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Abstract

We investigate the use of a software distributed shared mem-

ory (DSM) layer to support irregular computations on dis-

tributed memory machines. Software DSM supports irreg-

ular computation through demand fetching of data in re-

sponse to memory access faults. With the addition of a

very limited form of compiler support, namely the identi-

�cation of the section of the indirection array accessed by

each processor, many of these on-demand page fetches can

be aggregated into a single message, and prefetched prior to

the access fault.

We have measured the performance of this approach for

two irregular applications, moldyn and nbf, using the Tread-

Marks DSM system on an 8-processor IBM SP2. We �nd

that it has similar performance to the inspector-executor

method supported by the CHAOS run-time library, while

requiring much simpler compile-time support. For moldyn,

it is up to 23% faster than CHAOS, depending on the input

problem's characteristics; and for nbf, it is no worse than

14% slower. If we include the execution time of the inspec-

tor, the software DSM-based approach is always faster than

CHAOS. The advantage of this approach increases as the

frequency of changes to the indirection array increases. The

disadvantage of this approach is the potential for false shar-

ing overhead when the data set is small or has poor spatial

locality.

1 Introduction

Inspector-executor methods have been proposed as a way

to e�ciently execute irregular computations on distributed

memory machines [18]. A separate loop, the inspector, pre-

cedes the actual computational loop (called the executor).

The inspector loop determines the data read and written

by the individual processors executing the computational

loop. This information is then used to compute a commu-

nication schedule, moving the data from the producers to

the consumers at the beginning and/or end of each loop.

Communication aggregation is used to reduce the number

of messages exchanged. In order to further reduce over-
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head, an attempt is made to execute the inspector loop only

once for a large number of iterations of the executor loop.

It has been argued that part or all of the above procedure

can be automated by a compiler [21]. The compiler analysis

involved can, however, be quite complicated [1, 6, 20].

In this paper we propose an alternative approach. We

use a software distributed shared memory (DSM) layer that

provides a shared memory interface on top of the message

layer [13]. In its simplest form, the DSM layer supports

irregular computations by demand-driven fetching of data.

Our approach involves, in addition, a simple compiler front-

end that generates data access information, enabling the

run-time system to e�ciently precompute the set of pages

that will be accessed by each processor during the next it-

eration. These pages are then requested, prior to that itera-

tion, in a single message exchange with each processor from

which data is needed. In other words, our approach extends

the base software DSM layer by enabling it to aggregate the

communication of data for irregular programs.

The compiler support required for our approach is very

simple: it su�ces to determine the indirection array, and

the part of the indirection array being accessed by each pro-

cessor. This is usually a regular section [4]. In contrast,

the inspector-executor approach requires complex analysis

to determine whether the inspector loop can be hoisted out

of the main loop [1, 20].

This paper presents our approach in detail. In order to

gather experimental results, we use a modi�ed version of

TreadMarks [2] that supports prefetching and aggregation

in the manner described above. Furthermore, we have aug-

mented the Parascope parallel programming environment [12]

to carry out the required compiler analysis. We present

performance results for two irregular applications, moldyn

and nbf. The results were obtained on an 8-processor IBM

SP2 using base TreadMarks and TreadMarks with aggrega-

tion support. We compare these results to measurements of

hand-coded inspector-executor versions of the same applica-

tions that use the CHAOS run-time library [7].

We �nd that TreadMarks augmented with compiler sup-

port for communication aggregation in irregular programs

has similar performance to the inspector-executor method

supported by the CHAOS run-time library. For moldyn, it

is up to 23% faster than CHAOS, depending on the input

problem's characteristics; and for nbf, it is no worse than

14% slower. In addition, it is up to 38% faster than the

base TreadMarks system. If we include the execution time

of the inspector, our approach is always faster than CHAOS.

The advantage of our approach increases as the frequency of

changes to the indirection array increases. Its disadvantage
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is the potential for false sharing overhead when the data set

is small or has poor spatial locality.

