
Shielding Software From Privileged Side-Channel Attacks

Xiaowan Dong
University of Rochester

Zhuojia Shen
University of Rochester

John Criswell
University of Rochester

Alan L. Cox
Rice University

Sandhya Dwarkadas
University of Rochester

Abstract
Commodity operating system (OS) kernels, such as Win-
dows, Mac OS X, Linux, and FreeBSD, are suscepti-
ble to numerous security vulnerabilities. Their mono-
lithic design gives successful attackers complete access
to all application data and system resources. Shield-
ing systems such as InkTag, Haven, and Virtual Ghost
protect sensitive application data from compromised OS
kernels. However, such systems are still vulnerable to
side-channel attacks. Worse yet, compromised OS ker-
nels can leverage their control over privileged hardware
state to exacerbate existing side channels; recent work
has shown that a compromised OS kernel can steal entire
documents via side channels.

This paper presents defenses against page table and
last-level cache (LLC) side-channel attacks launched by
a compromised OS kernel. Our page table defenses re-
strict the OS kernel’s ability to read and write page table
pages and defend against page allocation attacks, and our
LLC defenses utilize the Intel Cache Allocation Technol-
ogy along with memory isolation primitives. We proto-
type our solution in a system we call Apparition, building
on an optimized version of Virtual Ghost. Our evalua-
tion shows that our side-channel defenses add 1% to 18%
(with up to 86% for one application) overhead to the op-
timized Virtual Ghost (relative to the native kernel) on
real-world applications.

1 Introduction

Bugs in commodity operating system (OS) kernels, such
as Windows [60], Mac OS X [64], Linux [15], and
FreeBSD [54], render them vulnerable to security attacks
such as buffer overflows and information leaks. Further-
more, their monolithic architecture provides high perfor-
mance but poor protection: a single vulnerability may
give an attacker control over the entire OS kernel, allow-
ing the attacker to steal and corrupt any data on the sys-
tem. To reduce the size of the trusted computing base

(TCB) on commodity systems, software solutions (such
as InkTag [40] and Virtual Ghost [26]) and hardware so-
lutions (such as Intel SGX [42], ARM TrustZone [11],
and Haven [12]) prevent the OS kernel from reading and
corrupting application data.

Despite these protections, attackers can steal applica-
tion data using side-channel attacks that exploit shared
hardware resources [38] or interactions between applica-
tion code and the OS kernel [73]. Worse yet, a compro-
mised OS kernel can exacerbate these side channels by
manipulating software state, e.g., via CPU scheduling,
and by configuring privileged hardware resources, e.g.,
the processor’s interrupt timer and memory management
unit (MMU) [38, 73]. Shielding systems must mitigate
side-channel attacks if they are to protect the confiden-
tiality of application data.

In this paper, we present methods to defend against
page table and last-level cache (LLC) side-channel at-
tacks launched by a compromised OS kernel. Our meth-
ods require no changes to existing processors. A mali-
cious OS kernel may infer victims’ memory access pat-
terns and in turn recover secret information via tracing
page table updates or page faults, or measuring the vic-
tims’ cache usage patterns [43, 52, 63, 73]. To eliminate
page table side channels, our key insight is that trusted
software should prevent the OS kernel from reading or
manipulating page table entries (PTEs) for memory hold-
ing application secrets. To thwart LLC side-channel at-
tacks, we leverage Intel’s Cache Allocation Technology
(CAT) [4] in concert with techniques that prevent physi-
cal memory sharing.

Since our solution must prevent physical memory
sharing, control configuration of the Intel CAT feature,
and prevent reading and writing of page table pages,
we implement our solution by enhancing Virtual Ghost.
Virtual Ghost [26] already controls an OS kernel’s ac-
cess to page tables and to privileged hardware regis-
ters. It also provides private memory in which an ap-
plication can store sensitive information and prevents

sharing of physical memory containing application se-
crets. As Virtual Ghost is based on Secure Virtual Ar-
chitecture (SVA) [28], we can combine our solution with
other security policies enforced by SVA (such as memory
safety [27,28]). Our solution does not change the Virtual
Ghost paravirtualization interface and therefore requires
no changes to existing SVA software and hardware.

We prototype our changes in a new version of Virtual
Ghost dubbed Apparition. Apparition is optimized rela-
tive to the original Virtual Ghost by using Intel Memory
Protection Extensions (MPX) [4] to reduce software fault
isolation (SFI) overheads and by eliminating serializing
instructions (which reduce instruction-level parallelism)
added by the original Virtual Ghost to control page table
access.

To summarize, our contributions are as follows:

• We show that using MPX for SFI and eliminating
serializing instructions when accessing page table
pages improves performance by up to 2× relative to
the original Virtual Ghost.

• We design, implement, and evaluate a defense
against page table side-channel attacks in Appari-
tion that leverages Apparition’s control over the
page table pages.

• We show how Apparition’s control over privileged
hardware state can partition the LLC to defeat cache
side-channel attacks. Our defense combines Intel’s
CAT feature [4] (which cannot securely partition
the cache by itself) with existing memory protec-
tions from Virtual Ghost [26] to prevent applica-
tions from sharing cache lines with other applica-
tions or the OS kernel.

• We present a design that eliminates side-channel at-
tacks that infer code memory accesses by control-
ling interrupt, trap, and system call dispatch, con-
text switching, and native code generation.

• We evaluate the performance of Apparition, study
the sources of its overheads, and compare it to the
performance of Virtual Ghost enhanced with our
new optimizations. Using native FreeBSD as the
baseline, we find that Apparition adds 1% to 18%
overhead to this version of Virtual Ghost on the real-
world applications we tested except for one real-
world program that experiences up to 86% addi-
tional overhead.

The rest of the paper is organized as follows. Section 2
describes our attack model. Section 3 provides back-
ground on memory management side channels along
with potential/possible attacks. Section 4 provides back-
ground on Virtual Ghost and explains how we improved

its performance. Section 5 describes the design of our
mitigations against page table and cache-based side-
channel attacks, and Section 6 discusses how our work
mitigates some of the recent speculative execution side-
channel attacks. Section 7 describes our prototype im-
plementation. Section 8 presents the results of our ex-
perimental evaluation. Section 9 discusses related work,
and Section 10 summarizes our contributions.

2 Attack Model

Our attack model assumes a strong attacker that controls
the OS kernel and wishes to steal application data. Due to
defenses like Virtual Ghost [26], this attacker cannot di-
rectly read application memory. We assume that the ap-
plication and the libraries that it uses are part of the TCB
for that application’s security policy; that the application
author has taken measures to ensure that the application
and its libraries are safe from direct attack, e.g., by using
security hardening tools [33, 56] or type-safe program-
ming languages, and that the application and its libraries
protect themselves from Iago attacks [17] by distrusting
return values from the OS. We also assume that the at-
tacker cannot gain physical access to the machine. Under
such conditions, side-channel attacks become attractive.

We assume that the attacker will attempt to use side
channels, either via a malicious user-space process or
via malicious code within the OS kernel itself. We fo-
cus on page table side-channel [63, 73] and LLC side
channel [13, 43, 52, 76, 79] attacks launched by software
because of their practicality. These side channels may
leak information on the program’s accesses to data and/or
code memory. Speculative execution side channels are
outside our attack model’s scope, but we discuss how
our system can mitigate some of the Meltdown [49] and
Spectre [46] side channels in Section 6. Side-channel at-
tacks launched by hardware are outside the scope of our
attack model.

3 Side-Channel Attacks

Side-channel attacks exploit implicit information flows
within modern processors [36–38, 43, 52, 58, 63, 69, 73]
to steal sensitive application data. The memory manage-
ment side channels fall into two categories: ones result-
ing from shared architectural states and ones due to the
OS’s control of memory management.

Modern systems share architectural states across pro-
cesses, including translation lookaside buffers (TLBs),
translation caches, CPU caches, memory controllers,
memory channels, DIMMs, and DRAM ranks and banks.
The shared state allows one process to indirectly infer an-
other process’s behavior without direct access to the vic-

tim process’s data. Observing which code or data a vic-
tim process accesses allows attackers to infer protected
application data [37, 38, 58, 69].

A compromised OS can leverage its complete control
over privileged processor state to create additional side
channels. For example, the OS can steal a victim pro-
cess’s secret information by tracing page faults, page ta-
ble updates, and cache activities [38, 73]. It can control
system events to alleviate noise and use a side channel to
steal an application’s secret data with a single execution
of the victim’s code [38, 63, 73].

Systems that protect applications from the OS kernel
like Virtual Ghost [26], Overshadow [20], InkTag [40],
and Haven [12] do not mitigate these side channels; the
architectural states are still shared among processes, and
the OS kernel has access to or even controls the page ta-
ble on these systems. In this section, we explain the page
table [63, 73], LLC [43, 52], and instruction tracing [73]
side-channel attacks that Apparition mitigates.

3.1 Page Table Side Channels
Commodity OS kernels can configure page tables, inter-
cept and process page faults, and query the virtual ad-
dress causing a page fault [15, 54, 60, 64]. With these
abilities, a compromised OS can monitor which virtual
addresses a victim process accesses and, with knowledge
of the application’s source code, infer its secret informa-
tion [73]. Recent research [63, 73] shows that a compro-
mised OS can use its ability to configure the page table
to launch page fault side-channel attacks to acquire sen-
sitive application data protected by Intel SGX [23, 42].
The attack is powerful enough to steal a document and
outlines of JPEG images from a single execution of ap-
plications protected by InkTag [40] and Haven [12].

