POSTER: Managing Application Parallelism via
Parallel Efficiency Regulation

Sharanyan Srikanthan, Princeton Ferro, Sayak Chakraborti, Sandhya Dwarkadas
University of Rochester, USA
srikanth,pferro,schakr11,sandhya@cs.rochester.edu

Abstract

Modern multiprocessor systems contain a wealth of com-
pute, memory, and communication network resources, such
that multiple applications can often successfully execute on
and compete for these resources. Unfortunately, good perfor-
mance for individual applications in addition to achieving
overall system efficiency proves a difficult task, especially
for applications with low parallel efficiency (speedup per uti-
lized computational core). Limitations to parallel efficiency
arise out of factors such as algorithm design, excess synchro-
nization, limitations in hardware resources, and sub-optimal
task placement on CPUs.

In this work, we introduce MAPPER , a Manager of Appli-
cation Parallelism via Parallel Efficiency Regulation. MAP-
PER monitors and coordinates all participating applications
by making two coupled decisions: how much parallelism
to afford to each application, and which specific CPU cores
to schedule applications on. While MAPPER can work for
generic applications without modifying their parallel run-
times, we introduce a simple interface that can be used by
parallel runtime systems for a tighter integration, resulting
in better task granularity control. Using MAPPER can re-
sult in up to 3.3X speedup, with an average performance
improvement of 20%.

CCS Concepts « Software and its engineering — Pro-
cess management; - Computer systems organization
— Multicore architectures;

1 Introduction

Parallel application scalability can be hampered due to two
broad factors: system capability and algorithmic design. Sys-
tem capability is dependent on the type of resources available.
Demand for those resources from both the parallel appli-
cation and other active applications can result in resource
saturation. Resource saturation often leads to performance

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6225-2/19/02.
https://doi.org/10.1145/3293883.3301497

reduction due to resource contention and the resulting ex-
cessive queuing delays, diminishing marginal utility. Algo-
rithmic design can result in load imbalance, contention for
synchronization, inter-task dependencies, and data sharing.
The impact of these factors on performance is dependent on
system properties.

In this work, we introduce MAPPER , a Manager of Appli-
cation Parallelism via Parallel Efficiency Regulation. MAP-
PER monitors and coordinates all participating applications
by making two coupled decisions: how much parallelism to
afford to each application, and which specific CPU cores to
schedule applications on. MAPPER contains four distinct
elements:

e Hardware performance counter-based monitoring used
to determine resource needs and bottlenecks.

e Prioritized compute resource allocation based on ap-
plication resource needs and QoS/fairness guarantees.

e Task mapping to allocated resources to reduce com-
pute, bandwidth, and memory contention, bandwidth
utilization, and latency of data access.

e An optional task control within application runtimes.

2 MAPPER Implementation
2.1 Application monitoring

MAPPER transparently monitors applications using low-
overhead hardware performance counters. MAPPER uses
metrics derived from hardware performance counters com-
monly available on modern processors to detect and separate
the causes behind poor scalability. We use five hardware per-
formance counters and six performance events to compute
four performance metrics [5, 6].

2.2 Resource allocation and mapping

The scalability analysis then informs the best resource allo-
cation to meet combined application and system-wide effi-
ciency goals. Resource allocation is achieved by controlling
the number of hardware execution contexts allocated to an
application. Resource mapping (which specific hardware
contexts an application is allowed to use) is used to reduce
compute, bandwidth, and memory contention, bandwidth
utilization, and latency of data access. Resource allocation
and mapping are accomplished using Linux cgroups.

The MAPPER daemon pools knowledge of individual co-
running applications’ scaling characteristics to prioritize


https://doi.org/10.1145/3293883.3301497

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

resource allocation for applications that use them more ef-
ficiently. Applications are initially granted a fair share of
hardware contexts depending on the system load. Applica-
tions are guaranteed a certain quality of service, defined as
being with a certain percentage of their performance at this
fair share. By introducing rare disturbances to applications
based on observed hardware bottlenecks, followed by explo-
ration for a performance maxima, the parallel efficiency of
an application at different core counts (number of cores used)
is collected. MAPPER uses parallel efficiency information
to calculate spare cores. The spare core count is the number
of cores an application can give up while still meeting its
quality of service target.

