose network. Each node contains
a processor core, a private L1 (both I and D) cache, and a slice of

the globally­shared L2 cache. The L1 caches are dual­ported in
order to reduce interference with the processor­L1 path for both
L2S and ARMCO. Coherence at the L1 level is maintained using
an invalidation­based protocol. Directory entries are maintained at
the corresponding L2 bank. The baseline depicted (and represen­
tative of our implementation) uses a switched mesh interconnect,
although other interconnects are also possible. Caches communi­
cate with the memory controller using a hierarchy of switches.

Block
0,2

Block
0,3

Block
0,0

Block
0,1

Block
2,0

Block
2,1

Block
2,2

Block
2,3

Block
3,0

Block
3,1

Block
3,2

Block
3,3

Block
1,1

Block
1,2

Block
1,3

North

E
a
st

W
es

t

South

M
em

 C
o
n

tro
ller

S
W

IT
C

H

LW op

1,0

LR

Controller
L2 Cache

CPU

Pred. Table L1 Instruction

L1D Tag
L1 Cache
Controller L1I Tag

local

Tag Entry

V Tag+State P P L C
op

L2 Tag

Shared L2 Slice

L2 Data

Block

L1 Data

Figure 1. Schematic of the underlying CMP architecture depicting a

processor with 16 cores.

As can be seen from the layout, the L1 caches of neighbor­
ing processors are sometimes closer and have lower access la­
tency than a potentially remote slice of the L2 cache to which
a particular cache line maps. We propose to take advantage of
the proximity and direct access to L1 caches in order to provide
low­latency fine­grain communication among processes. Direct
L1­to­L1 communication uses the same interconnect as the L1­to­
L2 communication, thereby avoiding any additional penalties or
overheads associated with separate links and avoiding interference
with the processor­to­L1 path.

ARMCO leverages direct access to the remote L1s to facili­
tate low­latency fine­grain communications among simultaneously
executing processes. Several access patterns are recognized, pre­
dicted, and optimized for:

• Producer­consumer: This type of access pattern usually in­
volves a single producer with one or more consumers. Tradi­
tional directory­based protocols require communication via
the directory in order to bring a copy of the cache line into
the local L1 cache. Subsequent invalidation by the producer
also requires a trip through the directory. ARMCO avoids
the expensive 3­hop access through the directory by directly
accessing the remote L1 and avoiding making a copy.

• Migratory: Data elements such as reduction variables are of­
ten accessed with a unique pattern. The data is read and then
modified in quick succession. In the common invalidation­
based protocols, this often means that the accessing proces­
sor initiates two separate requests (resulting in accessing the
remotely modified copy twice) to obtain first read and then
write permission. ARMCO recognizes the migratory pat­
tern in a manner similar to that in [13,33], thereby avoiding
the multiple remote accesses.

• Multiple read/write: This type of data is possible in appli­
cations where the logical organization of the data structures
and the natural parallelization strategy are in conflict, re­
sulting in temporary false sharing. In a normal coherence
protocol, the cache line bounces between L1 caches, each
time requiring a trip to the L2/directory in order to maintain

coherence. ARMCO avoids this ping-pong by reading and
writing the data in place.

• Multiple reader: For data that is read without modification
by multiple processors, ARMCO defaults to the underlying
coherence behavior of replication but with faster cache­line
availability from close­by L1s via location prediction.

In order to identify the sharing patterns and locate copies of
the cache lines in remote processors, ARMCO utilizes prediction
mechanisms at the local L1 along with extensions to the cache
line tag to capture its access behavior. To minimize intrusion,
the added logic is off the L1 cache’s critical cache­hit path and
only affects how a miss is handled. In the following section, we
describe the details of the on­chip memory hierarchy design that
facilitates low­latency fine­grain communication among simulta­
neously executing threads/processes.

3. PROTOCOL AND ARCHITECTURAL

SUPPORT

3.1 ARMCO Predictor and Tag Structures

In order to predict data location and type of access pattern,
ARMCO uses the following structures and states along with tradi­
tional cache structures to track the accesses from different proces­
sors to guide the decision of data migration or replication:

• Access History Tags: 2 × log2(P)­bits are used to track the
last reader (PLR) and the last writer (PLW) of the corre­
sponding cache line, with P being the number of processors
in the CMP. A single bit (Lop) is used to indicate whether the
last access is a read or a write. Finally, whenever the local
processor accesses the cache line consecutively without an
intervening access from another processor, we set a Cop bit.
This bit is preserved in the predictor table (see below) when
the line is evicted and is used in order to decide whether to
perform in­place access or request a full cache line from a
neighbor.

• Migratory State: Inspired by the techniques proposed
by [13, 33], we add one additional state, called Migratory
state (MG), to the base MSI coherence protocol for L1 caches
(for a total of four stable states) to keep track of whether the
cache line is in migratory state. We use the access history
tags to adapt in and out of migratory state.

• Predictor Table: Each processor has a predictor table to
identify a potential remote L1 with a cached copy of the line
in case of a miss at the local L1. Each predictor entry has a
valid bit, cache­line tag bits, log2(P)­bits for remote L1 id,
and the same Cop bit as in the access history tag in the L1
cache.

3.2 ARMCO Protocol Actions

ARMCO state transition diagram: Table 1 shows the state
transitions at the L1 level for the ARMCO protocol. The subse­
quent subsections describe the details for choosing different ac­
tions on different situations.

Local L1 cache hit: On a local L1 data cache look­up by the
processor, the cache tag and the predictor table are looked up in
parallel. A read or write hit in the L1 cache (whether by the local
or a remote processor) results in the last reader or writer field (PLR

or PLW) being updated accordingly.

Request State Pred. Cache InPlace Migra- Next
Table Message Rd/Wr tion State

LD(ST) I Miss Req to Dir/L2 - - S(M)
LD(ST) I Hit L1-L1 LD(ST) N N S(M)
LD(ST) I Hit L1-L1 LD(ST) Y N I
LD(ST) I Hit L1-L1 LD(ST) N Y MG

LD S - - - - S
ST S - Req to Dir/L2 - N(Y) M(MG)

LD or ST M/MG - - - - M/MG
L1-L1 LD(ST) I - Fwd to Dir/L2 - - I

L1-L1 LD S - Data - - S
L1-L1 ST S - Fwd to Dir/L2 - - S
L1-L1 LD M/MG - Data N(Y) N S(M)
L1-L1 LD M/MG - Data N Y I
L1-L1 ST M/MG - Data N - I
L1-L1 ST M/MG - InPlaceWr Y N M

INV S/M/MG - - - - I
Downgrade M/MG - - - - S

Table 1. State transition table at the L1 level for ARMCO. ‘­’ indicates

invalid or don’t care. InPlace Rd/Wr and Migration can never be Y at

the same time. LD(ST) are load (store) requests at the local L1 cache

and L1­L1 LD(ST) are L1­to­L1 requests from the predicting L1 to the

predicted L1 due to a hit in the predictor table on a cache miss. Data

(response) might be full cache line if InPlace is N or required bytes

(atmost 8B) if InPlace is Y.

Local L1 cache miss; predictor table miss: If no match is
found either in the tag or the predictor table or the requested
address is mapped to the local L2 cache bank, the request is sent
to the associated L2 cache bank.

Local L1 cache miss; predictor table hit: An L1 cache miss
(with the address mapped to a non­local L2 cache bank) with a hit
in the predictor table results in a request being sent to the predicted
remote L1 cache. An incorrect prediction will result in the request
being forwarded to the proper L2 bank. Actions on a correct
location prediction are a function of the access pattern.