More specifically, the OS kernel can use the methods
below to infer information about an application’s mem-
ory access patterns via the virtual-to-physical address
translation mechanism:

Swapping If the OS kernel cannot directly modify the
PTEs for pages containing private application data, it can
indirectly mark the pages inaccessible if the shielding
system provides the OS with a mechanism to swap pages
out and back in. The OS can use the mechanism to swap
a page out and then infer the memory access patterns of
applications by monitoring when the shielding system re-
quests the OS to swap the page back in. Systems such as
InkTag [40] and Virtual Ghost [26] provide mechanisms
for swapping that prevent direct data theft via encryption
but do not mitigate swapping side channels.

Reading PTEs If the OS kernel cannot modify PTEs
and cannot swap out pages, it can still infer an applica-

tion’s memory access patterns by reading PTEs as the
application executes. Many processors set a dirty bit in
the PTE when they write to a page. Processors may also
set an accessed bit when they read from or write to a
page. By continually examining PTEs, the OS can learn
when an application first reads from and writes to various
memory locations [67]. On multi-processor and multi-
core systems, the compromised OS can scan the page
tables (which reside in memory) on one core while the
application executes on another core.

Inferring Caching of Translations A compromised
OS can potentially infer a victim’s memory access pat-
terns using PRIME+PROBE [8–10, 38, 58, 66, 78] and
FLUSH+RELOAD [13,76,79] cache side-channel attacks
on caches holding virtual-to-physical address transla-
tions. Processors cache virtual-to-physical address trans-
lations in TLBs [3, 4], on-chip translation caches [4, 14],
and CPU caches in the memory hierarchy [2,3]. If a com-
promised OS can use the same virtual-to-physical trans-
lation caches as the application or determine if a PTE
is already cached in the processor’s memory caches, it
can infer information on whether the application has used
that page.

We observe that successfully mitigating page table
side channels requires protecting both the confidentiality
and integrity of virtual-to-physical address translations.

3.2 Cache Side Channels
Cache side-channel attacks infer secret data by measur-
ing the cache usage patterns of the victim [36–38,43,52,
58, 76, 79]. Two common cache side-channel attacks are
PRIME+PROBE [58] and FLUSH+RELOAD [76], both of
which can be applied on private caches [58] and shared
LLC [43, 52].

The PRIME+PROBE attack [58] fills the monitored
cache set with its own cache lines, busy-waits for a
set time, and measures the time it takes to access its
cache lines again. A longer access time indicates that
the attacker’s cache line has been evicted by a vic-
tim’s access to data mapping to the same cache set.
The FLUSH+RELOAD attack [76] is a variant of the
PRIME+PROBE attack that relies on the victim and the
attacker sharing pages containing target cache lines.
Page sharing is common for shared libraries. The at-
tacker first flushes the target cache line e.g., with the
clflush instruction, busy-waits for a set time, and mea-
sures the time it takes to access the target cache line. A
shorter access time indicates that the victim has already
reloaded this target cache line.

LLC side-channel attacks can achieve a high attack
resolution without requiring the attacker and the victim
to share the same core [52]. Cache partitioning [35, 44,

50, 61, 70, 71, 80] can mitigate cache side channels by
preventing the attacker from evicting the victim’s cache
lines. However, existing work assumes an unprivileged
user-space attacker [70, 71, 80] or a virtual machine at-
tacking its neighbors [35,44,50,61,80] and relies on priv-
ileged code to configure and manage the partitioning.

These defenses are ineffective against a compromised
OS kernel. A compromised OS kernel can assign the
same page color to the attacker and the victim or con-
figure the hardware so that the attacker and the victim
share the same cache partition. The OS kernel could even
launch cache side-channel attacks itself. Therefore, our
cache partitioning defenses must prevent malicious priv-
ileged code from manipulating cache partitions as well
as from sharing partitions with protected applications.

3.3 Instruction Tracing Side Channels

We have so far presented side-channel attacks that at-
tempt to infer data memory accesses. However, the in-
struction sequence executed by a program may also leak
information about application secrets if there is a con-
trol dependence on data that the application wishes to
keep secret i.e., an implicit flow [32]. A compromised
OS could exploit side channels to trace instruction ex-
ecution in a number of ways. If the shielding system
neglects to hide an application’s saved program counter
when an interrupt, trap, or system call occurs, the OS
could configure the processor timer to mimic single-step
execution [38] and read the program counter as each in-
struction is executed. If that is not possible, the OS could
use a page fault or cache side-channel attack on applica-
tion code memory instead of (or in addition to) appli-
cation data memory. Previous work has used page fault
side channels [73] to infer when instructions are executed
and, from that, to infer secret data from an application.

4 Virtual Ghost Improvements

Apparition extends Virtual Ghost. As Figure 1 shows,
Virtual Ghost [26] is a compiler-based virtual machine,
built from SVA [28], interposed between the software
stack and the hardware. We present Virtual Ghost’s de-
sign and then describe two performance improvements
we made to Virtual Ghost that are present in Apparition.

4.1 Design

The OS kernel on a Virtual Ghost system is compiled to
a virtual instruction set (V-ISA) [26]. The Virtual Ghost
Virtual Machine translates virtual instructions to the na-
tive instruction set (N-ISA) for execution. Virtual Ghost
can sign and cache native code translations to provide

Figure 1: Virtual Ghost Architecture

ahead-of-time compilation, or it can translate code at sys-
tem install time, boot time, or just-in-time. Virtual Ghost
forces all OS kernel code to be in V-ISA form. Applica-
tion code can be in either V-ISA or N-ISA form.

The V-ISA consists of two sets of instructions [26].
The SVA-Core instructions are based on the LLVM Inter-
mediate Representation (IR) [47], which uses static sin-
gle assignment (SSA) form [30] to enable efficient static
analysis of code. However, the original LLVM IR cannot
support a complete OS kernel, so SVA provides a sec-
ond set of instructions, SVA-OS [29], which allows the
OS kernel to configure privileged hardware state, e.g.,
the MMU, and manipulate program state, e.g., context
switching. The SVA V-ISA enables Virtual Ghost [26]
to use compiler techniques to enforce security policies.
Virtual Ghost can add run-time checks while translat-
ing code from the V-ISA to the N-ISA; the SVA-OS in-
structions can help enforce security policies by restrict-
ing hardware configuration and state manipulation.

Via compiler instrumentation and run-time checks,
Virtual Ghost can provide applications with the func-
tionality they need to protect themselves from a compro-
mised OS kernel [26]. One such feature is ghost memory.
For each process, Virtual Ghost divides the virtual ad-
dress space into four regions as Figure 2 depicts. There
is user-space memory that an application and the OS ker-
nel can use to communicate; both can read and modify
it. There is also kernel memory, which the OS kernel can
read and write. Unlike existing systems, Virtual Ghost
prevents user-space memory and kernel memory from
being executable; they do not contain executable native
code. Virtual Ghost adds a new ghost memory region that
only the application can read and modify and can there-
fore use to hold sensitive data. Finally, there is the Vir-
tual Ghost VM memory region in which Virtual Ghost
stores its own data structures, the native code transla-
tions it creates for V-ISA code, and the code segments
of N-ISA application code. Pages containing native code
are mapped as execute-only while all other Virtual Ghost
VM memory regions are inaccessible to applications and
the kernel.

With these features, programmers can write ghosting
applications for Virtual Ghost systems that actively pro-
tect themselves from the OS kernel: applications can

Figure 2: Virtual Ghost Address Space Layout

store all their data and encryption keys inside ghost mem-
ory to prevent theft and tampering, and they can use en-
cryption and digital signatures to maintain data confiden-
tiality and integrity when sending data into or receiving
data from the operating system’s I/O systems [26]. Since
Virtual Ghost generates all the native code that is exe-
cuted on the system [26], it can place that code into the
Virtual Ghost VM memory and protect its integrity from
both the OS kernel and errant applications.

Virtual Ghost employs SFI [68] to protect the con-
fidentiality and integrity of ghost memory and Virtual
Ghost VM memory [26]. It adds a set of bit-masking
and predicated instructions before every load and store
within the OS code to ensure that every pointer used in a
load or store operation points into either user- or kernel-
space memory. Additionally, by placing interrupted pro-
gram state in the Virtual Ghost VM memory during in-
terrupt, trap, and system call dispatch, Virtual Ghost can
protect saved processor state using SFI. However, as Vir-
tual Ghost allows the OS kernel to read page tables, it
does not place them in Virtual Ghost VM memory. In-
stead, it maps page table pages as read-only memory by
the OS and makes the OS use SVA-OS instructions to
modify them, thereby preserving the integrity of the page
table pages. Finally, Virtual Ghost employs control flow
integrity (CFI) [7] to ensure that the SFI instrumentation
is not bypassed.

We have enhanced the performance of Virtual Ghost
with two new optimizations, which we include in Ap-
parition. First, our prototype uses the Intel MPX bounds
checking instructions [4] to implement faster SFI. Sec-
ond, we refactored how Virtual Ghost protects page table
pages to reduce the number of serializing instructions.