The outline of the rest of the paper is as follows. Sec-

tion 2 presents some background on the basic run-time pro-

tocol used to implement shared memory, speci�cally, the

TreadMarks implementation. Section 3 presents the run-

time and compiler support for irregular applications. Sec-

tion 4 provides a summary of CHAOS, the leading run-time

system for support of irregular applications on message pass-

ing platforms. Section 5 presents the results of our evalua-

tion of the shared memory run-time support, and compares

the results to those from CHAOS. Section 6 provides a sum-

mary of related work. Finally, we conclude in Section 7.

2 Background - TreadMarks

TreadMarks [2] is a software DSM system built at Rice Uni-

versity. It is an e�cient user-level DSM system that runs

on commonly available Unix systems. We use TreadMarks

version 1.0.1 as the base shared memory run-time system in

our experiments.

TreadMarks provides programming primitives similar to

those used in hardware shared memory machines, namely,

process creation, shared memory allocation, and lock and

barrier synchronization. Shared memory must be allocated

dynamically using TreadMarks primitives that have the same

syntax as conventional memory allocation calls. A barrier

stalls the calling processor until all processors in the system

have arrived at the same barrier. Locks are used to control

access to critical sections. No processor can acquire a lock

if another processor is holding it.

TreadMarks uses a lazy invalidate [2] version of release

consistency (RC) [9] and a multiple-writer protocol [5] to

reduce the overhead involved in implementing the shared

memory abstraction.

RC is a relaxed memory consistency model. In RC, or-

dinary shared memory accesses are distinguished from syn-

chronization accesses, with the latter category divided into

acquire and release accesses. RC requires ordinary shared

memory updates by a processor p to become visible to an-

other processor q only when a subsequent release by p be-

comes visible to q via some chain of synchronization events.

In other words, to ensure that changes to shared data are

visible, a program must use explicit synchronization. In

practice, this model allows a processor to bu�er multiple

writes to shared data in its local memory until a synchro-

nization point is reached.

The virtual memory hardware is used to detect accesses

to shared memory. Consequently, the consistency unit is a

virtual memory page. The multiple-writer protocol reduces

the e�ects of false sharing with such a large consistency unit.

With this protocol, two or more processors can simultane-

ously modify their own copy of a shared page. Their modi�-

cations are merged at the next synchronization operation in

accordance with the de�nition of RC, thereby reducing the

e�ects of false sharing. The merge is accomplished through

the use of di�s. A di� is a run-length encoding of the mod-

i�cations made to a page, generated by comparing the page

to a copy saved prior to the modi�cations (called a twin).

TreadMarks implements a lazy invalidate version of RC [2].

A lazy implementation delays the propagation of consistency

information until the time of an acquire. Furthermore, the

releaser noti�es the acquirer of which pages have been mod-

i�ed, causing the acquirer to invalidate its local copies of

these pages. A processor incurs a protection violation on

the �rst access to an invalidated page, and gets di�s for

that page from the most recent modi�ers of the page.

3 Optimizations for Irregular Applications

The run-time system described in Section 2 performs com-

munication purely on demand. This can result in extra

messages due to the fact that data is brought in at a page

granularity, and additional run-time overheads in terms of

page faults and interrupts in order to trigger the commu-

nication [8, 14]. This section describes the enhancements

to the TreadMarks run-time system as well as the compiler

analysis necessary in order to optimize performance for pro-

grams with irregular access patterns.

Our approach involves a simple compiler front-end that

identi�es the indirection array(s) to the run-time system.

Speci�cally, the compiler performs a source-to-source trans-

formation of the program, inserting calls to the (augmented)

run-time DSM library before the indirect accesses. These

calls identify the base addresses of the data arrays, and the

sections of the indirection arrays accessed by a particular

processor. The run-time system then uses this information

to determine the set of shared pages that this processor ac-

cesses. The pages are requested in a single message exchange

with each of the processors from which data is required.

In order to avoid having to recompute the set of pages ac-

cessed on every iteration, the run-time system subsequently

write-protects the shared pages containing the indirection

array. If no memory protection violation occurs for these

pages, then the same set of pages are requested in the next it-

eration. Otherwise, the indirection array has been changed,

and the set needs to be recomputed.

3.1 Example

We �rst illustrate our approach with an example using the

moldyn program [3] (see also Section 5). Figure 1 illustrates

the program structure of moldyn, and the force computa-

tion subroutine in which the indirect accesses occur. Each

molecule i has two attributes: its position, x(i), and the

force, forces(i), acting on it.