3.3 Recognizing and Handling Access Patterns

The last reader/writer (PLR, PLW), last access (Lop) and mul­
tiple access (Cop) fields along with the additional stable state per
cache line are used for access pattern identification. We first focus
on cache lines that are in modified state in some L1 cache. To fa­
cilitate access pattern tracking, the directory forwards a read/write
request from another processor to the current owner. The owner,
with access pattern information, will handle the request in the most
appropriate way and notify the directory for proper bookkeeping
— when it can. When it cannot service the request, such as when
the ownership is being or has been transferred to another processor
or back to the directory, the request is forwarded to the directory
on behalf of the requester as a regular request. No negative ac­
knowledgment is used in communications.

Migratory data: When a remote access (say from P2) arrives
at an L1 (say at P1) for a cache line in modified state (M), PLR

and PLW are looked up. A writer that finds a matching PLR

(=P2) indicates the start of migratory behavior. A reader that finds
a matching PLW with owner(=P1) in cache state MG indicates
the continuation of migratory behavior. We supply the cache line
and the tracking tags (PLR, PLW , and Lop) to the requester (P2)
and invalidate the line from the original owner (P1’s cache). This
allows us to quickly supply the data and exclusive permission (in
MG state) to the next requester (say P3) upon only a read request.
In the steady state, migration takes only one transaction between
successive owners.

In some cases, when the requester P2 reads more than once
before writing to the data, the cache controller of the current owner
(P1) will transfer the cache line to P2 upon the second read request
and therefore will not detect the migratory access pattern. Here,
we use the help of the directory. When P2 sends an upgrade request
for exclusive access, if there is only one other sharer to invalidate,
the directory piggybacks the ID of that sharer. If this ID matches
with PLW at P2, then the cache line starts migratory behavior and
the state is set to MG rather than M .

Since the migratory state is “sticky”, if the data is no longer
accessed in a migratory pattern, we need to revert the line back to
normal (shared). If a migratory cache line is requested by another
processor before the current owner had a chance to write to it, then
the line loses the migratory property and is downgraded to a shared
line or invalidated depending on whether the remote request is a
read or a write. In the migratory state, PLW is used to determine
whether the current owner actually modified the cache line. In
our design, the directory does not make the distinction between
migratory and modified cache lines. When a migratory line is
evicted and written back, the migratory state is lost and has to be
re­learned the next time around. Of course, another option would
be to add a stable state in the directory to avoid the relearning.

Multiple Read-Write: When a cache line is being read by some
processors and written to by others in an intermingled manner
(whether due to true communication or false sharing), remote ac­
cess is unavoidable. Sometimes when the accesses from different
processors are finely meshed, bouncing the cache line back and
forth only wastes time and energy. We try to pin down the data
when called for. In general, if the the last reader (PLR) and writer
(PLW) keep switching from one processor to another, we keep
the cache line in the current node and service consumers’ requests
via in­place read and accept in­place writes from other producers.
When one particular remote node generates back­to­back requests
indicating a stronger locality, then the cache line will be transferred
there. For example, upon a read request from a remote processor
(P2), if PLR or PLW is P2, the cache line is replicated at P2.
Two back­to­back writes from P2 will move the ownership to P2

(M state), while a read followed by a write will also switch the
cache line into migratory mode (MG state). If none of the above
conditions are met, the request is serviced in­place, at the current
L1.

With this policy, the first miss is in general serviced via in­place
read or write at a remote node. This would result in two remote
accesses when a processor makes a series of accesses. We attempt
to anticipate such series of accesses and bring in the cache line
upon the first access. This is done with the help of the Cop bit in
the cache and the predictor table. If a processor makes consecutive
accesses to a cache line, the Cop bit of the line will be set in the
cache and copied to the predictor table upon the eviction of the
line. The next time we follow the prediction table to fetch the
same line, if Cop is set, we will avoid an in­place access and issue
a line­fetch request instead.

Multiple reader: With direct access to remote L1 caches, ac­
cess latency may be improved even for read operations. Specifi­
cally, to service a cache miss, we can fetch the cache line from a
nearby L1 cache instead of from the home L2 cache bank. This
can cut down the latency of the cache miss as the directory may
be further away and accessing a slower and physically larger L2
partition can take more cycles than accessing the smaller, faster
L1 cache. The process is illustrated in Figure 2­(a).

Fetching from directory/L2

L2/Dir

Reply

Exclusiv
e

Request

P1

(a) (b)

P 2

Exclusive

A
C

K
 f

or
 P

2
ca

rr
ie

s
In

va
l

P1

Inv ACK2

Reply

Request

Reply

L
2

ac
ce

ss

L
at

en
cy

 r
ed

uc
ed

L1 access

Reply Notification

ACK

Request

ACK

L2/Dir
P2

Request L
1

ac
ce

ss

Notification

ACK

Inv ACK delayed

ACK

Inv ACK1

Inval

Fetching from neighbor L1

Figure 2. Illustration of messages and activities of fetching data from

nearby neighbor, in contrast to fetching from the directory.

Note that if the line is in dirty state, we will generally satisfy a
remote request via an in­place access as discussed earlier. When
the same remote node generates two back­to­back read requests
with no intervening read or write from any other processor, the
entire line will be supplied and the current processor will down­
grade the line to shared state. Table 2 summarizes the conditions
for migration and/or replication in the presence of back­to­back
accesses by the same remote processor.

On the other hand, if the cache line is in shared state in the
current processor, a remote read request would replicate the line
without any hysteresis (i.e., without checking PLR). Note that
an L1 cache that only has a shared copy of a line can not service
a remote write request to that line and treats the request as a
destination misprediction.

Access Note Reaction
RiRi/ Read/Write followed by Replicate line to requester;
WiRi read from same processor downgrade local copy to shared
RiWi Read followed by write: mi-

gratory pattern
Migrate line in MG state; inval-
idate local copy

WiWi Producer i updates more fre-
quently

Transfer line in exclusive (M)
state to i; invalidate local copy

Table 2. Summary of possible options with multiple back­to­back ac­

cesses by the same remote processor to a dirty line where first access

is an in­place access. Ri and Wi stand for read and write access

from the remote processor i, respectively.

3.4 Protocol Implementation Issues

Whenever an L1 cache (of P1) responds to a remote request
(from P2), it is temporarily serving the role of the directory.
Clearly, any change to the ownership and sharer list needs to be
reflected in the directory. This is done by the L1 cache controller
of P1 sending a notification to update the directory (sometimes
with the write­back data). Note that when an in­place read is
performed, the directory generally does not need to be updated,
unless the processor core issues memory operations in a specula­
tive, out­of­order fashion and relies on invalidations to maintain a
restrictive consistency model [36].

When a notification to the directory is sent as a result of an L1­
to­L1 data transfer, the cache line would enter a transient state in
both P1 and P2’s caches – for different reasons – until the directory
acknowledges the notification to both processors.

When P1 supplies a cache line to P2, before the notification
arrives at the directory, it is possible for an independent exclusive

access request to the same cache line from P3 to arrive at the
directory and result in invalidations sent from the directory. To
ensure the directory only replies to P3 after it has also invalidated
P2’s copy, P1 will not respond to the invalidation request until
the directory has processed and acknowledged the notification P1

sent (Figure 2­(b)). On the other hand, for P2, the cache line
is also set to a transient state before P2 receives the directory’s
acknowledgment. While in this transient state, P2 will delay
supplying the cache line to another L1 cache. This is done in order
to achieve ordering with simplicity.