4.2 Intel Memory Protection Extensions

Intel’s MPX [4] was originally designed to accelerate
memory safety enforcement via hardware support. MPX
enhances the processor with four bounds registers, each
of which maintains the lower and upper bounds of a sin-
gle memory object. Bounds checking instructions check
a virtual address against either the lower or upper bound
of the specified bounds register and generate a trap if the
virtual address does not reside within the bounds.

Virtual Ghost uses SFI to ensure that the kernel does
not access ghost memory and VM memory regions while
allowing access to user- and kernel-memory regions. To

Figure 3: Address Space Layout Seen by Intel MPX

implement SFI using MPX, we treat the combined user-
and kernel-space regions as a single large memory ob-
ject; the Virtual Ghost VM can then replace SFI’s bit-
masking and predicated instructions before every load
and store within the kernel with MPX bounds checking
instructions.

One challenge with efficiently using MPX is that the
user- and kernel-memory regions are not contiguous.
Furthermore, since their current placement enables the
compiler to use more efficient addressing modes on x86-
64, moving them to make them contiguous could nega-
tively impact performance.

To address this issue, each run-time check before
a load or store first subtracts the length of user-space
memory (denoted gstart) from the address that is to be
checked. This makes the user- and kernel-space regions
appear contiguous (as Figure 3 shows). MPX bounds
checks can then be used by setting the base and bound
registers to the remapped values of the start of kernel-
space and the end of user-space memory. If the access
is outside of kernel and user space, the processor gener-
ates a trap into the Virtual Ghost VM which handles the
out-of-bounds error.

4.3 SVA Internal Direct Map

A direct map is a range of virtual pages that are mapped
to consecutive physical addresses, i.e., the first page to
the first physical frame of memory, the second page to
the second physical frame, and so forth. With a strate-
gically placed direct map, an OS kernel can quickly find
a virtual address mapped to a specific physical address
by applying a simple bitwise OR operation to the phys-
ical address [15]. Operating systems such as Linux and
FreeBSD use the direct map to write to page table pages.
Since Virtual Ghost must control how the processor’s
MMU is configured [26], it originally mapped page ta-
ble pages in the OS kernel’s direct map for read-only ac-
cess, and when an SVA-OS instruction needed to update
the page tables, it temporarily cleared the x86 CR0.WP
bit to disable the MMU’s enforcement of write protec-
tion, thereby allowing the Virtual Ghost VM to modify
the page table.

We have found that this method incurs significant
overhead as flipping CR0.WP is a serializing operation
that interferes with instruction-level parallelism [4]. This
caused Virtual Ghost’s page table updates to be much

slower than those of a conventional OS kernel, decreas-
ing the speed of process creation and termination, de-
mand paging, and the execution of new programs.

Apparition eliminates the need for modifying
CR0.WP by placing a direct map of physical memory
within the Virtual Ghost VM memory that provides write
access to all physical frames, including page table pages.
When Virtual Ghost needs to update a PTE, it simply
modifies the entry via its internal direct map instead of
flipping CR0.WP to toggle the write protection on the
OS kernel’s direct map. Since this internal direct map
is within Virtual Ghost VM memory, the existing SFI
mechanism prevents the OS kernel from altering it.

5 Side-Channel Mitigations

We now present our design for mitigating page table,
LLC, and instruction tracing side-channel attacks.

5.1 Page Table Side Channels

To mitigate the page table side-channel attacks described
in Section 3.1, a system must protect both the confiden-
tiality and integrity of the page table pages. Apparition
must therefore enforce several restrictions.

Page Table Restrictions Apparition must prevent the
OS from modifying PTEs that map ghost memory. Oth-
erwise, the OS can unmap ghost memory to track the
program’s memory accesses via page faults. Likewise,
Apparition must ensure that page frames used for ghost
memory are not mapped into virtual memory regions that
the OS can access; Virtual Ghost already enforces these
constraints [26].

Apparition must additionally prevent the OS from
reading PTEs (and therefore the corresponding page ta-
ble pages) that map ghost memory. This prevents the OS
from observing updates to PTEs caused by ghost mem-
ory allocation, deallocation, and swapping and from in-
ferring information when the processor sets the accessed
or dirty bits in PTEs for ghost memory.

To enforce these restrictions, we exploit the hier-
archical, tree-like structure of x86 page tables. Vir-
tual Ghost allows the OS kernel to directly read all
PTEs but forces the kernel to modify PTEs with the
sva update mapping() SVA-OS instruction [26]. This
ensures that the OS does not gain access to ghost mem-
ory by altering the page table. Apparition disables all
OS accesses to the subtree of the page table that maps
ghost memory by removing read/write permission to the
page table pages in this subtree from the OS’s direct
map; only the Apparition MMU instructions can read
and write PTEs mapping ghost memory via the new SVA

internal direct map described in Section 4.3. This ensures
the integrity and confidentiality of ghost memory.

Swapping Apparition’s ghost memory swapping in-
structions must prevent the OS from selecting which
ghost memory pages to swap out and in. Instead, the se-
cure swap-out instruction should randomly select a page
to encrypt and swap out. The secure swap-in instruc-
tion should swap in all the pages that have been swapped
out for that process (as opposed to swapping in a sin-
gle page). This prevents the OS from learning which
pages the process accesses. However, it also restricts
the size of any single application’s ghost memory to a
fraction of physical memory; otherwise, it may be im-
possible to swap in all swapped-out ghost pages, caus-
ing the process to fail to make forward progress. Since
the OS retains control over user-space memory, it should
swap that memory out first before swapping out ghost
memory; swapping out user-space memory imposes no
restrictions on the OS.

5.2 Page Allocation Side Channels

By protecting the confidentiality and integrity of page ta-
ble pages, our Apparition design protects applications
from side channels that flow through the page table
pages. However, in addition to these protections, our Ap-
parition design must ensure that the application does not
leak information through its ghost memory allocation be-
havior. Otherwise, a compromised OS can use this new
side channel in lieu of existing page table side channels.

Virtual Ghost [26] requires the OS to provide a call-
back function that the Virtual Ghost VM can use to re-
quest physical frames from the OS kernel. This design
decouples resource management from protection: the OS
decides how much physical memory each process uses
while Virtual Ghost protects the integrity and confiden-
tiality of the memory. However, Virtual Ghost imposes
no restrictions on when the Virtual Ghost VM requests
physical memory from the OS. As a result, a compro-
mised OS kernel can use the physical memory callback
like a paging side channel. For example, if the Virtual
Ghost VM lazily maps physical memory to ghost vir-
tual addresses on demand and requests a single memory
frame from the OS when it needs to map a ghost page,
then the OS can infer the application’s paging behavior.

To mitigate this side channel, in Apparition we dis-
able demand paging on ghost memory. By doing so, we
convert this side channel into a memory allocation side
channel from which the OS can only infer memory al-
location size; this leaks much less information about an
application’s secret data. To the best of our knowledge,
no existing work exploits such memory allocation side

Name Description
void allocmem(int num, uintptr t frames[]) Allocate num physical memory frames and store the addresses to them in

the specified array.
void freemem(int num, uintptr t frames[]) Free num physical memory frames whose addresses are stored within the

specified array.

Table 1: Physical Memory Allocation Callbacks

channels. To obfuscate the memory allocation size in-
formation, we redesign the physical memory allocation
callback and impose new restrictions on how Apparition
uses it. Table 1 shows the new design. The Apparition
VM calls allocmem() to request a specified number of
frames and freemem() to free frames. In our design, the
Apparition VM will request a random number of frames
from the OS when it needs more physical memory; these
frames will be stored within an internal cache of free
frames that it can use to fulfill ghost memory requests.
When the internal cache of free frames becomes suffi-
ciently large, the Apparition VM will return frames to
the OS so that they can be used for other purposes. This
design obscures ghost memory allocation patterns from
the OS while still giving the OS some control over how
much physical memory is used for ghost memory across
all processes running on the system. We can create Ap-
parition VM APIs for applications to disable these two
protections if the application is not concerned about page
allocation side-channel attacks.

5.3 Code Translation Side Channels
As Section 3.3 explains, attackers can use side channels
on code memory accesses in addition to data memory
accesses. Since Virtual Ghost places native code trans-
lations and N-ISA application code into Virtual Ghost
VM memory [26], Apparition’s page table (Section 5.1)
and page allocation (Section 5.2) defenses eliminate code
memory side channels. However, for V-ISA applica-
tions, Apparition must translate V-ISA code to N-ISA
code without creating new side channels. When the OS
loads an application in memory for execution, it loads the
V-ISA code into either user-space or kernel-space mem-
ory and then asks Apparition to verify the integrity of the
code and to create the native code for the application in
Virtual Ghost VM memory. Apparition must ensure that
its accesses to the V-ISA code do not leak information
about the application’s execution.

Two simple methods can eliminate this side channel.
If the Apparition implementation does not employ run-
time optimizations (such as lazy code translation), it
must simply ensure that it translates all the V-ISA code
of an application to native code when the OS requests
translation via the sva translate() SVA-OS instruc-
tion; so long as it does not read V-ISA code on demand

as the program executes e.g., for lazy compilation, then
no side channel exists.

If the Apparition VM performs run-time optimizations
such as lazy code translation, it must copy the entire V-
ISA code into Apparition VM memory first and use that
copy to perform these run-time optimizations. In this
way, both the V-ISA code and N-ISA code are protected
from side channels.