Figure 2 shows the program transformations applied to

the force computation subroutine. In the transformed ver-

sion, each processor �rst accumulates its contributions to

forces in the local forces array that is stored in private

memory. After this computation, the processors update the

shared forces in a pipelined fashion. This reduces commu-

nication by eliminating the need to synchronize on every

access to forces and by aggregating the updates to forces.

The compiler-inserted code consists of a Validate at the

start of the Compute Forces subroutine. The Validate ini-

tializes the data structures for the fetch. Then, if necessary,

it computes the pages accessed through the indirection array

interaction list. Finally, it requests the updates to each

page of x that will be accessed by the executing processor.

To improve performance, Validate aggregates requests for

multiple pages from the same processor.

3.2 Augmented Run-Time System

The run-time system was augmented in order to take advan-

tage of the access information provided by the compiler. We

concentrate here on the support for communication aggre-

gation for irregular accesses. Support for regular accesses

and other optimizations was described in earlier work [8].
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PROGRAM MOLDYN SUBROUTINE ComputeForces()

DO step = 1, NSTEPS DO i = 1, num_interactions

IF (mod(step,UPDATE_INTERVAL) .eq. 0) then n1 = interaction_list(1, i)

call build_interaction_list() n2 = interaction_list(2, i)

ENDIF

... ... force = x(n1) - x(n2)

call ComputeForces() forces(n1) = forces(n1) + force

... ... forces(n2) = forces(n2) - force

ENDDO

... ... ENDDO

END END

Figure 1: Moldyn - main program and the subroutine ComputeForces

SUBROUTINE ComputeForces()

Validate(1, INDIRECT, x, interaction_list[1:2, 1:num_interactions], READ, 1)

DO i = 1, num_interactions

n1 = interaction_list(1, i)

n2 = interaction_list(2, i)

force = x(n1) - x(n2)

local_forces(n1) = local_forces(n1) + force

local_forces(n2) = local_forces(n2) - force

ENDDO

END

Figure 2: Transformations for the Subroutine ComputeForces in Moldyn
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/* fetch_pages is the list of pages to be fetched

pages[sch] is the list of pages associated with each schedule */

Validate( va_alist ) /* Handles variable number of arguments */

{

va_list *desc_ptr

int number /* number of descriptors */

int descriptor

va_start(desc_ptr)

fetch_pages = NONE

number = va_arg(desc_ptr, int)

for (descriptor = 1; descriptor <= number; descriptor++)

{

int type = va_arg(desc_ptr, int) /* descriptor type - DIRECT or INDIRECT */

char *base = va_arg(desc_ptr, char *) /* base address of shared data */

RSD section = va_arg(desc_ptr, RSD) /* section of shared data or indirection array */

int access_type = va_arg(desc_ptr, int) /* READ, WRITE, READ&WRITE, WRITE_ALL, or READ&WRITE_ALL */

int sch = va_arg(desc_ptr, int) /* schedule number */

if (type == INDIRECT)

{

if (modified(section))

{

pages[sch] = Read_indices(base, section)

Write_protect(section)

}

}

else

pages[sch] = pages in section

fetch_pages += pages[sch] that are invalid

}

Fetch_diffs(fetch_pages)

Apply_diffs(fetch_pages)

for (descriptor = 1; descriptor <= number; descriptor++)

{

if (access_type == WRITE || access_type == READ&WRITE)

Create_twins(pages[sch])

}

va_end(desc_ptr)

}

Figure 3: Augmented Run-Time Interface for Indirect Accesses
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Figure 3 provides a summary of the Validate interface for

both regular and irregular accesses.

To support aggregated communication, Validate can

fetch multiple data objects at the same time. Thus, it

takes a variable number of arguments. The �rst argument

is the number of access descriptors that follow. There is

an access descriptor for each data object. An access de-

scriptor consists of type, base, section, access type, and

schedule number. The type speci�es the descriptor type.