3.5 Predicting Destinations

Clearly, the benefit of direct data access from a remote L1 will
be greatly limited if we need indirection from the directory for
each access. Thus, predicting the location of an L1 cache having
the needed cache line becomes a necessary component. We use
a set­associative predictor table per node to make a best­effort
attempt to track the whereabouts of cache lines. For instance,
when an L1 controller transfers the ownership of a line to another
L1 cache, we remember the destination node as the new location
for that line. Conversely, when an L1 controller receives a cache
line in M or MG state, the entry for that line is invalidated in
the prediction table. Given a directory­based protocol, we have
limited knowledge about data migration happening elsewhere in
the system. Nevertheless, when the L2 directory controller sends
out any request or acknowledgment to an L1 cache, it can always
piggyback the location of the current exclusive owner or the closest
neighbor having a shared copy. This includes:

• When the directory sends a data reply to an L1 controller in
shared mode;

• When the directory sends out invalidation messages;

• When the directory downgrades an L1’s cache line; and

• When the directory sends an acknowledgment of a write­
back, or the acknowledgment of the eviction notification of
a shared line (in systems that do that).

The predictor table is also updated by utilizing the messages
sent between L1 controllers, including:

• Direct L1­to­L1 requests; the predicted processor PPid field
in the predictor table entry is set to the requester if: (1) the
requester is served by giving up ownership, (2) the request
was for exclusive access, or (3) if the requester was served
by a shared copy and the requester is closer than the current
PPid if there is one.

• Predictor table entry invalidation requests; when a cache line
is invalidated or evicted, a predictor table entry invalidation
request is sent to PLR and/or PLW if those are not the local
processor. Seeing this invalidation request, the L1 controller
invalidates the corresponding predictor table entry if PPid

matches the requester.

Of course, the predictor can not always be correct and when
an L1 cache controller sends a request to a node which no longer
has the data, the receiver forwards the request to the directory.
If the protocol supports silent drop of a shared line, then this
forwarded request also implies the absence of the cache line, which
the directory can utilize. Note that we do not need to proactively
notify the requester of the misprediction, as when the directory

replies, updated information about which neighbor has a copy will
be piggybacked. Finally, if the predicted node is far away, the cost
of misprediction is high, especially when the directory is close­by.
Therefore, it is wise to limit such predictions to close­by neighbors.
In this paper, we only consider nodes within 2 hops and do not
predict for a request whose home node is the local L2 slice.

Storage overhead: As discussed in Section 3.1, each processor
needs a predictor table as well as extra bits in the L1 cache lines.
This hardware storage cost is very low. In a 16­processor CMP
(our baseline), each L1 cache line needs 10 extra bits. Each
predictor table entry takes 25 bits, which can be further reduced
by storing only partial cache tags. The number of entries in the
predictor table need not be large. We experimented with a range
of predictor table sizes and associativity and found that a 1024­
entry 8­way associative table provides reasonable performance
while meeting access latency constraints. In our baseline system,
this configuration brings the total storage overhead of ARMCO
to 70 KB, or about 0.38% of the total on­chip cache storage.
The storage overhead is compared with other previous related
proposals [4, 8, 13, 19, 33, 37] in Section 5.9.

4. RELATED WORK
Most previous multi­core cache designs have assumed either a

shared L1 data cache (e.g., SMTs) or L1 caches that are private (and
local) to each individual cluster/core (e.g., CMPs) with coherence
maintained across the L1s at the L2 level. Cache architectures have
been proposed that use non­uniform access latency to reduce the
access time of the L2 cache [9,20] for single­threaded workloads.
More recently, there has been a focus on chip multiprocessor L2
cache designs [4, 6, 8, 37].

Zhang and Asanovic [37] assume an L2 cache that is distributed
among the tiles of a CMP and propose victim replication (VR) at
the L2 level in order to reduce the L1 miss penalty. The entire L2 is
shared among all processors, with replication of the victims from
the primary cache in each local L2 slice. In effect, coherence is
maintained at both L1 and L2 levels. They do not study the effects
on different sharing patterns. In addition, they present only the
effects on memory latency and not the effects on overall perfor­
mance. By consuming multiple L2 cache blocks for a single data
line, VR creates more pressure on the on­chip memory hierarchy.
CMP­NuRAPID [8] identifies the need to address both L1 miss
latency and read­write sharing. Repeated accesses to the same
cache line by a processor result in a replica in the closest cache
bank. Reads and writes by multiple processors to the same cache
line result in “in­situ” communication (an optimization requiring
a write­through L1). Once the “in­situ” access pattern is recog­
nized, the location of the cache line is fixed, resulting in non­ideal
latencies for a processor that might be the dominant accessor in
case of poor placement. Moreover, CMP­NuRAPID also doubles
the L2 tag space required, hindering scalability. Adaptive selec­
tive replication [4] improves on the above protocol by controlling
replication based on a cost/benefit analysis of increased misses
versus reduced hit latency. Cooperative caching [6] borrows con­
cepts from software cooperative caching [2, 15, 34] to effectively
increase the capacity of essentially private caches through con­
trolled cooperation but it suffers a scalability bottleneck due to
the need for a centralized coherence engine. Eisley et al. [14] de­
scribe an in­network coherence protocol that leverages a network­
embedded directory to get data directly from a sharer/owner if
found on the way to the home, thereby reducing access latency.

Set­up/tear­down of the tree, however, can make overall latency
highly variable due to potential deadlock recovery.

The above designs work at the L2 level. While capacity and
access latency issues addressed at the L2 level are an important
problem and better addressed at the L2 level, they are orthogo­
nal and complementary to the design of the L1 cache: the tight
coupling of the L1 with the processor allows for optimizations to
improve fine­grain sharing and synchronization that involve active
read­write sharing. This paper extends our earlier design that ex­
ploits direct access to the L1 cache [17] via a protocol that does
not rely on broadcast or on additional interconnects or ports to the
L1 cache.

There has also been considerable research in adaptive coher­
ence protocols that choose actions (such as invalidation versus
update) based on the sharing patterns observed (e.g., adaptive mi­
gratory sharing [13, 33] or producer­consumer patterns [7]). Our
migratory extensions borrow ideas from the work of Cox and
Fowler [13].

Techniques have also been proposed to predict the coherence
state of a cache block in order to hide the latency of the coherence
mechanism in shared­memory multiprocessor systems [18,19,22,
24, 29]. Mukherjee and Hill [29] used an extension of Yeh and
Patt’s two­level PAp branch predictor to predict the source and type
of the next coherence message by using address­based prediction.
Martin et. al. have proposed destination set prediction, a variant
of multicast snooping, which tries to optimize bandwidth/latency
with respect to broadcast snooping and directory protocols by
being in the middle of these two extreme cases.

Lai and Falsafi [22] used a pattern­based predictor to predict
the next coherence messages. Kaxiras and Goodman [18] pro­
posed instruction­based prediction to reduce the higher overhead
of address­based prediction. Kaxiras and Young [19] explored
the design space of prediction mechanisms in SMP machines for
predicting coherence messages. All these approaches aim to hide
the long latencies of fetching data from a remote cache/memory.
Such predictive mechanisms could be combined with our adap­
tive protocol for improved performance. While instruction­based
prediction was proposed to reduce the higher storage overhead
of address­based predictors, our address­based predictor already
shows low overhead with good performance.