5.4 LLC Side Channels

Our LLC side-channel defenses must prevent an appli-
cation from sharing ghost memory with a compromised
OS and other applications and ensure that cache lines for
physical memory mapped to ghost memory will not be
read or evicted by the OS or other applications.

Preventing Page Sharing Virtual Ghost [26] already
ensures that an application’s ghost memory cannot be ac-
cessed by the OS or other applications. As Sections 4.1
and 5.1 describe, the SFI instrumentation prevents the
OS kernel from accessing ghost memory and from map-
ping ghost memory into regions that the OS kernel can
access. Likewise, Virtual Ghost ensures that applications
have their own private ghost memory that is not shared
with other applications. This not only prevents data theft
by applications and compromised OS kernels, but, as we
discuss next, allows our Apparition design to utilize Intel
CAT [4] to defend against LLC side-channel attacks.

Cache Partitioning Our defense against LLC side-
channel attacks combines Virtual Ghost’s existing mem-
ory protection mechanisms [26] with static cache par-
titioning implemented using Intel’s CAT processor fea-
ture [4]. Intel CAT enables way-partitioning of the LLC
into several subsets of smaller associativities [4]. A
processor can switch among multiple classes of service
(COS, or resource control tag with associated resource
capacity bitmap indicating the subset of LLC ways as-
signed to the COS) at runtime. Privileged code can
switch the COS and configure the bitmaps of each COS
by writing to model-specific registers. The number of
COSs supported depends on the processor type. In addi-
tion, Intel imposes two constraints [50]: the bitmap must
contain at least 2 ways, and the ways allocated must be

contiguous. Once CAT is configured, the processor can
only load cache lines into its subset of the cache; code
running in one COS cannot evict cache lines in another
COS. However, software in one COS can read data from
all cache lines in the LLC, allowing software running in
different COSs to read the same cache lines if they are
sharing physical memory e.g., read-only mapped shared
library code.

Our design requires one partition for kernel code and
non-ghosting applications not using ghost memory, one
for Apparition VM code, and one for each ghosting ap-
plication. The processor in our experiments (Section 8)
has four partitions. If there are more ghosting applica-
tions executing than partitions available, then the Ap-
parition VM will need to multiplex one or more parti-
tions between ghosting applications and flush the cache
on context switches. Partitioning ghosting applications
from both the kernel and non-ghosting applications elim-
inates side channels between these two domains, pre-
venting the kernel from inferring information by measur-
ing cache access time. Partitioning also eliminates costly
cache flushes when control flow moves between ghosting
application, Apparition VM, and OS kernel/untrusted ap-
plication code. Additionally, partitioning the Apparition
VM from the kernel and from ghosting applications en-
sures that any secrets held within Apparition VM mem-
ory (such as page tables) do not leak to either applica-
tions or the OS kernel.

Unfortunately, Intel CAT allows data reads from cache
lines outside of the current COS [4]. However, since Ap-
parition ensures that there is no sharing of ghost memory
or native code between a ghosting application and the
OS kernel (or other applications), and since the MPX
SFI protections prevent the OS kernel from accessing
ghost memory and Apparition VM memory, such cross-
COS reads will never occur. Hence, the memory protec-
tions in Virtual Ghost coupled with Intel CAT can defend
against LLC side-channel attacks.

Cache Partitioning Configuration The Apparition
VM configures the cache partitions on boot and uses
several mechanisms which, together, ensure that the OS
kernel cannot reconfigure or disable the cache partition-
ing. First, the SVA virtual instruction set has no instruc-
tions for changing the cache partitions. Second, Virtual
Ghost’s MMU protections prevent the OS kernel from
loading new native code into memory that was not trans-
lated and instrumented by the Virtual Ghost VM [26].
Third, Virtual Ghost enforces CFI on kernel code, ensur-
ing that the OS kernel can only execute its own code and
cannot jump into the middle of variable-length x86 in-
structions within the kernel [26] that might reconfigure
cache partitioning.

On an interrupt, trap, or system call, the processor

transfers control to the Apparition VM which switches
the cache partition in use to the Apparition VM’s parti-
tion. After saving the interrupted processor state in Ap-
parition VM memory, the Apparition VM switches to the
kernel’s cache partition before calling the kernel’s inter-
rupt, trap or system call handler. Likewise, SVA-OS in-
structions switch to the Apparition VM’s partition on en-
try and back to the kernel’s partition on exit.

Our design also protects distrusting applications from
each other by giving each application needing protection
from LLC side channels its own cache partition. Initially,
the Apparition VM assigns one cache partition to the first
application using ghost memory. This cache partition
will be divided into more cache partitions when more ap-
plications needing protection are scheduled. Apparition
can either divide the cache space evenly between applica-
tions or employ quality-of-service policies based on the
applications’ LLC working sets. The only restriction is
that each application’s partition must have at least two
ways. On current Intel processors, the Apparition VM
must flush the entire cache when dividing a cache par-
tition. Similarly, the Apparition VM will need to flush
the cache on context switches if the number of distrust-
ing ghosting applications exceeds the number of COSs
provided by the processor.

If a process wants to create a cooperating thread with
which to share its ghost memory or a child process which
it trusts to use the same cache partition, the process can
provide an option to the fork() system call indicating
that the new process or thread should use the same cache
partition as the parent process. Virtual Ghost (and hence
Apparition) dispatches all system calls and creates all
new processes and threads [26]. It can therefore deter-
mine whether the new process or thread that it creates
should use the same cache partition as its parent.

5.5 Instruction Tracing Side Channels

As Section 3.3 discusses, inferring the dynamic order in
which a program executes its instructions can leak infor-
mation about data if the program counter depends upon
secret data [32]. Existing attacks exploit such implicit
flows within programs by tracing code memory page
faults [73] or via timer-based interrupts [38].

Virtual Ghost [26] saves interrupted program state
within the Virtual Ghost VM memory, forcing the OS
kernel to use SVA-OS instructions to read or modify in-
terrupted program state. The SVA-OS instruction set
does not provide an instruction for retrieving the program
counter stored within interrupted program state [25, 26].
As a result, while a compromised OS can interrupt an
application as frequently as it wants, it cannot infer the
program counter from interrupted program state. Com-
bined with the virtual instruction set code and native code

memory mitigations described in Section 5.3, Apparition
mitigates attacks that infer a ghosting application’s pro-
gram counter.

6 Impact on Speculation Side Channels

Recently, there has been much press about two classes of
attacks, Meltdown [49] and Spectre [46], in which user-
space code leverages speculative execution side chan-
nels in the processor to steal data and then exfiltrates the
stolen data via existing side channels. While speculation
side channels are outside the scope of our attack model
in Section 2, our defenses mitigate some variants of these
attacks that use cache side channels.

Spectre [46] is an attack in which one user-space pro-
cess attempts to infer information about another user-
space process. It utilizes the existence of shared branch
prediction tables and branch target buffers to force the
victim to speculatively execute code that loads sensitive
data into the cache. Since our defenses partition the LLC
and prevent the sharing of ghost memory, values in ghost
memory will not become visible to attackers in the LLC.
However, in order to mitigate speculation side-channel
attacks, Apparition will need to prevent the sharing of all
physical memory between untrusted processes, includ-
ing native code pages and traditional user-space mem-
ory. Failure to do so would allow a Spectre attack to
communicate information across the Intel CAT partitions
through shared physical memory.

With several enhancements, Apparition could mitigate
other forms of these attacks. To mitigate Meltdown [49]
and Spectre [46] attacks that speculatively access out-
of-bounds memory, Apparition could use speculation-
resistant SFI instrumentation on both application and
kernel code [34] to protect large memory regions; in par-
ticular, we show in [34] that SFI instrumentation using
instruction sequences to stall speculative execution us-
ing a data dependence so that the SFI instructions must
complete before the protected memory read instruction
begins execution. To provide finer granularity protec-
tion, e.g., at the granularity of individual memory ob-
jects, Apparition could place lfence instructions before
memory read instructions that have a control dependence
on a branch to ensure that all instructions performing ar-
ray bounds checks have committed before the load com-
mences execution [6].

To mitigate Meltdown attacks [49], Apparition could
transparently use a different set of page tables and PCIDs
for user-space code, OS kernel code, and Apparition VM
code [34], building off the suggestions from Intel [6].

Since Apparition uses a virtual instruction set to ab-
stract away hardware details and controls native code
generation, it can employ any or all of these mitigations
without changing application or OS kernel source code.

Component Source Lines of Code
SVA-OS 5,823
SFI Pass 292
CFI Pass 726
Total 6,841

Table 2: Apparition Physical Source Lines of Code

The virtual instruction set remains unchanged; Appari-
tion can employ these solutions by enhancing its com-
piler transformations and native code generation.

7 Implementation

We implemented Apparition by modifying the Virtual
Ghost prototype for 64-bit x86 systems [26]. Appari-
tion uses the FreeBSD 9.0 kernel ported to the SVA-OS
virtual instruction set and is compiled with the LLVM
3.1 compiler. The Apparition prototype only supports
single-processor execution, so our evaluation focuses on
single-core overheads.