Applications are prioritized according to their parallel effi-
ciency. Periodically, spare cores from applications that scale
poorly are reallocated to applications with higher parallel ef-
ficiency. Applications that fall below their quality of service
target will have their spare cores returned to them.

In addition to decisions on the number of hardware con-
texts to allocate to each application, MAPPER also carefully
maps application threads to specific hardware contexts based
on CPU, memory, cache, and interconnect resource needs us-
ing heuristics similar to those used by the SAM system [5, 6].

2.3 Optional runtime task control

Information on the allocated hardware contexts may be used
to dynamically change task creation within the runtime.
MAPPER provides an interface to query resource allocation
and exchange progress metrics, which the parallel applica-
tion runtime can use to control the degree of parallelism of
the application. We demonstrate the benefits of task control
by modifying the OpenMP runtime system.

3 Evaluation

Experiments were conducted on a quad socket machine with
each socket containing an Intel Xeon CPU E7-4820 v3 CPU.
Each CPU has 10 physical cores with 2 hardware contexts on
each core. We use different benchmark applications gathered
from Parsec-v3 [2], OMPSCR-v2 [3], and NAS Parallel Bench-
marks [1]. We also use data-sharing intensive graph-based
applications (from GraphChi toolkit) that perform machine
learning, data mining, pattern recognition, and computer
vision [4]. We contrast MAPPER with Linux and two other
allocation techniques: hill climbing and fair share.

We performed 3 different evaluations: applications whose
runtime were integrated with MAPPER, applications without
runtime integration, and a combined application evaluation.
Figure 1 shows the impact of MAPPER for combinations of
modified/integrated OpenMP applications and applications
using other runtimes. Co-running applications were chosen
to maximize the diversity of application characteristics ana-
lyzed. Minimum QoS for applications was set at 85% of fair
share performance. Relative to Linux, MAPPER achieves an

S. Srikanthan, P. Ferro, S. Chakraborti, S. Dwarkadas

09F
I Modified OpenMP + MAPPER
I Modified OpenMP + Fair Share
081 [C_IModified OpenMP + Hill Climbing
3 I Unmodified OpenMP + Linux
[0}
@ 0.7
o
7]
°
So6r
T
£
So05r
0.4 F
0.3
o R QDL & OO R O.K
D S S S R ,‘b&&\'@\. & S
ISEVAIN NS I SIS I NN O gt
P PTG F o GNP T
) @QQO%% \\\&Qa*.q/@*..\.,&\
) Q ! W

Multiprogrammed Workload

Figure 1. Geometric mean of speedups (relative to stan-
dalone performance) achieved by applications in multipro-
grammed workloads.

average speedup of 1.2 while maintaining QoS (Linux vio-
lates QoS in 23% (compared to 2% for MAPPER) of our test
cases with the worst case achieving only 9% (compared to
81% for MAPPER) of fair share performance.).

4 Conclusions

MAPPER ! demonstrates that combining a normalized effi-
ciency metric that allows comparisons across applications
with runtime information on resource demand allows appli-
cations to cooperate in achieving both individual QoS and
overall system efficiency.

References

[1] D.H.Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum,
R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon,
V. Venkatakrishnan, and S.K. Weeratunga. 1991. The NAS Parallel
Benchmarks. The International Journal of Supercomputing Applications
5,3 (1991), 63-73.

Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.
Dissertation. Princeton University.

[3] A.J.Dorta, C. Rodriguez, and F. de Sande. 2005. The OpenMP source
code repository. In 13th Euromicro Conference on Parallel, Distributed
and Network-Based Processing. 244-250.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-
Scale Graph Computation on Just a PC. In 10th Symposium on Operating
Systems Design and Implementation (OSDI 12). USENIX, 31-46.
Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. 2015. Data
Sharing or Resource Contention: Toward Performance Transparency
on Multicore Systems. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15). USENIX Association, 529-540.

Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. 2016. Coher-
ence Stalls or Latency Tolerance: Informed CPU Scheduling for Socket
and Core Sharing. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16). USENIX Association, 323-336.

[2

—

[4

[l

[5

=

G

—

IThis work was supported in part by U.S. National Science Foundation
grants CNS-1319353 and CNS-1618497, and by a gift from Futurewei.



	Abstract
	1 Introduction
	2 MAPPER Implementation
	2.1 Application monitoring
	2.2 Resource allocation and mapping
	2.3 Optional runtime task control

	3 Evaluation
	4 Conclusions
	References