5. PERFORMANCE EVALUATION

5.1 Evaluation Framework

To evaluate ARMCO, we use a Simics­based [23] full­system
execution­driven simulator, which models the SPARC architec­
ture. We use Ruby from the GEMS toolset [25], modified to en­
code ARMCO’s requirements, for cache memory simulation. We
simulate a 16­way chip multiprocessor (CMP) with private split
L1 instruction and data caches and a 16­way banked shared L2 as
the base system for our evaluation. The baseline coherence proto­
col is a non­uniform­shared L2 (L2S) MESI­style directory­based
protocol1 .
1Previous proposals [4, 6, 8, 37] have used both shared and private caches
for comparison purposes. In [8], the performance improvement options for
non-uniform-shared, private, and ideal caches (capacity advantage of shared
cache and latency advantage of private cache) are explored with respect to
a conventional uniform-shared cache. Their results show that non-uniform-
shared and private caches are close to each other with respect to performance
and better than a uniform-shared cache. We therefore use a non-uniform-

shared cache as the baseline for our comparison

Each processor has one L2 bank very close to it. A 4x4 mesh
interconnect is used to connect the 16 L1 controllers, the 16 L2
controllers for the 16 L2 banks, and one memory controller. Each
interconnect switch is connected to the four adjacent switches in
the mesh in addition to the local L1 controller, local L2 controller,
and the memory controller. L1 and the corresponding L2 bank are
directly connected (schematic diagram shown in Figure 1). We use
Cacti 6.0 [30] to derive the access times and energy/power parame­
ters for the predictor table, different levels of caches, and intercon­
nects. We employ virtual cut­through switching for transferring
cache messages through the interconnect. We use GEMS’s [25]
network model for interconnect and switch contention modeling,
using the parameters in Table 3. We encode all stable and tran­
sient states and all required messages for a detailed network model
simulation of ARMCO and L2S using SLICC [25].

16-way CMP, Private L1, Shared L2
Processor cores 16 3.0GHz in-order, single issue, non-memory IPC=1

L1 (I and D) cache each 64KB 2-way, 64-byte blocks, 2-cycle
Predictor table 1K entry 8-way associative

L2 cache 16MB, 16-way unified, 16 banks, 64-byte blocks, Se-
quential tag/data access, 14-cycle

Memory 4GB, 300-cycle latency
Interconnect 4x4 mesh, 4-cycle link latency, 128-bit link width

(sensitivity analysis for 2, 4,and 6 cycles link laten-
cies), virtual cut-through routing

Table 3. Processor, cache/memory, and interconnection parameters

For our evaluation, we use a wide range of benchmarks, which
include commercial, scientific, mining, branch and bound, and
microbenchmarks. In order to demonstrate efficiencies for spe­
cific access patterns, we have developed microbenchmarks with
producer­consumer and migratory access patterns. As commer­
cial workloads, we use the Apache webserver with the surge [3]
request generator and SPECjbb2005. Alameldeen et al. [1]
described these commercial workloads for simulation. As scien­
tific benchmarks, we have a large set of applications and kernels
from the SPLASH2/SPLASH suites [35], which includes Barnes,
Cholesky, FFT, LU, MP3D, Ocean, Radix, and Water. Our bench­
mark suite also includes a graph mining application [5] and a
branch­and­bound based implementation of the non­polynomial
(NP) traveling salesman problem (TSP). All these applications are
thread­based except Apache, which is process­based. Table 4 lists
the problem sizes, access patterns, and L1 miss rates for L2S at 16
processors.

5.2 Estimating Expected Performance Speedup

ARMCO improves performance via several optimizations that
reduce the number of network packets and hops, and thereby the
overall latency. Direct L1 accesses occur for: (1) replication from
shared state, (2) replication from modified state, (3) migration from
modified (M) state, (4) migration from migratory (MG) state, and
(5) in­place­read/write. For each of these scenarios, the ARMCO
cost (latency) is

c = 2 ∗ dR,P(Llink + Lsw) + 4 ∗ Llink + 2 ∗ Lsw + LL1

where dR,P is the distance between the requester (R) and the
predicted processor/owner (P), and Llink , Lsw, and LL1 are the
latencies for the link, switch, and the L1 cache, respectively.

The total benefit can be calculated by the formula

B =
X

i

ni ∗ bi − nmp ∗ Pmp

Benchmark Simulated problem size Major data access pattern
L1 miss

rate (L2S)
Apache 80000 requests fastforward, 2000 warmup, and 3000 for data collection read-shared,read-write-shared 11.2%
SPECjbb2005 350K Tx fastforward, 3000 warmup, and 3000 for data collection read-shared and producer-consumer 7.3%
Barnes 8K particles; run-to-completion single producer-consumer and read-shared 1.9%
Cholesky lshp.0; run-to-completion migratory, read-shared, read-write-shared 1.5%
FFT 64K points; run-to-completion read-shared 3.7%
LU 512x512 matrix,16x16 block; run-to-completion producer-consumer, false-sharing 2.0%
MP3D 40K molecules; 15 parallel steps; warmup 3 steps migratory, read-shared, read-write-shared 16.6%
Ocean 258x258 ocean single producer-consumer 6.9%
Radix 550K 20-bit integers, radix 1024 read-shared, producer-consumer 3.2%
Water 512 molecules; run-to-completion read-shared, migratory 1.3%
GraphMine 340 chemical compounds, 24 different atoms, 66 atom types, and 4

types of bonds; 200M instructions; warmup 300 nodes exploration
migratory and false-sharing 4.3%

TSP 18 city map; run-to-completion false-sharing 13.8%
Migratory 512 exclusive access cache lines migratory 5.2%
Producer-consumer 2K shared cache lines and 8K private cache lines singel producer-multiple consumer 7.1%

Table 4. Problem size, data access patterns, and base miss rates at 16 processors for the benchmarks evaluated.

where ni is number of L1­to­L1 transfers of type i, bi is the
benefit of one L1­to­L1 transfer of type i, and nmp and Pmp

are the number and penalty of mispredictions, respectively. bi is
calculated by subtracting c from the cost of one transaction in L2S
for type i. For example, b for type 1 is

b1 = 2 ∗ (dR,H − dR,P)(Llink + Lsw) + LL2 − LL1

where dR,H is the distance between the requester (R) and the
home L2 bank (H) and LL2 is the access latency of an L2 bank.
Other bi are calculated in a similar manner and will be larger due
to indirection via the home for the L2S protocol. For example,
type 2 will add 2∗dH,P (Llink +Lsw)+4∗Llink +2∗Lsw +LL1

to the benefit b2 in addition to b1. The total cost can be calculated
by

C =
X

i

ni ∗ c

The benefit calculation is conservative in that it does not take
contention in the network into account. The expected improvement
(speedup) in the memory component of the application is thus
Speedupmemory = C+B

C
. Applying Amdahl’s law, we get a

rough estimate of the expected speedup in total execution time for
the application.