It is either DIRECT for regular accesses or INDIRECT for ac-

cesses through an indirection array. The base is the ad-

dress of the shared data structure being accessed. The

section is the section of the indirection array used to access

the shared data, or the section of shared data itself in the

case of regular accesses. The access type is one of READ,

WRITE, or READ&WRITE. Direct accesses have two additional

access types, WRITE ALL and READ&WRITE ALL, which indicate

when every element in the section is known to be written at

compile-time. The run-time system can use this information

to reduce consistency maintenance overheads by eliminating

twinning on those pages that are completely written. The

schedule number is an identi�er for the set of pages to be

fetched.

If the descriptor type is INDIRECT and the section of

the indirection array has been modi�ed since the last call to

Validate, the modified function returns true, and pages[sch]

is recomputed. Both local and remote modi�cations cause

the modified function to return true. The Read indices

procedure recomputes the list of pages, pages[sch], using

base and section. After pages[sch] has been computed,

the pages in section are write protected. A more sophis-

ticated version of this approach could use di�ng (compar-

ing an old version of the pages containing the indirection

array to the current one) to incrementally recompute the

page sets, but our current implementation does not do so.

Those pages in pages[sch] that are invalid are added to

fetch pages, the list of pages to be fetched.

Fetch diffs requests the di� s required to update the

pages in fetch pages. All of the di� requests to the same

processor are aggregated into a single message. Apply diffs

waits for the di�s to arrive, and applies them to the appro-

priate page.

After updating the pages of shared data, consistency ac-

tions are performed preemptively in order to avoid write de-

tection overhead during execution. The TreadMarks multiple-

writer protocol requires an unmodi�ed copy (a twin) of the

page to be maintained for every page that is modi�ed, un-

less the page is guaranteed to be modi�ed in its entirety.

Validate performs Create twins on pages[sch] if the

corresponding descriptor has an access type of WRITE or

READ&WRITE. Create twins makes a twin of each page in

pages[sch], and enables write access to these pages. This

avoids the memory protection violation to create the twin.

3.3 Compiler Analysis

The compiler support required for our approach involves de-

termining the indirection array used to access shared data,

and the part of the indirection array being accessed. This is

usually a regular section [4], and hence can be handled by

the existing compiler framework for regular accesses. Our

approach also naturally extends to multiple levels of the indi-

rection in the access pattern without additional mechanisms.

In contrast, the inspector-executor approach requires several

inspector loops to be generated for such access patterns [6].

Furthermore, the inspector-executor approach also requires

sophisticated compiler analysis to pull the inspector as far

forward as possible in the program.

We concentrate here on the additions to the analysis nec-

essary for handling indirect accesses (see [8] for details on

how regular accesses are handled). Let V be the set of shared

variables, let S be the set of all synchronization operations in

the program, and let F be the set of \possible fetch points",

the locations in the program where a Validate may be in-

serted. If \perfect" analysis were possible, the set F would

be equal to the set S. Indeed, under lazy release consis-

tency, invalidations only occur at a synchronization point,

and hence synchronization points are the only places in the

program where it makes sense to insert a Validate. In prac-

tice, F includes the set S, but in addition includes condi-

tional statements, loop boundaries, and, in the absence of

interprocedural analysis, procedure calls.

Access analysis generates a summary of shared data ac-

cesses associated with each element of F , and the type of

such accesses. Our main tool is regular section analysis [11].

Regular section descriptors (RSDs) are used to concisely

characterize the array accesses in a loop nest. RSDs rep-

resent the accessed data as linear expressions of the upper

and lower loop bounds along each dimension, and include

stride information.

For each statement p in the program, for each de�nition

or reference in p to an indirection array, a section is con-

structed. A fREADg, fWRITEg, or fREAD&WRITEg tag is asso-

ciated with the section depending on the access type. This

section is associated with each element of F that directly

precedes p.

During the program transformation phase, for each f

in F , if there are access descriptors associated with f , a

Validate is inserted at f . Each access descriptor is then

supplied as a parameter to Validatewith either a DIRECT or

INDIRECT type. If the type is INDIRECT, the base address of

the shared data is supplied to the Validate call, along with

the RSD for the indirection array as the section parameter.

See Figure 2 for the results of the analysis and the trans-

formations on the moldyn program. Since we do not have

interprocedural analysis, the relevant fetch point is entry to

the procedure ComputeForces. The sections of the indirec-

tion array interaction list are used to fetch the corre-

sponding page sets of the data array x. After the initial ex-

ecution of Validate, interaction list is write protected.