We used sloccount [72] to measure the source lines
of code (which excludes whitespace and comments) of
the SVA-OS instructions, the SFI compiler pass, and the
CFI compiler pass comprising Apparition; Table 2 shows
the results. Apparition’s TCB contains 6,841 source lines
of code which includes all of Virtual Ghost’s old func-
tionality [26], Apparition’s functionality, and configura-
tion options to enable and disable the new Apparition
features. The original Virtual Ghost prototype contained
5,344 source lines of code [26] in comparison.

We implemented the MPX SFI optimization in Ap-
parition by changing the existing LLVM IR-level SFI
pass in Virtual Ghost [26] to insert inline assembly code
utilizing MPX instructions instead of LLVM IR bit-
masking instructions. We also implemented the SVA di-
rect map by enhancing the SVA-OS instructions within
Apparition. While Virtual Ghost is designed to restrict
Direct Memory Access (DMA) operations to memory
with an I/O MMU [26], neither the original Virtual Ghost
prototype nor our prototype implements this feature.

To implement our paging protections in Sections 5.1
and 5.2, we modified the ghost memory allocator within
the Apparition VM so that it requests all physical mem-
ory frames from the OS when the application uses the
hypercall to request ghost memory. The previous imple-
mentation [26] would delay allocation of physical mem-
ory until the application read or wrote the ghost memory;
the Virtual Ghost VM would then request a frame from
the OS and map it on demand. Our ghost memory alloca-
tor also implements randomization; it maintains a set of
memory frames within the Apparition VM and requests a
random number of frames from the OS kernel when this

reserve becomes empty. Additionally, the FreeBSD 9.0
malloc() implementation always requests ghost mem-
ory in constant-sized chunks from the Apparition VM,
further obscuring the application’s actual memory allo-
cation information from the OS kernel. As neither the
Virtual Ghost prototype [26] nor our new prototype im-
plement virtual-to-native code translation, we did not im-
plement the mitigations in Section 5.3. Additionally, nei-
ther prototype supports swapping out of ghost memory to
persistent storage.

Our prototype also implements the LLC side-channel
mitigation features in Section 5.4. As our test machines
support 4 cache partitions, we reserved one for the Ap-
parition VM (dubbed VM COS), one for the OS kernel
and non-ghosting applications (dubbed kernel COS), and
one for a ghosting application (dubbed ghosting COS).
We modified all of the SVA-OS instructions to switch
between the kernel COS and the VM COS upon entry
and exit. Our prototype switches between the ghosting
COS and the kernel COS on context switches between
ghosting and non-ghosting applications. It also multi-
plexes the ghosting COS by flushing the cache on context
switches between two ghosting applications.

8 Evaluation

We first evaluate the performance optimizations de-
scribed in Section 4. We then evaluate the performance
overheads of our page table and LLC side-channel de-
fenses.

8.1 Methodology
For our experiments, we used a Dell Precision T3620
workstation with an Intel R© CoreTM i7-6700 hyper-
threading quad-core processor at 3.40 GHz with an 8 MB
16-way LLC, 16 GB of RAM, and an Intel E1000 net-
work card. The machine has both a 256 GB Solid State
Drive (SSD) and a 7,200 RPM 500 GB hard disk. We
stored all the files for our experiments on the SSD. For
the network experiments, we used a dedicated Gigabit
Ethernet network and a Dell T1700 Precision worksta-
tion as the remote system. The T1700 runs FreeBSD
9.3 and has an Intel R© CoreTM i7-4770 hyper-threading
quad-core processor at 3.40 GHz and 16 GB of RAM.
We perform our experiments with the OS running in
single-user mode to reduce noise from other processes
on the system. We use a high-resolution timer (reading
rdtsc directly) to measure time, and we report the aver-
age (arithmetic mean of) execution time of multiple runs.

Our evaluation needed benchmarks and applications
that rely heavily on OS kernel services e.g., the file sys-
tem and network stack. Our evaluation therefore used the
following programs:

LMBench: We used the LMBench benchmark
suite [55] to measure the latency of various system calls
on Virtual Ghost with and without the new optimizations.
For the benchmarks for which we can specify the num-
ber of repetitions to run, we used 1,000 repetitions. LM-
Bench reports the median result of the number of repe-
titions specified. We configured lat select to use lo-
cal files. In lat ctx, we measured context switch time
between two processes; each process does nothing but
passes a token to the other process via a pipe. For all the
other workloads, we used the default configurations.

OpenSSH Client: We used the preinstalled
OpenSSH [65] Secure Shell client and server to
evaluate the Virtual Ghost optimizations. We ran the
OpenSSH client on our FreeBSD 9.0 machine and
the server on the FreeBSD 9.3 machine to measure
bandwidth. We generated the contents of each file by
collecting random numbers from the /dev/random

device on our FreeBSD 9.0 machine and transferred the
files to the FreeBSD 9.3 machine.

Ghosting OpenSSH Client: We evaluated our de-
fenses on the ssh and ssh-keygen programs of the
OpenSSH 6.2p1 application suite modified by Criswell
et al. to use ghost memory to store heap objects [26]:
ssh-keygen generates public and private key pairs for
ssh to use for password-less authentication. Criswell et
al. enhanced these two programs to share a hard-coded
AES private application key that they use to encrypt pri-
vate authentication keys. The ssh-keygen program en-
crypts all the private authentication key files it generates
with this private application key. The ssh client decrypts
these keys and puts them, as well as all other heap ob-
jects, into ghost memory. For these experiments, we ran
the ghosting OpenSSH client on the Virtual Ghost and
Apparition machine and the server on the machine run-
ning native FreeBSD 9.3. We collected the bandwidth
reported in the ssh client’s debug output when transfer-
ring 1 KB to 512 MB files using the modified ssh client.
We transferred the files by having the ssh client run the
cat command on the files on the server.

Ghosting Bzip2: We compiled Bzip2 1.0.6, a data
compression program [16], with a new C library that can,
at run-time, be configured to allocate heap objects in ei-
ther traditional user-space memory or in ghost memory.
We measure the time for Bzip2 to compress the 32 MB
file we used in the OpenSSH experiments.

Ghosting GnuPG: We compiled GnuPG 2.0.18, a
cryptography program [45], with our C library that can,
at run-time, be configured to allocate heap objects in ei-
ther traditional user-space memory or in ghost memory.
We evaluate encrypting, decrypting, signing, and verify-
ing signatures of files ranging from 1 KB to 32 MB in
size. Due to space, we only report overheads for sign-
ing files. Encryption, decryption, and verification have

Test Native Std. VG Opt-VG
(µs) Dev. Overhead Overhead

null syscall 0.1 0.0 2.9× 2.6×
open/close 1.8 0.0 2.3× 1.8×
mmap 5.6 0.1 5.1× 3.4×
page fault 36.3 1.3 1.0× 1.0×
fork + exit 49.2 0.1 4.1× 2.0×
fork + exec 54.4 0.1 3.9× 1.9×
fork + /bin/sh -c 515.4 1.0 2.2× 1.5×
signal handler install 0.2 0.0 2.3× 2.1×
signal handler delivery 1.1 0.0 0.9× 0.8×
read 0.1 0.0 2.7× 2.3×
write 0.1 0.0 2.9× 2.5×
stat 1.2 0.0 2.1× 1.8×
select 2.8 0.0 1.9× 1.6×
fcntl lock 2.8 0.0 1.9× 1.6×
context switch 0.5 0.0 1.2× 1.0×
pipe 1.6 0.0 1.7× 1.5×

Table 3: LMBench Latency Results

similar overheads.
Ghosting RandomAccess: We created a microbench-

mark named RandomAccess which modifies an 8 MB ar-
ray of 64 B elements in the heap in random order 20,000
times. Specifically, it first generates a random order in
which to access all the array elements, ensuring that ev-
ery element in the array is accessed once. It then iterates
over the array in the random order, replacing the contents
of the current element with the index of the previously
accessed element. The first iteration warms up the cache
and is not used in measuring performance; RandomAc-
cess records the execution time of the next 20,000 itera-
tions and reports the average latency of an iteration. By
seeding the pseudo-random number generator with the
same seed, RandomAccess can exhibit deterministic re-
sults. We link RandomAccess with our C library so that
we can configure it to allocate heap objects in traditional
user-space memory or in ghost memory as needed.

Ghosting Clang: We compiled Clang 3.0, a C/C++
compiler [1], with our C library that can, at run-time,
be configured to allocate heap objects in either tradi-
tional user-space memory or in ghost memory. We
measured the time to compile a C source file named
gcc-smaller.c from SPEC CPU 2017 [5] into assem-
bly code by using Clang. We used the -O3 and -pipe

command-line options.
Besides the native FreeBSD 9.0 kernel, we have

conducted our experiments on the FreeBSD SVA
kernels with the following configurations of Virtual
Ghost/Apparition:

1. VG: Virtual Ghost without the new optimizations
described in Section 4 and without our new de-
fenses. This version of Virtual Ghost is a faster and
more robust implementation of the original proto-
type [26].

2. Opt-VG: Virtual Ghost with the optimizations de-
scribed in Section 4.

Test Native Std. VG Opt-VG
(MB/s) Dev. Overhead Overhead

pipe 14,865.2 29.7 1.3× 1.2×

Table 4: LMBench Bandwidth Results

3. Opt-VG-PG: The optimized Virtual Ghost en-
hanced with only our defenses to the page table
side-channel attacks.

4. Opt-VG-LLCPart: The optimized Virtual Ghost
enhanced with only our mitigations to the LLC side-
channel attacks.

5. Apparition: The optimized Virtual Ghost enhanced
with the defenses to both the page table and LLC
side-channel attacks (in other words, the full Ap-
parition system).