5.3 Performance Comparison

Performance: Figure 3 shows the performance of ARMCO
normalized to L2S. We use execution time in terms of processor
cycles required to do the same amount of work as our performance
metric for all the benchmarks. ARMCO outperforms L2S for all
the benchmarks, with speedup ranging from 1.04 to 2.26 having
average (geometric mean) speedup of 1.13 (1.18 with microbench­
marks). For clarity, the normalized performance is plotted with the
Y axis starting at 0.8. Figure 4 shows the timing break­down of
the execution time (once again normalized to L2S). Timings were
collected by instrumenting the workloads (except for Apache and
JBB2005, where we do not separate the synchronization compo­
nent). Note that as expected, the “non­synchronization computa­
tion” portion of time is the same for both ARMCO and L2S (except
for GraphMine, where the use of work­queue style parallelization
makes both warm­up point and exact computation performed non­
deterministic).

Cache access distribution: Figure 5 shows the distribution of
processor data cache accesses among local L1 hits, remote in­place

ARMCO Speedup over L2S

S
p

ee
d

U
p

A
p

a
ch

e

J
B

B

B
a
rn

es

C
h

o
l.

F
F

T

L
U

M
P

3
D

O
ce

a
n

R
a
d

ix

W
a
te

r

G
ra

p
h

T
S

P

M
ig

r.

P
ro

d

0.8

1

1.2

1.4

2.26

Commercial Scientific − SPLASH/SPLASH2 Mine & NP Micro

L2SAvg. SpeedUp (w/o micro)Avg. SpeedUp (with micro)

Figure 3. Performance speedup of ARMCO with respect to L2S (16

threads).

0

10

20

30

40

50

60

70

80

90

100

Relative Memory Hierarchy and Computation Latencies between L2S and ARMCO

R
el

a
ti

v
e

L
a

te
n

cy
 P

er
ce

n
ta

g
e

A
p

a
ch

e

J
B

B

B
a

rn
es

C
h

o
l.

F
F

T

L
U

M
P

3
D

O
ce

a
n

R
a

d
ix

W
a

te
r

G
ra

p
h

T
S

P

M
ig

r.

P
ro

d

Synch.

NS L2−Mem

NS other L1

NS local L1

NS Comp.

MicroMine & NPScientific − SPLASH/SPLASH2Commercial

Figure 4. Timing breakdown among computation, different levels of

the memory hierarchy, and synchronization, normalized to L2S (16

threads). For commercial workloads, we do not distinguish between

synchronization and non­synchronization time. ’Synch’ is all synchro­

nization time spent in both computation and the memory hierarchy.

’NS’ refers to non­synchronization. ’other L1’ refers to time spent in

direct L1­to­L1 transfers.

read/write, remote hits resulting in replication from shared and
modified state, remote hits resulting in migration from modified
and migratory state, and L2 accesses (including L2 misses). The
distribution is normalized to the total number of accesses made
under L2S. The remote hits are from adjacent (with distance at
most 2 hops) processors’ L1 caches rather than L2.

In the breakdown, we see the reflection of the characteristics
of the benchmarks described in Table 4. ARMCO also reduces

40

60

80

100

Relative Cache Access Percentage between L2S and ARMCO

R
el

a
ti

v
e

C
a

ch
e

A
cc

es
s

P
er

ce
n

ta
g

e

A
p

a
ch

e

J
B

B

B
a

rn
es

C
h

o
l.

F
F

T

L
U

M
P

3
D

O
ce

a
n

R
a

d
ix

W
a

te
r

G
ra

p
h

T
S

P

M
ig

r.

P
ro

d

L2−Serv

Migr−M

Migr−MG

Repl−M

Repl−S

InPlaceWr

InPlaceRd

L1−Hit

Commercial Scientific − SPLASH/SPLASH2 Mine & NP Micro

Figure 5. Normalized cache access distribution (16 threads). InPlac­

eRd and InPlaceWr occur at the predicted L1 cache without cache

line allocation at the requester L1. Rep­S and Rep­M refer to re­

mote L1 hits resulting in replication via L1­to­L1 transfers where the

cache line is in shared and modified state respectively. Migr­M and

Migr­MG refer to remote L1 hits resulting in migration via L1­to­L1

transfers where the remote cache line is in modified and migratory

state respectively.

the number of cache accesses. This is a result of several factors,
including reduced contention and wait time (resulting in reduced
synchronization time) in locks and barriers, as well as reduced
amount of operating system code (interrupts, scheduler, daemon
processes, etc.) execution and data access as the benchmark com­
pletes in a shorter amount of time. Figure 6 shows the reduction
in L2 accesses for ARMCO due to direct access to remote L1s.

0

20

40

60

80

100

Relative non−local−L1 Cache Access between L2S and ARMCO

R
el

a
ti

v
e

n
o

n
−

lo
ca

l−
L

1
 C

a
ch

e
A

cc
es

s
P

er
ce

n
ta

g
e

A
p

a
ch

e

J
B

B

B
a

rn
es

C
h

o
l.

F
F

T

L
U

M
P

3
D

O
ce

a
n

R
a

d
ix

W
a

te
r

G
ra

p
h

T
S

P

M
ig

r.

P
ro

d

Migr−M

Migr−MG

Repl−M

Repl−S

InPlaceWr

InPlaceRd

L2−Serv

Commercial Scientific − SPLASH/SPLASH2 Mine & NP Micro

Figure 6. Normalized non­local­L1 cache access distributions (16

threads). Legends are described in the caption of Figure 5.

Using collected statistics on the number and type of direct L1­
to­L1 transfers as well as distance among requester, predicted L1,
and L2 bank, we used the models described in Section 5.2 to
qualitatively verify our results. For example, for the migratory
microbenchmark, the estimated speedup is 2.63 (by using L1­to­
L1 transfer numbers from simulation), which correlates well with
our experimental speedup results. The large reduction in synchro­
nization overhead as a result of reducing contention and wait time,

as well as the migratory optimizations, contribute to the high per­
formance gain. For the Producer­consumer microbenchmark, we
see a 12.4% performance improvement for ARMCO over L2S due
to correctly predicting the ID of the producer, resulting in lower
latency accesses by the consumers.

From [4], 44% of Apache’s accesses are to read­shared cache
lines and another 44% are to read­write­shared cache lines. Sim­
ilarly, 42% of SpecJBB2005’s accesses are to read­shared cache
lines. Our JBB2005 version uses a concurrent thread­safe back­
end. Hence a substantial portion of the accesses are in read­
write­shared mode. We see the reflection of this characteristic
in Figure 6 where more than 25% of the L1 misses are satis­
fied through L1­to­L1 accesses, of which the larger fraction is
from modified/migratory state for Apache, and 45% of the L1
misses are satisfied through L1­to­L1 transfers from shared state
for SpecJBB2005, resulting in 9.5% improvement for Apache and
12% improvement for JBB.

In all cases, the data used for synchronization exhibits a mi­
gratory pattern, which is correctly recognized and handled by
ARMCO. GraphMine also has a significant number of accesses
exhibiting a migratory pattern, which is correctly recognized and
optimized, resulting in 35.3% improvement. The synchronization­
like behavior of GraphMine results in a substantial migratory pat­
tern. In the case of TSP, there is little data sharing. However, there
are a few falsely shared but heavily accessed cache lines and some
data accessed in a migratory fashion. Via in­place read/write for
the former and the migratory optimization for the latter, ARMCO
is able to achieve a 12.4% performance improvement. MP3D has
a lot of migratory, read­write­shared, as well as read­shared ac­
cesses due to high synchronization. ARMCO optimizes most of
those accesses, which results in the highest improvement of 33.3%
among the SPLASH applications.