When the interaction list is modi�ed UPDATE INTERVAL itera-

tions later, a memory protection violation occurs. The han-

dler for this memory protection violation sets a ag. During

the next execution of Validate, if the ag is set, modified

clears the ag and returns true, and Validate recomputes

the set of pages that must be fetched.

4 CHAOS

CHAOS [19] is a run-time library designed to handle irregu-

lar applications on distributed memory machines. There are

three steps in solving irregular problems in CHAOS, namely,

data and iteration partitioning, the inspector, and the ex-

ecutor.

CHAOS supports a number of parallel partitioners that

partition data arrays using heuristics based on spatial po-

sition, computational load, etc. The partitioner returns a

translation table, which contains an irregular assignment of

array elements to processors. A translation table lists the

home processor and o�set address of each data array ele-

ment. Depending on storage requirements, the translation

table can be replicated, distributed regularly, or stored in
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a paged fashion. This table is used by the inspector to

create the communication schedule. If the translation ta-

ble is not replicated, communication may be necessary in

the inspector. The loop iterations are partitioned by the

almost-owner-computes rule, which assigns an iteration to

the processor that owns a majority of data array elements

accessed in that iteration. The data array can be remapped,

so that data elements owned by a processor are adjacent in

memory. Remapping has the potential advantage that the

memory requirement on a processor is proportional to the

size of the data partitions assigned to it.

The Recursive Coordinate Bisection (RCB) partitioner is

one specialized partitioner supported by the CHAOS library

that partitions nodes according to their physical positions.

When simulating physical systems, particles close to each

other in the physical space are more likely to interact with

each other, or to be connected with each other. RCB results

in less communication than a simple BLOCK or CYCLIC

partition on these applications.

Each processor executes the inspector to construct its

communication schedule. A communication schedule speci-

�es which data is communicated and which processors are in-

volved. The inspector constructs the communication sched-

ule by �rst determining the data read and written on each

processor and then consulting the translation table to de-

termine the global placement of this data according to the

partition. An important optimization in the inspector is to

eliminate duplication. Duplication occurs when a data array

element is pointed to by many elements in the indirection

array. Removing duplication can dramatically reduce the

amount of data communicated. A hash table whose size is

proportional to the size of the data array is employed to

eliminate duplicates. Because of the time to hash the indi-

rection array, and the time to look up the translation table,

the inspector can be expensive. However, this overhead can

be amortized if the indirection array remains unchanged for

a long period of time.

The executor uses the communication schedule gener-

ated by the inspector to gather and scatter data. Gather

fetches o�-processor data, and scatter propagates modi�-

cations to o�-processor data back to their owners.

5 Experimental Evaluation

We use an 8-processor IBM SP2 running AIX version 3.2.5.

Each processor is a thin node with 64Kbytes of data cache

and 128Mbytes of main memory. Interprocessor communi-

cation is accomplished over the IBM SP2 high-performance

switch. Unless indicated otherwise, all results are for 8-

processor runs.

We compare the compiler-optimized TreadMarks pro-

grams with the hand coded CHAOS programs, as well as the

base TreadMarks programs. The compiler-optimized Tread-

Marks programs include optimizations for both regular and

irregular access patterns. Tables 1 and 2 present the execu-

tion times, speedups, number of messages and the amount of

data communicated at 8 processors for the two applications

discussed in this paper.

5.1 Moldyn

Moldyn is a molecular dynamics simulation. Its computa-

tional structure resembles the non-bonded force calculation

in CHARMM [3], which is a well-known molecular dynamics

code used at NIH to model macromolecular systems. Non-

bonded forces are long-range interactions existing between

each pair of molecules. CHARMM approximates the non-

bonded calculation by ignoring all pairs which are beyond a

certain cuto� radius. The cuto� approximation is achieved

by maintaining an interaction list of all the pairs within the

cuto� distance, and iterating over this list at each timestep.

The interaction list is used as an indirection array to identify

interacting partners. Since molecules change their spatial

location every iteration, the interaction list must be period-

ically updated. Figure 1 illustrates the program structure

of moldyn, and the force computation subroutine.