8.2 Virtual Ghost Optimizations
We evaluate the overheads of the optimized version of
Virtual Ghost’s SFI enforcement and SVA-OS MMU in-
structions (described in Section 4) relative to the orig-
inal Virtual Ghost and to native x86-64 FreeBSD. For
the baseline kernel, we used a native x86-64 FreeBSD
9.0 kernel configured with the same options as the Vir-
tual Ghost FreeBSD kernels and compiled with the same
compiler and compilation options. We focus here on
evaluating the overheads of Virtual Ghost on traditional
non-ghosting applications, i.e., applications that do not
use ghost memory but still need to run on the Virtual
Ghost system. Our microbenchmarks and benchmark ap-
plications therefore do not use ghost memory when run-
ning on Virtual Ghost.

As shown below, our optimizations always improve
performance for the benchmarks we tested.

Microbenchmarks: We used the LMBench bench-
mark suite [55] to measure the latency of various system
calls on Virtual Ghost with and without the new opti-
mizations. Tables 3 and 4 show the performance of the

 -

 25,000

 50,000

 75,000

 100,000

 125,000

 150,000

 175,000

 200,000

 225,000

 250,000

0k 1k 4k 10k

Fi
le

s
C

re
at

e
d

/D
e

le
te

d
 P

e
r

Se
co

n
d

File Size (KB)

Native-create VG-create Opt-VG-create

Native-delete VG-delete Opt-VG-delete

Figure 4: LMBench File Creation/Deletion Rate

native FreeBSD 9.0 kernel and the overheads of Virtual
Ghost, with and without the optimizations, normalized to
the native FreeBSD 9.0 kernel. While the overheads in
Table 3 may seem high, we note that the performance of
real-world applications (shown subsequently) are much
better as applications only spend a portion of their time
executing kernel code.

As Tables 3 and 4 show, Virtual Ghost incurs 2.4×
overhead on average while our optimizations reduce the
overhead to 1.8× on average. In particular, elimina-
tion of serializing instructions improves system calls that
perform many page table updates. For example, fork
+ exit overhead drops from 4.1× to 2.0×, and fork

+ exec drops from 3.9× to 1.9×. On FreeBSD, the
mmap() system call premaps some amount of physical
memory to the newly mapped region, so our optimiza-
tions also improve its overhead from 5.1× to 3.4×.

Signal handler function dispatch shows a slight perfor-
mance improvement on Virtual Ghost compared to native
FreeBSD. The FreeBSD kernel on Virtual Ghost cannot
read the register state saved on interrupts, traps, and sys-
tem calls [26] and therefore does not copy this informa-
tion into the user-space stack for signal handlers to in-
spect like the FreeBSD kernel does. We believe this is
why Virtual Ghost shows a slight performance benefit
for signal handler dispatch.

Figure 4 reports the performance of the file cre-
ation/deletion workload of LMBench on native FreeBSD
and Virtual Ghost with and without the new optimiza-
tions. Virtual Ghost slows down the file creation and
deletion rates by 2.2× and 2.1×, respectively, on average
across all file sizes, and the optimizations reduce both of
the overheads to 1.7×. The standard deviation is 0% for
all file sizes tested.

Applications: Table 5 lists the average CPU time spent
for OpenSSH client file transfers on the native FreeBSD
kernel over 20 rounds of execution. We measured the
CPU time by recording the number of unhalted clock
cycles used while executing the ssh client with the
pmcstat utility and then converted this number into mil-
liseconds based on the CPU’s clock speed. We made the
same measurements for the OpenSSH client on Virtual
Ghost with and without optimizations; the VG and Opt-
VG lines in Figure 6 show the results. For files from
1 KB to 8 MB, the original Virtual Ghost incurs over-
heads of 3% to 12% with a 1% average standard devi-
ation. The optimizations reduce the overhead to 2% to
10%. For files larger than 8 MB, the overheads of Vir-
tual Ghost with or without the optimizations are negli-
gible. Additionally, the differences between the results
of 128 KB, 256 KB and 512 KB are within the standard
deviation.

Figure 5 shows the average OpenSSH client file trans-

Size CPU Time Std. Dev. Size CPU Time Std. Dev.
1 13.7 0.3 1,024 26.9 0.4
2 13.8 0.2 2,048 37.1 0.4
4 13.9 0.2 4,096 57.3 0.3
8 14.5 0.3 8,192 97.8 0.4

16 15.2 0.3 16,384 178.4 0.4
32 16.8 0.3 32,768 339.9 0.5
64 17.1 0.4 65,536 662.2 0.3

128 18.1 0.3 131,072 1,306.8 0.6
256 19.0 0.5 262,144 2,596.0 1.2
512 21.5 0.4 524,288 5,171.1 2.5

Table 5: OpenSSH Client Average File Transfer CPU
Time. Time in miliseconds. Size in KB.

0
10
20
30
40
50
60
70
80
90

100
110
120

 1 2 4 8

 1
6

 3
2

 6
4

 1
2

8

 2
5

6

 5
1

2

 1
,0

2
4

 2
,0

4
8

 4
,0

9
6

 8
,1

9
2

 1
6

,3
8

4

 3
2

,7
6

8

 6
5

,5
3

6

 1
3

1
,0

7
2

 2
6

2
,1

4
4

 5
2

4
,2

8
8

B
an

d
w

id
th

 (
M

B
/s

)

File Size(KB)

Figure 5: OpenSSH Client Average File Transfer Rate
on Native FreeBSD

fer bandwidth on the native FreeBSD kernel over 10
rounds. For files between 1 KB and 2 MB in size, the
original Virtual Ghost incurs negligible overheads rang-
ing from 1% to 3% with up to 1% standard deviations.
With the optimizations, the overheads on bandwidth re-
main similar.

Table 6 shows the overhead of Virtual Ghost with and
without the new optimizations on Bzip2 compression and
GnuPG when signing 2 MB files. For this experiment,
ghost memory is disabled, so heap objects are allocated
in traditional user-space memory, and physical memory
is mapped on demand. We use a small file size here as

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

 1.35

 1.40

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

C
P

U
 T

im
e

 N
o

rm
al

iz
e

d
 t

o
 N

at
iv

e

File Size (KB)

Apparition-ghosting Opt-VG-LLCPart-ghosting

Opt-VG-PG-ghosting Opt-VG-ghosting

VG Opt-VG

Figure 6: OpenSSH Client Average File Transfer CPU
Time Normalized to Native FreeBSD

Bzip2 GnuPG Signing
Native (ms) 183.20 54.71
VG Overhead (×) 1.05 1.06
Opt-VG Overhead (×) 1.04 1.03

Table 6: Bzip2 and GnuPG Results for 2 MB Files

RandomAccess Bzip2 Clang
Native FreeBSD 643.23 µs 2.89 s 28.36 s
std. dev. 0.64 µs 0.00 s 0.63 s
Opt-VG Overhead (×) 1.28 1.04 1.03
Opt-VG-PG Overhead (×) 1.32 1.04 1.03
Opt-VG-LLCPart Overhead (×) 2.09 1.04 1.03
Apparition Overhead (×) 2.11 1.05 1.05

Table 7: RandomAccess, Bzip2 and Clang Results

Virtual Ghost has higher overhead on GnuPG when com-
pressing 2 MB files than when compressing larger files.
Virtual Ghost adds 5% overhead to Bzip2, which is re-
duced to 4% with the optimizations. It incurs a 6% over-
head to the overall performance for GnuPG signing; the
optimizations reduce the overhead to 3%. The standard
deviations for both Bzip2 and GnuPG is 0%.

8.3 Page Table Side-Channel Defenses
We now evaluate the performance of our page table side-
channel defenses in Sections 5.1 and 5.2.

Ghosting RandomAccess: The second column of Ta-
ble 7 reports the average latency of each iteration over 20
rounds of execution for the RandomAccess microbench-
mark. The overheads on Virtual Ghost with our new op-
timizations without (Opt-VG) and with our page table
side-channel defenses enabled (Opt-VG-PG) show that
the page table side-channel defenses add no additional
overhead to Opt-VG (when accounting for the standard
deviation of 4%). This is because the only OS kernel
operations incurred during the loop in RandomAccess
are context switches, and our page table defenses add
no overhead to context switching. We believe that Opt-
VG and Opt-VG-PG add overhead to native FreeBSD be-
cause Opt-VG and Opt-VG-PG map ghost memory with
4 KB pages while native FreeBSD maps traditional user-
space memory using super pages whenever possible [57].

Ghosting Bzip2: We enabled ghost memory for Bzip2
for all systems except the native FreeBSD kernel. The
third column of Table 7 reports the average of 10 rounds
of this experiment and shows that our page table defenses
do not affect the overall performance of Bzip2 compres-
sion relative to Opt-VG. The standard deviation is 0%.
Since Bzip2 accesses all the heap memory that it allo-
cates when compressing the 32 MB file, our page table
defenses do not incur any overhead by disabling demand
paging of ghost memory.