Ocean has a substantial number of data accesses demonstrating
the producer­consumer pattern among processors who have adja­
cent data in the matrix, resulting in a performance improvement of
20.3% (arising from a 35% reduction in L2 accesses due to direct
L1­to­L1 transfers). Barnes also has similar producer­consumer
as well as read­shared access patterns, showing a performance
improvement of 9.4%.

Both MP3D and Ocean have high L1 miss rates, which pro­
vide greater opportunity for optimization. Cholesky, FFT, LU,
Radix, Water are some of the applications with low L1 miss rates,
resulting in lower performance improvement (4%­7%) wrt other
applications.

5.4 Interconnection Network Bandwidth Require-
ments

The network link width is 16B. For L2S, we have 8B and 72B
packet sizes and for ARMCO, we have 8B, 16B (at most 8B of
data transferred along with L1­to­L1 requests), and 72B packet
sizes. We use a configuration in which the network link is shared
at an 8B granularity, i.e., two 8B messages (or one 8B message
and part of a 16B or 72B message) can be transmitted simul­
taneously, assuming both messages are ready for transmission.
Figure 7 shows the number of network packet­hops for ARMCO
normalized with respect to L2S for the configuration in Table 3.
The network’s packet­hop numbers are accumulated by adding the
number of hops traversed by each packet. We see a large reduction
in packet­hops across all benchmarks when using ARMCO: 33.3%
on average. Data (usually 8X of control info) transfer among cache
controllers is the major contributor to the packet­hop count. Since

ARMCO attempts to move data using L1­to­L1 transfers from
adjacent cores whenever possible, the total packet­hop count is
significantly reduced.

ARMCO on−chip Network Packet−Hop normalized over L2S

R
el

a
ti

v
e

#
P

a
ck

et
−

H
o
p

A
p

a
ch

e

J
B

B

B
a

rn
es

C
h

o
l.

F
F

T

L
U

M
P

3
D

O
ce

a
n

R
a

d
ix

W
a

te
r

G
ra

p
h

T
S

P

M
ig

r.

P
ro

d

0

0.2

0.4

0.6

0.8

1

MicroMine & NPScientific − SPLASH/SPLASH2Commercial

Avg. #Packet−Hop

Figure 7.Normalized number of interconnection network packet­hops

with respect to L2S (16 threads).

5.5 Dynamic Energy and Power Requirements

For power modeling, we use Cacti 6.0 [30] to model power,
delay, area, and cycle time for the individual cache banks as well
as the interconnect switches. All process­specific values used by
Cacti 6.0 are derived from the ITRS roadmap. We use a 45 nm
process technology and focus on dynamic energy. Table 5 lists the
energy values per access derived from Cacti 6.0. These numbers,
along with collected access statistics, are used to derive dynamic
energy numbers for ARMCO.

Figure 8 shows ARMCO’s dynamic energy and dynamic power
consumption normalized to L2S. ARMCO’s reduction in dynamic
energy and power is 31.2% on average (ranging between 6% and
72%) and 20.2% on average (ranging between ­4% and 71%),
respectively, with respect to L2S. While the extra state in ARMCO
(predictor table and extra tag bits in the L1) adds to dynamic energy,
this is sufficiently compensated for by a reduction in the number
of packet­hops and by the substitution of L2 bank accesses with
L1 accesses.

While we did not model leakage (static) power for the full sys­
tem or dynamic power for the cpu logic, based on prior studies
such as [11, 28], we estimate the dynamic energy in the on­chip
memory hierarchy to be roughly 30% of overall chip energy con­
sumption. This percentage is likely to go up if recent leakage
reduction techniques (such as high­k dielectric from Intel [10]) are
factored in.

L1$ Predictor L2$ Router/Interconnect
Tag Data Access Tag Data BufRd BufWr Xbar Arbiter

2688 16564 18593 58299 76621 760 1187 24177 402

Table 5. Dynamic energy consumption values per access for indi­

vidual structures in ARMCO using 45nm technology (values are in

femto­joules (fJ))

Predictor table accuracy and sensitivity: Since the perfor­
mance of ARMCO is heavily dependent on correct prediction, we
estimate the sensitivity of our results to the size and characteristics
of the predictor table. We analyze the sensitivity of the results to
predictor table size (2K, 1K, 512, and 256 entries) and associa­
tivity (16 and 8). The following list shows a few configurations
of the predictor table and overall performance speedup (geometric
mean) over L2S for all the applications excluding (including) the
microbenchmarks:

ARMCO Dynamic Energy and Power Consumption normalized over L2S

R
el

a
ti

v
e

D
y

n
a

m
ic

 E
n

er
g

y
 a

n
d

 P
o

w
er

A
p

a
ch

e

J
B

B

B
a

rn
es

C
h

o
l.

F
F

T

L
U

M
P

3
D

O
ce

a
n

R
a

d
ix

W
a

te
r

G
ra

p
h

T
S

P

M
ig

r.

P
ro

d0

0.2

0.4

0.6

0.8

1 Energy Power

MicroMine & NPScientific − SPLASH/SPLASH2Commercial

Average (Power)
Average (Energy)

Figure 8. Normalized dynamic energy and power consumption of

ARMCO with respect to L2S (16 threads).

16­way 8­way
2K­entry 1.13 (1.19) 1.13 (1.18)
1K­entry 1.12 (1.18) 1.13 (1.18)
512­entry 1.10 (1.16) 1.12 (1.17)
256­entry 1.11 (1.17) 1.11 (1.16)
Ideal Predictor ARMCO 1.15 (1.23)
Ideal Pr. and Prefetch ARMCO 1.25 (1.40)

This suggests that a small table is sufficient to identify most of
the sharing patterns. If the table is large with high associativity,
it may hold old prediction information resulting in an increase in
mispredictions and the penalty for misprediction might supercede
the benefit from extra prediction. The table also has the aver­
age performance numbers for ARMCO with ideal predictor and
prefetch which are described in next paragraph. Due to the in­
herent characteristics of directory­based protocols, there is limited
opportunity for keeping the predictor table updated with accurate
sharing information since we use existing messages to piggyback
this information. Table 6 shows the percentage of L1 misses
for which a prediction is made, and the percentage of those that
are correctly predicted for each benchmark. Prediction accuracy
ranges from 67.3% to 92.8% and is 74% on average. The per­
centage of L1 cache misses for which a prediction is made ranges
from 21.4% to 74.5%, which is 50.5% on average. Most of these
misses that are not predicted would be to non­shared data that do
not require prediction.

Apache jbb Barnes Chol. FFT LU MP3D
Coverage 21.4 53.5 62.4 41.5 37.2 47.8 64.8 ...
Accuracy 92.8 81.4 70.9 78.6 68.2 70.4 67.3

Ocean Radix Water Graph TSP Mig. Prod. Avg
41.0 37.1 55.6 38.0 62.9 74.5 69.2 50.5
73.5 68.6 68.2 76.8 69.2 71.5 78.9 74.0

Table 6. Percentage of L1 misses predicted (among L1 misses) and

prediction accuracy

Comparison with ideal prediction: We evaluate ARMCO with
an ideal predictor where correct prediction is made at request time.
This can, however, be a miss when the request reaches the predicted
L1 due to the activities during the request traversal time. We also
evaluate ARMCO with an approximate prefetching effect: if the
requested data line is in stable state in the system, a zero­latency
fetch is performed (when in transient state, the request is enqueued
at the predicted L1’s incoming request queue with zero latency).
Figure 9 shows the normalized performance of these systems with
respect to L2S. We see a substantial performance improvement
possible for many benchmarks by increasing the prediction accu­
racy. If we can, somehow, prefetch the required data from the
predicted L1 then we will have even higher performance improve­

ment. The reduced performance for GraphMine and TSP using
ideal prediction with respect to regular ARMCO is the effect of
the non­deterministic behavior of these two applications as the
amount of work done varies based on changes in execution path.