The CHAOS program uses the RCB partitioner to assign

molecules to processors. This partition lasts through the ex-

ecution. When the interaction list is updated, the program

must again call the inspector to identify interacting part-

ners. This call is inserted in the main program, right after

the call to subroutine build interaction list. In Com-

puteForces, each processor uses the schedule created by the

inspector to gather remote values of x and forces before the

main loop. Both x and forces are modi�ed elsewhere, ne-

cessitating the gather. After the main loop, the processors

again use the schedule to scatter values of forces that will

be read by other processors.

The TreadMarks program also uses the RCB partitioner.

The coordinate array x and the forces array are allocated

in shared memory. A Validate on x that was inserted by the

compiler appears at the beginning of the subroutine Com-

puteForces. That is, the Validate is before the loop over the

interaction list. Changes to the interaction list are detected

by write protecting the pages it occupies (inside Validate).

An explicit inspector call is hence not needed. In Compute-

Forces, each processor �rst accumulates its contributions

to forces in the local forces array (see Figure 2) that

is stored in private memory. After local forces is com-

puted, the processors update the shared forces in a pipelined

fashion in nprocs steps. In each step, a processor updates

1=nprocs of the total data.

In TreadMarks, the local forces array is indexed by

the molecule number without any translation. Thus the

local forces array is proportional in size to the total num-

ber of molecules. In CHAOS, remapping creates an analog

to the local forces array that is proportional in size to

the molecules assigned to that processor plus the molecules

they interact with. For the default data set, which we used

in our experiments, between 31% and 53% of the molecules

interact. Consequently, remapping has little e�ect on the

memory utilization of the CHAOS program.

5.1.1 Results

We simulated 16384 particles for 40 iterations, varying the

number the times the interaction list is updated from 1

through 3. The results are presented in Table 1. The data

initialization (and the data partitioning for the parallel pro-

grams) are not timed for either the sequential or parallel

versions.

We �rst present results for the case where the interaction

list is updated once, at the 20

th

iteration. The sequential

program without any calls to CHAOS or TreadMarks runs

for 267 seconds. The TreadMarks execution time on a sin-

gle processor is almost identical to that of the sequential

program, spending only 0.4 seconds to check the indirection

lists. On the other hand, the CHAOS program runs longer

on a single processor than the sequential program, because

it spends 6.2 seconds in the inspector.

At eight processors, the CHAOS program runs for 44.9

seconds. We were unable to use a replicated translation ta-
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Update frequency Time (sec.) Speedup Messages Data (MB)

CHAOS 44.9 6.0 15704 190

Every 20 iterations Tmk base 42.3 6.3 62149 160

(seq = 267.2 sec) Tmk optimized 37.7 7.1 14528 137

CHAOS 61.7 5.9 16255 243

Every 15 iterations Tmk base 56.4 6.5 70230 179

(seq = 365.8 sec) Tmk optimized 48.9 7.5 14687 141

CHAOS 78.2 6.0 16806 296

Every 11 iterations Tmk base 68.1 6.9 71788 190

(seq = 467.3 sec) Tmk optimized 60.4 7.7 14871 145

Table 1: Moldyn - 8 processor results. The interaction list is updated at varying intervals.

ble, owing to the amount of memory that it required. The

translation table is hence distributed, necessitating commu-

nication in the calls to the inspector. In the case where the

interaction list is updated at the 20

th

iteration, the inspec-

tor is called twice, including once at the beginning of the

program. Each processor spends 4.6 seconds in the inspec-

tor. Exchanging the translation tables causes the transfer

of 85Mbytes of data in 878 messages.

The base TreadMarks program (without any compiler

support) runs for 42.3 seconds on eight processors. Tread-

Marks is able to achieve a performance comparable to CHAOS

because of the large problem size, and the good data locality

provided by the RCB partitioner. However, the number of

messages sent in TreadMarks is three times more than that

in CHAOS. The reason is that TreadMarks obtains data one

page at a time, while CHAOS sends all the data needed by

a processor in a single message.