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

 1.10

 1 2 4 8

 1
6

 3
2

 6
4

 1
2

8

 2
5

6

 5
1

2

 1
,0

2
4

 2
,0

4
8

 4
,0

9
6

 8
,1

9
2

 1
6

,3
8

4

 3
2

,7
6

8

 6
5

,5
3

6

 1
3

1
,0

7
2

 2
6

2
,1

4
4

 5
2

4
,2

8
8

B
an

d
w

id
th

 N
o

rm
al

iz
e

d
 t

o
 N

at
iv

e

File Size (KB)

Opt-VG-PG-ghosting Opt-VG-ghosting

Apparition-ghosting Opt-VG-LLCPart-ghosting

Figure 7: Ghosting OpenSSH Client File Transfer Band-
width Normalized to Native FreeBSD

Ghosting OpenSSH Client: The Opt-VG-PG-
Ghosting line in Figure 6 shows the overhead of our
page table defenses on the unhalted CPU clock cycles
(converted into time using the processor’s clock fre-
quency) of the ssh client transferring files. Each data
point is the average of 20 rounds of execution. For 1 KB
to 4 MB files, page table defenses increase the overhead
of Opt-VG (denoted by the Opt-VG-ghosting line in
Figure 6) by 1% to 10% with a 2% standard deviation.
For large files, page table defenses add no overhead to
the CPU time.

Figure 7 shows the overheads of our page table de-
fenses on the client file transfer bandwidth. Page table
defenses add no overhead to the optimized Virtual Ghost
across all file sizes (differences are within the range of
standard deviation).

Ghosting GnuPG: We enabled ghost memory for
GnuPG for all systems except the native FreeBSD ker-
nel. Table 8 shows the performance of signing files with
GnuPG. The page table defenses incur a constant over-
head of around 14 ms across all file sizes. This overhead

File
Size
(KB)

Native Std.
Dev.

Opt-
VG

Opt-
VG-
PG

Opt-
VG-
LLCPart

Apparition

1 8.6 0.1 9.5 23.7 12.1 25.2
2 8.6 0.1 9.5 23.8 12.1 24.9
4 8.6 0.1 9.5 23.9 12.2 25.5
8 8.7 0.2 9.6 23.9 12.1 25.1

16 8.9 0.1 9.8 23.9 12.5 25.4
32 9.2 0.1 10.1 24.4 12.9 25.6
64 9.9 0.1 10.9 25.4 13.6 27.0

128 11.4 0.1 12.4 26.8 15.2 28.4
256 14.3 0.1 15.4 29.7 18.3 31.5
512 20.1 0.1 21.3 35.6 24.4 37.4

1024 31.6 0.1 33.2 47.7 36.4 49.4
2048 54.8 0.0 56.8 71.2 60.5 73.6
4096 100.9 0.1 103.9 118.2 108.0 121.1
8192 193.3 0.1 198.6 212.9 203.6 217.0

16384 377.8 0.2 386.2 400.1 394.6 407.3
32768 746.6 0.5 761.8 776.1 776.6 789.2

Table 8: GnuPG Signing Results. Time in milliseconds.

occurs because our page allocation defenses disable de-
mand paging of ghost memory. malloc() attempts to
fulfill allocation requests by allocating memory chunks
with 4 MB alignment from the OS. This alignment con-
straint may cause malloc() to map a larger virtual mem-
ory region for the heap and return a pointer to an aligned
4 MB block within it. Although GnuPG only uses the
aligned portion of memory, the page table defenses still
allocate and map physical memory for the remaining un-
aligned 8 MB portion, incurring the 14 ms overhead. The
overhead becomes negligible as the file size increases, as
Table 8 shows. The standard deviation is 3% on average.

Ghosting Clang: As the fourth column of Table 7
shows, the page table defenses do not add any overhead
to Clang relative to Opt-VG. This indicates that Clang
uses most of the heap memory it allocates. Therefore,
allocating and mapping physical memory at allocation
time as opposed to on demand incurs no overhead.

8.4 LLC Side-Channel Defenses
We have compared the performance of various cache par-
tition sizes with the baseline where the ghosting appli-
cation, the kernel and the Apparition VM can all use
the entire LLC. Our results indicate that the Appari-
tion VM needs only 2 LLC ways to avoid performance
degradation. We also experimentally determined that as-
signing 12, 2, and 2 LLC ways to the ghosting appli-
cation, the kernel, and the Apparition VM, respectively,
best achieves performance similar to the baseline. This
provides ghosting applications the maximum number of
LLC ways possible. While we use static partitions, we
could leverage dynamic cache partitioning techniques
e.g., SecDCP [70], to improve performance.

Ghosting RandomAccess: We use the RandomAccess
microbenchmark in Section 8.1 to evaluate the impact of
LLC partitioning when an application’s working set is
small enough to fit in the LLC but exceeds the capacity of
the assigned partition. Since the 8 MB array is larger than
the capacity of the 12-way partition of the 16-way 8 MB
LLC, LLC partitioning increases the overhead of Opt-
VG from 1.28× to 2.09× with a 3% standard deviation.

Ghosting Bzip2: We enabled ghost memory for Bzip2
for all systems except the native FreeBSD kernel. Table 7
shows the overhead of LLC partitioning on Bzip2 com-
pressing a 32 MB file as Section 8.1 describes. LLC par-
titioning does not affect the performance of Bzip2, which
indicates the capacity of the 12-way LLC partition is suf-
ficient for the cache lines frequently accessed by Bzip2.
The standard deviation is 0%.

Ghosting OpenSSH Client: We evaluate the overhead
of LLC partitioning on OpenSSH client CPU time and
bandwidth when transferring files of varying sizes; Fig-
ure 6 shows the file transfer CPU time normalized to the
native FreeBSD 9.0 averaged over 20 rounds of execu-
tion. Opt-VG-LLCPart-ghosting (Opt-VG with LLC par-
titioning enabled) is 1.18× (on average with a worst case
of 1.27×) across all file sizes (where Opt-VG is 1.09×
on average) when normalized to FreeBSD. The overhead
of LLC partitioning mainly comes from the LLC parti-
tion switches among the ghosting application, the ker-
nel and the Apparition VM in the runtime, which slows
down the performance by 1.16× on average across all
file sizes. The standard deviation is 1% on average across
all file sizes.

Figure 7 illustrates the performance impact of LLC
partitioning on client file transfer bandwidth. The re-
sults are averaged over 20 rounds of execution. Opt-
VG-LLCPart-ghosting reduces bandwidth to 0.91 that of
native FreeBSD on average across all file sizes with a
worst case of 0.85 (compared to 0.92 for Opt-VG). The
standard deviation ranges from 0% to 1% across all file
sizes.

Ghosting GnuPG: We enabled ghost memory for
GnuPG for all systems except the native FreeBSD ker-
nel. Table 8 shows the performance impact of LLC
partitioning on GnuPG as Section 8.1 describes. For
1 KB to 4 MB files, LLC partitioning incurs a 3 ms to
4 ms overhead which is the overhead for maintaining i.e.,
switching among, different LLC partitions. For 8 MB to
32 MB files, although their sizes exceed the capacity of
the 6 MB ghost memory LLC partition and the absolute
additional execution time incurred by LLC partitioning
is longer, the overhead to the overall performance is neg-
ligible. The execution time of Opt-VG-LLCPart for sign-
ing 8 MB to 32 MB files is 1.05× (Opt-VG is 1.02×) that
for native FreeBSD on average. The standard deviation
is 1.2% on average across all file sizes.

Ghosting Clang: Tables 7 and 9 show that our LLC
side-channel defenses incur a negligible 3% overhead
when assigning 12, 2 and 2 LLC ways to the ghosting
Clang, the kernel, and the Apparition VM, respectively.
However, when we shrink the number of LLC ways as-
signed to the ghosting Clang to 6, 4, and 2 while the
LLC partition sizes of the kernel and the Apparition VM
remain the same, we observe that the execution time for
Opt-VG-LLCPart is as much as 1.1×, 1.3×, and 1.6×
that of native FreeBSD. This is because the working set
of Clang exceeds the capacity of the cache partition.

We also evaluated the overhead of LLC partitioning
when executing more ghosting applications than the pro-
cessor has partitions. As Section 7 describes, our pro-

of LLC Ways Overhead (×) # of LLC Ways Overhead (×)
2 1.64 8 1.08
4 1.30 10 1.05
6 1.14 12 1.03

Table 9: Overhead of Opt-VG with Varying Sizes of
LLC partition for Ghosting Clang. Normalized to Native
FreeBSD.

totype shares a single partition among multiple ghosting
applications and flushes the cache on context switches
between two ghosting applications. We run two ghost-
ing Clang processes in parallel in the background, where
each compiles either gcc-smaller.c or gcc-pp.c

from SPEC CPU 2017 [5]. On native FreeBSD, it takes
57.3 seconds to compile gcc-smaller.c in this sce-
nario; Compilation on Opt-VG-LLCPart takes 1.06×
(1.03× for Opt-VG) the time on native FreeBSD, with
a 0.4% standard deviation.

8.5 Evaluation of Combined Defenses
We now evaluate the combined overheads of our page
table and LLC side-channel defenses using RandomAc-
cess, Bzip2, the OpenSSH client, GnuPG, and Clang.