ARMCO Performance Speedup with Ideal Predictor and Prefetching over L2S

S
p

ee
d

U
p

A
p

a
ch

e

J
B

B

B
a

rn
es

C
h

o
l.

F
F

T

L
U

M
P

3
D

O
ce

a
n

R
a

d
ix

W
a

te
r

G
ra

p
h

T
S

P

M
ig

r.

P
ro

d

0.8

1

1.2

1.4 Ideal Predictor ARMCO

Prefetch ARMCO

ARMCO

6.26

MicroMine & NPScientific − SPLASH/SPLASH2Commercial

2.262.852.011.51

Figure 9. Normalized Performance of ARMCO with ideal prediction,

ARMCO with ideal prediction and prefetch, and ARMCO with regular

predictor over L2S (16 threads). Prefetching effect is incorporated

by zero­latency fetching at request time from predicted L1 if the re­

quested data line is at stable state in the system

5.6 Scalability of the System

We evaluate ARMCO and L2S on an 8­core, 16­core, and 32­
core CMP system. Table 7 shows the average (geometric mean)
speedup of ARMCO over L2S. ARMCO’s performance over L2S
increases with the increase of number of cores as the improved
locality of access results in a bigger performance gain. ARMCO
has better parallel efficiency for both 8→16 and 16→32, which
suggests that predicting and accessing data directly from its current
location is important to the scalability of future multi­core systems.

Workloads Average Speedup
8-core 16-core 32-core

W/O Micro 1.10 1.13 1.15
W/ Micro 1.17 1.18 1.22

Table 7. Average (geometric mean) speedup of ARMCO over L2S for

8­core, 16­core, and 32­core CMP systems.

5.7 Sensitivity Analysis

We have analyzed the sensitivity of both ARMCO and L2S to
the interconnection hop latencies and L2 latencies. Interconnect
hop latencies are in the range of 3­5 cycles [30] and routers are
usually 2­3 stage pipelined. We use a 2­cycle crossbar latency
and vary the hop latency among 2, 4, and 6 cycles. We vary
the L2 latency from 14 (Table 3) to 20 cycles. Table 8 shows
the summary results. ARMCO improves its performance speedup
over L2S with the increase of L2 latencies and interconnect hop
latencies as suggested by the formulae derived in Section 5.2.

5.8 Comparing Performance with Victim Replica-
tion

While ARMCO optimizes memory­hierarchy performance for
fine­grain sharing at the L1 level, the related proposals [4,6,8,20,
37] do so at the L2 level. Figure 10 shows the relative performance
of Victim Replication (VR) [37] (one of the above proposals) and
ARMCO with respect to L2S for the same configuration as in
Figure 3. We chose VR since it uses a similar baseline design
(directory­based protocol and type of interconnect) to that used
in our system. ARMCO outperforms VR for all the workloads.

Hop Latency(cycle) L2 Latency(cycle)
Workloads

2 4 6 14 20

Commercial 1.10 1.11 1.13 1.11 1.13
Scientific 1.08 1.11 1.10 1.11 1.11
Mining & NP 1.10 1.22 1.18 1.22 1.22
Microbench 1.54 1.59 1.61 1.59 1.65
Average 1.14 1.18 1.18 1.18 1.20

Table 8. Influence of L2 cache and interconnection latencies. Data

are ARMCO performance speedup over L2S categorized according

to types of benchmarks.

Victim Replication and ARMCO Performance Speedup over L2S

S
p

ee
d

U
p

A
p

a
ch

e

J
B

B

B
a
rn

es

C
h

o
l.

F
F

T

L
U

M
P

3
D

O
ce

a
n

R
a
d

ix

W
a
te

r

G
ra

p
h

T
S

P

M
ig

r.

P
ro

d

0.8

1

1.2

1.4 Victim Replication
ARMCO

L2S

2.26

MicroMine & NPScientific − SPLASH/SPLASH2Commercial

Figure 10. Normalized Performance with respect to L2S (16 threads)

for VR and ARMCO.

Our results for VR corroborate qualitatively with those in [4] for
the workloads common to both studies — Apache, JBB, Barnes,
and Ocean. Comparing relative magnitudes of improvement over
VR in [4, 6, 8, 20], ARMCO compares favorably, indicating that
optimizations at the L1 level help reduce overall latency and energy
consumption.

5.9 Comparing Storage Overhead with Related
Proposals

Section 3.1 describes the extra fields added to ARMCO, which
contributes to some extra storage. For the target system (Table 3),
we have 10 bits per L1 data cache line, which implies an overhead
of 1.25 KB per L1 cache. The predictor table uses a 19­bit tag,
4­bit PPid, 1­bit Cop, and a 1­bit Valid field per entry and 1024
entries per L1, which requires 3.13 KB per L1 cache. The total
storage overhead for the target system is thus 70 KB, which is
0.38% of the on­chip cache­hierarchy. Table 9 compares this
overhead qualitatively with other proposals at the L2 level.

6. CONCLUSIONS
The memory hierarchy design in a CMP must provide low­

latency data communication for fine­grain sharing in order to truly
harness the multi­core revolution. In this paper, we present a
design that leverages direct L1­to­L1 access in order to facili­
tate low­latency fine­grain communication. Our protocol uses
Adaptive Replication, Migration, and producer­Consumer Opti­
mization(ARMCO) via hardware mechanisms that recognize and
optimize for migratory, producer­consumer, multiple­reader, and
multiple­writer sharing patterns. Our proposed protocol is able
to reduce the average L1 miss penalty, resulting in performance
speedup ranging from 1.04 to 2.26 (1.18 on average), and energy
savings from 6% to 72% (31.2% on average). Both energy (and
power, 20.2% on average) savings and performance speedup are a
direct result of the reduction in the number of packet­hops (33.3%
on average) due to the ability to access nearby cache banks, and
secondarily due to accessing L1 rather than L2 caches.

The area cost as a fraction of the total on­chip cache storage is
small — 0.38% in our design. Remote L1 cache location predic­

Proposals Overhead Measuring Info Overhead

ARMCO 3.13 KB (1K-entry) predictor table per L1-Data cache and 10-bit per L1D cache block 70 KB (0.38%)
ASR [4] 1 bit per L1 cache block, 2-bit per L2 cache block,8-bit per entry for 128K-entry

NLHBs, and 16-bit per entry for 8K-entry VTBs
211 KB (1.14%)

Victim Replication [37] 1-bit per L2 cache block 32KB (0.17%)
CMP-NuRapid [8] doubling each coreś tag capacity 1024 KB (5.54%)
Cooperative Caching [6] cache tag duplication, singlet/reuse bits in cache, and spilling buffers at CCE 866 KB (4.69%)
Migratory Detection [13] 5-bit per L2 cache block 160 KB (0.87%)
Migratory Optimization [33] 5-bit per L2 cache block 160 KB (0.87%)
Producer-Consumer Opti. [7] 40 KB for delegate cache and RAC per 1MB L2 640 KB (3.46%)
Instr-based Prediction [18] 13-byte per entry in 128-entry predictor table per node 26 KB (0.14%)
Cosmos - Addr-based Prediction [29] variable size for MHT and PHT Variable (up to 21.9%)

Table 9. Storage overhead for different optimization proposals related to ARMCO for a 16 MB L2 CMPs system.

tion is a key enabler of the pattern­specific optimizations. While
our results have been collected on a base protocol that is directory­
based, ARMCO is possibly more effective on a broadcast­based
protocol whether on a point­to­point or shared network, since the
local predictor table is likely to be more accurate. Future work in­
cludes analysis using different base protocols and the development
of a protocol that combines the benefits of ARMCO for fine­grain
sharing and controlled victim replication to address the latency of
mostly private data.