With the compiler optimizations, the TreadMarks run-

ning time comes down to 37.7 seconds, which is an 11%

improvement over the base TreadMarks. Of this improve-

ment, 7 percentage points come from the communication

aggregation for regular accesses. The remaining 4 percent-

age points come from the compiler inserted call to Validate

for the indirect accesses. The optimized TreadMarks pro-

gram sends 23 Mbytes less data than the base TreadMarks

program because the reductions in the base program cause

multiple overlapping di�s to be sent for each di� request.

In the optimized program, on encountering a reduction, the

compiler recognizes read{write accesses to an entire regular

section. It then ags via Validate that the entire page, and

not the di�, must be sent on a di� request. This reduces the

amount of data sent as compared to the base TreadMarks

program. The optimized TreadMarks program spends 0.6

seconds in Validate to check the indirection array.

When the interaction list is updated more often, the run-

ning times increase because of the time taken to rebuild the

interaction list. CHAOS su�ers from having to rerun the

inspector. When the interaction list is updated every 11

iterations, CHAOS spends 9.2 seconds per processor on av-

erage in the inspector, while TreadMarks spends only 0.8

seconds in scanning the indirection list. As a result, the

optimized TreadMarks program is 23% faster than CHAOS.

5.2 NBF

NBF is the kernel of a molecular dynamics simulation. It

is taken from the GROMOS benchmark [10]. It was pre-

viously used as an example to demonstrate compiler gener-

ated message passing programs [22]. Instead of keeping a

list of pairs of interacting molecules like moldyn, nbf keeps

a list of interacting partners for each molecule. The lists of

partners are concatenated together, with a per molecule list

pointing to the end of each molecule's partners in the part-

ner list. For each molecule, the program goes through the

list of partners, and updates the forces on both a molecule

and its partner based on the distance between them. In our

experiments, the partner list is static. Each molecule has

approximately the same number of partners, and the part-

ners of each molecule spread evenly in about 2=3 of the total

space. Because each molecule has about the same number

of neighbors, a simple BLOCK partition su�ces to balance

the load.

In the CHAOS program, the inspector is called at the

beginning of the program, outside the loop simulating the

time steps. At the start of each time step, a gather is called

to collect the updated values of coordinates from remote

processors. A scatter is invoked at the end of each time

step to propagate the modi�cations to the force array.

The TreadMarks program allocates both the coordinate

array and the force array in shared memory. A Validate is

performed at the start of each time step to fetch the updated

values of the coordinate array. Like moldyn, updates to

the forces are accumulated in private memory. After this

computation, the processors update the shared forces in a

pipelined fashion. The update is performed in nprocs steps.

In each step, a processor updates 1=nprocs of the total data.

For the data set which we used in our experiments, 84%

of the molecules interact. Consequently, remapping yields

little reduction in the memory utilization of the CHAOS

program.

5.2.1 Results

We ran nbf with varying numbers of molecules for the in-

put problem size (see Table 2). Each molecule is represented

by a double precision oating point number. Each molecule

has 100 partners. The distance between two adjacent part-

ners of a molecule is about 470 molecules. The test runs

for 11 iterations, of which the last 10 iterations are timed.

Thus, the results include neither the time to perform the

inspector in the CHAOS version nor the time for checking

the partner array in the TreadMarks program.

The unmodi�ed (original) sequential program runs for

78.3 seconds with a problem size of 64 � 1024. The single-

processor TreadMarks execution time is almost identical to

that of the sequential program, spending only 0.001 seconds

in scanning the indirection array. On the other hand, the

CHAOS program runs longer on a single processor than the
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Problem Size Time (sec.) Speedup Messages Data (MB)

CHAOS 10.9 7.2 2014 60

64 � 1024 Tmk base 19.6 4.0 34421 212

(seq = 78.3 sec) Tmk optimized 12.1 6.5 4817 68

CHAOS 10.6 7.2 2014 59

64 � 1000 Tmk base 19.4 3.9 36278 209

(seq = 76.5 sec) Tmk optimized 12.3 6.2 4920 76

CHAOS 5.5 7.1 2014 30

32 � 1024 Tmk base 9.1 4.3 18095 106

(seq = 39.1 sec) Tmk optimized 6.2 6.3 3851 34

Table 2: NBF Kernel - 8 processor results.

sequential program, because it spends 7.3 seconds in the

inspector.