7. REFERENCES
[1] A. Alameldeen, M. Martin, C. Mauer, K. Moore, M. Xu, M. Hill, D. Wood, and

D. Sorin. Simulating a $2m commercial server on a $2k pc. IEEE Computer,
36(2):50–57, Feb. 2003.

[2] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and
R. Y. Wang. Serverless network file systems. ACM Transactions on Computer

Systems, 14(1):41–79, Feb. 1996.
[3] P. Barford and M. Crovella. Generating representative web workloads for

network and server performance evaluation. In ACM Sigmetrics Conf.

Measurement and Modeling of Computer Systems, pages 151–160, July 1998.
[4] B. Beckmann and M. Marty. ASR: Adaptive selective replication for CMP

caches. In 39th Annual International Symposium on Microarchitecture, Dec.
2006.

[5] G. Buehrer, S. Parthasarathy, and Y. Chen. Adaptive parallel graph mining for
cmp architectures. In Proceedings of the Sixth International Conference on Data

Mining, pages 97–106, Dec. 2006.
[6] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors. In

Proceedings of ISCA-33, pages 264–276, June 2006.
[7] L. Cheng, J. Carter, and D. Dai. An adaptive cache coherence protocol

optimized for producer-consumer sharing. In 13th International Symposium on

High Performance Computer Architecture (HPCA), Feb. 2007.
[8] Z. Chishti, M. Powell, and T. Vijaykumar. Optimizing Replication,

Communication, and Capacity Allocation in CMPs. In Proceedings of ISCA-32,
pages 357–368, June 2005.

[9] Z. Chishti, M. Powell, and T.N. Vijaykumar. Distance associativity for
high-performance energy-efficient non-uniform cache architectures. In
Proceedings of the 36th International Symposium on Microarchitecture, Dec.
2003.

[10] Intel Corporation. Introducing the 45nm Next-Generation Intel Core
Microarchitecture. http://www.intel.com/technology/architecture-
silicon/intel64/45nm-core2_whitepaper.pdf.

[11] Intel Corporation. Power delivery for high-performance microprocessors.
http://www.intel.com/technology/itj/2005/volume09issue04/
art02_powerdelivery/p03_powerdelivery.htm, 2005.

[12] Standard Performance Evaluation Corporation. Specjbb2005.
http://www.spec.org/jbb2005/, 2005.

[13] A.L. Cox and R.J. Fowler. Adaptive cache coherency for detecting migratory
shared data. In Proceedings of the 20th Annual International Symposium on

Computer Architecture, pages 98–108, May 1993.
[14] N. Eisley, L. Peh, and L.Shang. In-network cache coherence. In 39th

International Symposium on Microarchitecture, pages 321–332, Dec. 2006.
[15] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M. Levy, and C. A.

Thekkath. Implementing global memory management in a workstation cluster.
In 15th ACM Symposium on Operating Systems Principles (SOSP), Dec. 1995.

[16] The Apache Software Foundation. Apache. http://www.apache.org/, 2008.
[17] R. Garg, A. El-Moursy, S. Dwarkadas, D. Albonesi, J. Rivers, and V. Srinivasan.

Cache Design Options for a Clustered Multithreaded Architecture. Technical
Report TR 866, Dept. of Computer Science, University of Rochester, Aug. 2005.

[18] S. Kaxiras and J. Goodman. Improving cc-numa performance using
instruction-based prediction. In Proceedings of the 5th International Symposium

on High Performance Computer Architecture, pages 161–170, Jan. 1999.
[19] S. Kaxiras and C. Young. Coherence communication prediction in

shared-memory multiprocessors. In Proceedings of the 6th International

Symposium on High Performance Computer Architecture, pages 156–167, Jan.
2000.

[20] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache structure
for wire-delay dominated on-chip caches. In Proceedings of the 10th

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 211–222, Oct. 2002.
[21] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded

sparc processor. IEEE Micro, 25(2):21–29, Mar-Apr 2005.
[22] A. Lai and B. Falsafi. Memory sharing predictor: The key to a speculative

coherent DSM. In Proceedings of the 26th Annual International Symposium on

Computer Architecture, pages 172–183, May 1999.
[23] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Haogberg, F. Larsson, A. Moestedt, and B.Werne. Simics: A full system
simulation platform. IEEE Computer, 35(2):50–58, Feb. 2002.

[24] M. Martin, P. Harper, D. Sorin, M. Hill, and D. Wood. Using destination-set
prediction to improve the latency /bandwidth tradeoff in shared memory
multiprocessors. In Proceedings of the 30th Annual International Symposium on

Computer Architecture, pages 206–217, June 2003.
[25] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (GEMS) toolset. ACM SIGARCH

Computer Architecture News, 33(4):92–99, Sep. 2005.
[26] C. McNairy and R. Bhatia. Montecito: A dual-core, dual-thread itanium

proessor. IEEE Micro, 25(2):10–20, Mar-Apr 2005.
[27] R. Merritt. Ibm weaves multithreading into power5. EE Times, 2003.
[28] M. Monchiero, R. Canal, and A. GonzÃąlez. Power/performance/thermal

design-space exploration for multicore architectures. IEEE Transactions on

Parallel and Distributed Systems, 19(5):666–681, May 2008.
[29] S. Mukherjee and M. Hill. Using prediction to accelerate coherence protocols.

In Proceedings of the 25th Annual International Symposium on Computer

Architecture, pages 179–190, June 1998.
[30] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing nuca

organizations andwiring alternatives for large caches with cacti 6.0. In 40th

International Symposium on Microarchitecture, pages 3–14, Dec. 2007.
[31] Intel News Release. Intel research advances "era of tera".

http://www.intel.com/pressroom/archive/releases/20070204comp.htm, Feb.
2007.

[32] Sun News Release. Sun expands solaris/sparc cmt innovation leadership.
http://www.sun.com/aboutsun/pr/2007-01/sunflash.20070118.3.xml, Jan. 2007.

[33] P. Stenström, M. Brorsson, and L. Sandberg. An adaptive cache coherence
protocol optimized for migratory sharing. In Proceedings of the 20th Annual

International Symposium on Computer Architecture, May 1993.
[34] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. M. Levy.

On the scale and performance of cooperative web proxy caching. In 17th ACM

Symposium on Operating Systems Principles (SOSP), pages 16–31, Dec. 1999.
[35] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Methodological

considerations and characterization of the SPLASH-2 parallel application suite.
In Proceedings of the 22nd Annual International Symposium on Computer

Architecture, June 1995.
[36] K. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro,

16(2):28–40, Apr. 1996.
[37] M. Zhang and K. Asanovic. Victim Replication: Maximizing Capacity while

Hiding Wire Delay in Tiled Chip Multiprocessors. In Proceedings of the 32nd

Annual International Symposium on Computer Architecture, pages 336–345,
June 2005.