At eight processors, the CHAOS program and the opti-

mized TreadMarks program run for 10.9 seconds and 12.1

seconds, respectively. The inspector is not included in the

timing for CHAOS. The main reason for the 10% di�er-

ence is that CHAOS pushes the data to the processors that

will use it in one message, while TreadMarks uses request{

response communication (necessitating two messages). The

13% extra data sent in TreadMarks is due to false sharing.

Although we excluded the time to run the inspector from

the timing, it is important to note that at eight processors,

the CHAOS program spends 5.2 seconds per processor to

create the schedule. In contrast, the TreadMarks program

only spends 0.3 seconds going through the indirection array.

The compiler optimizations reduce the execution time of

the base TreadMarks version by 38%. Of this reduction, 34

percentage points come from optimizations in the regular

part of the code, such as the pipelined reduction. These

optimizations reduce both the number of messages and the

amount of data sent in the program. The remaining 4 per-

centage points come from prefetching the data for the irreg-

ular accesses at the beginning of each time step.

Reducing the problem size to 32�1024 does not a�ect the

relative performance of TreadMarks and CHAOSmuch. The

di�erence in performance comes from TreadMarks having to

request data, as in the case of the 64 � 1024 problem size.

Changing the data set size to 64 � 1000, we introduce false

sharing at the boundary between pairs of processors. In

this case, the optimized TreadMarks program is 14% slower

than the CHAOS program, because of the extra messages

and data caused by false sharing. However, the cost of the

inspector in CHAOS overshadows the performance loss from

false sharing in TreadMarks.

6 Related Work

A large number of studies have been published on the perfor-

mance of distributed shared memory and inspector-executor

systems, but, to the best of our knowledge, only one paper

has been published comparing the two approaches. Mukher-

jee et al. [16] compare the CHAOS inspector-executor sys-

tem to the TSM (transparent shared memory) and the XSM

(extendible shared memory) systems, both implemented on

the Tempest interface [17]. Three applications are used:

moldyn, unstructured, and DSMC, and the comparison is

done on a 32-processor CM-5. They conclude that TSM

is not competitive with CHAOS, while XSM achieves per-

formance comparable to CHAOS after introducing several

special-purpose protocols.

Our study di�ers from the cited paper in several aspects.

First, our transparent shared memory system (TreadMarks)

performs signi�cantly better than TSM. We attribute this

di�erence in performance to TreadMarks' use of lazy re-

lease consistency and multiple writer protocols, in contrast

to the sequential consistency and single writer protocols

used in TSM. Second, we use a compiler to optimize the

shared memory programs, rather than relying on handcoded

special-purpose protocols. As indicated in our study, the

compiler analysis necessary is relatively straightforward.

Our study is also related to the many papers on prefetch-

ing and aggregation. In particular, Mowry et al. [15] use a

somewhat similar strategy to prefetch and aggregate disk

requests for sequential programs, and Dwarkadas et al. [8]

study prefetching and aggregation for regular applications

in software distributed shared memory systems.

7 Conclusions

We have described an integrated compile-time/run-time ap-

proach for executing irregular computations on distributed

memory machines. This approach is based on a modi�ed

software distributed shared memory layer, and fairly sim-

ple compile-time support. The only required compile-time

support is regular section analysis of the indirection arrays.

Run-time support for dynamic detection of changes to the

indirection array, as well as to the shared data, eliminates

any unnecessary computation and communication. Further-

more, the communication by each processor is aggregated

into fewer message exchanges.

We measured this approach for two irregular applica-

tions, moldyn and nbf, using the TreadMarks DSM system

on an 8-processor IBM SP2. We �nd that it has similar per-

formance to the inspector-executor method supported by

the CHAOS run-time library, while requiring much simpler

compile-time support. For moldyn, it is up to 23% faster

than CHAOS, depending on the input problem's character-

istics; and for nbf, it is no worse than 14% slower. The

advantage of the software DSM-based approach increases as

the frequency of changes to the indirection array increases.

The disadvantage of this approach is the potential for false

sharing overhead when the data set is small or has poor spa-

tial locality. In addition, in both moldyn and nbf, the soft-

ware DSM-based approach eliminated substantial inspector

overheads. For both applications, the software DSM-based

approach is always faster than CHAOS if we include the

execution time of the inspector.
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