RandomAccess executes in 2.11× the time taken by
native FreeBSD when executing on Apparition, as Ta-
ble 7 shows; the standard deviation is 2%. The overhead
mainly comes from the mitigations to LLC side-channel
attacks. Table 7 also shows that Apparition with all de-
fenses enabled on Bzip2 only adds 5% overhead (com-
pared to Opt-VG’s 4%) relative to native FreeBSD with
0% standard deviation.

Figure 6 shows the performance impact of all defenses
on the OpenSSH client file transfer CPU time. The over-
head of Apparition ranges from 16% to 33% relative to
native FreeBSD, with a 1% standard deviation across all
file sizes, which is a combination of the slow down in-
curred by page table and LLC side-channel defenses in
addition to the overhead of Opt-VG. Figure 7 illustrates
the performance impact of all defenses on the client file
transfer rate. Apparition reduces the file transfer rate to
0.91 that of native FreeBSD on average across all file
sizes with a worst case of 0.85 (compared to 0.92 for
Opt-VG).

Table 8 shows that Apparition incurs a constant over-
head of around 16 ms relative to Opt-VG on GnuPG
across 1 KB to 4 MB files, 14 ms of which comes from
the page table side-channel with the remaining from the
LLC partitioning defenses. As Table 8 shows, the over-
head of both defenses becomes negligible as the file size
increases. The standard deviation is 3.0% on average
across all file sizes.

Table 7 shows that the ghosting Clang compiler incurs
5% overhead relative to native FreeBSD with a standard

deviation of 2% when running on Apparition.

9 Related Work

Recent work removes commodity OS kernels from
the TCB. SP3 [75], Overshadow [20], InkTag [40],
CHAOS [18], and AppShield [21] build on commercial
hypervisors and protect entire applications by providing
an encrypted view of application memory to the OS and
detect corruption of physical memory frames by the OS
using digital signatures. Virtual Ghost [26] uses com-
piler instrumentation to insert run-time checks and can
also protect entire applications. Hardware such as In-
tel SGX [23, 42] and AMD SEV [31, 39] protect un-
privileged applications and virtual machines from mali-
cious privileged code such as the OS and hypervisors.
Haven [12] uses Intel SGX [23, 42] to isolate entire un-
modified legacy applications from the OS. All of these
shielding systems are vulnerable to side-channel attacks.

Page table side-channel attacks can steal secret appli-
cation data on Intel SGX and InkTag [63, 67, 73]. T-
SGX [62] transforms SGX applications to thwart page
fault side channels by executing computations within In-
tel TSX transactions. TSX aborts transactions upon ex-
ceptions and interrupts, ensuring no page fault sequence
leaks to the OS. However, its overhead ranges from 4%
to 118% with a geometric mean of 50%. DÉJÀ VU [19]
builds a software reference clock protected by Intel TSX
transactions within SGX enclaves. It detects privileged
side-channel attacks that trigger frequent traps and inter-
rupts and aborts the application if an attack is detected.

Cache side-channel attacks are a known problem [36–
38,43,52,58,76,79]. Several defenses partition the cache
but generally assume an unprivileged attacker e.g., an
unprivileged process [70, 71, 80] or a virtual machine
attacking its neighbors [35, 44, 50, 61, 80]. These de-
fenses cannot mitigate attacks by privileged code. Still,
we can leverage techniques such as dynamic partitioning
in SecDCP [70] to improve the performance of our cache
partitioning scheme but, unlike SecDCP, ensure that the
OS does not reconfigure or disable the partitioning.

Other mechanisms can mitigate cache side-channel
attacks, but they also assume unprivileged attackers.
SHARP [74] alters a shared cache’s replacement pol-
icy to prevent the attacker from learning the victim’s
memory access patterns by cache evictions. It prioritizes
evicting LLC cache lines that are not in any private L1
cache and the LLC cache lines of the current process.
However, a compromised OS can still evict the cache
lines of the victim as it can run on the victim’s behalf.
The Random Fill Cache Architecture [51] breaks the cor-
relation between demand memory access and L1 cache
fills to defend against reuse-based side-channel attacks.
Wang and Lee [71] proposed that memory-to-cache map-

pings in L1 cache be dynamically randomized. Both ap-
proaches focus on L1 cache and may incur high perfor-
mance overhead on much larger LLCs. Additionally, all
three approaches require hardware modifications. Fuzzy-
Time [41] and TimeWarp [53] introduce noise to the sys-
tem clock to disrupt attackers’ time measurements but
hurt programs needing a high-precision clock.

Some approaches detect, rather than prevent, cache
side-channel attacks. Chiappetta et al. [22] detect cache
side channels by finding correlations between the LLC
accesses of the attacker and the victim. HexPADS [59]
detects cache side channels based on the frequent cache
misses of the attacker. However, both approaches tend to
suffer from high false positives and false negatives.

A final approach is to design hardware without side
channels and formally verify that they are correct.
SecVerilog [77] and Sapper [48] present new hardware
description languages with information flow tracking
that processor designers can use to design processors
without timing-channel exploits. Sanctum [24] is an
isolation framework similar to Intel SGX that mitigates
page table and cache side-channel attacks by maintain-
ing a per-enclave page table in addition to the traditional
page table managed by the OS with extra registers and
logic. It also isolates the enclaves in both DRAM and
cache using page coloring maintained by the TCB. How-
ever, these defenses require hardware modifications.

10 Conclusions

Despite defenses such as InkTag [40], Virtual Ghost [26],
and Haven [12], compromised OS kernels can steal ap-
plication data via side-channel attacks. We present Ap-
parition, an enhanced Virtual Ghost system that protects
applications from page table and LLC side-channel at-
tacks. Apparition improves the performance of the orig-
inal Virtual Ghost by up to 2× by eliminating unneces-
sary serializing instructions and by utilizing Intel MPX.
Apparition also enhances Virtual Ghost’s memory pro-
tection features to thwart page table side-channel attacks
and combines its memory protection features with Intel’s
CAT hardware to defeat LLC side-channel attacks. Ap-
parition requires no changes to the processor or OS ker-
nels running on SVA. We compared Apparition’s perfor-
mance to Virtual Ghost enhanced with our optimizations;
it adds 1% to 18% overhead (relative to native FreeBSD)
to most of the real-world applications we tested but adds
up to 86% additional overhead to GnuPG.

Acknowledgements

The authors thank the anonymous reviewers for their in-
sightful feedback. This work was supported by NSF

Awards CNS-1319353, CNS-1618497, CNS-1618588,
CNS-1629770, and CNS-1652280.

References
[1] clang: a C language family frontend for LLVM. https://

clang.llvm.org.

[2] ARM Architecture Reference Manual: ARMv7-A and ARMv7-R
Edition. 2011.

[3] ARM Architecture Reference Manual: ARMv8, for ARMv8-A Ar-
chitecture Profile. 2014.

[4] Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 3. Intel, September 2016.

[5] SPEC CPU R© 2017. https://www.spec.org/cpu2017, 2017.

[6] Intel analysis of speculative execution side channels. Tech. Rep.
336983-003, May 2018.

[7] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow integrity principles, implementations, and applica-
tions. ACM Transactions on Information Systems Security 13
(November 2009), 4:1–4:40.

[8] ACIIÇMEZ, O. Yet another microarchitectural attack: Exploiting
I-cache. In Proceedings of the 2007 ACM Workshop on Computer
Security Architecture (2007), CSAW’07, pp. 11–18.

[9] ACIIÇMEZ, O., BRUMLEY, B. B., AND GRABHER, P. New re-
sults on instruction cache attacks. In Proceedings of the 12th
International Conference on Cryptographic Hardware and Em-
bedded Systems (2010), CHES’10, pp. 110–124.

[10] ACIIÇMEZ, O., AND SCHINDLER, W. A vulnerability in RSA
implementations due to instruction cache analysis and its demon-
stration on OpenSSL. In Proceedings of the 2008 The Cryptop-
graphers’ Track at the RSA Conference on Topics in Cryptology
(2008), CT-RSA’08, pp. 256–273.

[11] ARM LIMITED. ARM security technology: Building a secure
system using TrustZone technology, 2009.

[12] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding appli-
cations from an untrusted cloud with Haven. In Proceedings of
the 11th USENIX Conference on Operating Systems Design and
Implementation (2014), OSDI’14, pp. 267–283.

[13] BENGER, N., POL, J., SMART, N. P., AND YAROM, Y. “ooh
aah... just a little bit”: A small amount of side channel can go
a long way. In Proceedings of the 16th International Work-
shop on Cryptographic Hardware and Embedded Systems (2014),
CHES’14, pp. 75–92.

[14] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND MANNE,
S. Accelerating two-dimensional page walks for virtualized sys-
tems. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (2008), ASPLOS’08, pp. 26–35.

[15] BOVET, D. P., AND CESATI, M. Understanding the LINUX Ker-
nel, 3rd ed. O’Reilly, Sebastopol, CA, 2006.

[16] BZIP2. bzip2 and libbzip2, 1996. http://www.bzip.org.

[17] CHECKOWAY, S., AND SHACHAM, H. Iago attacks: why the sys-
tem call API is a bad untrusted RPC interface. In Proceedings of
the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (2013), ASP-
LOS’13, pp. 253–264.

[18] CHEN, H., ZHANG, F., CHEN, C., YANG, Z., CHEN, R.,
ZANG, B., AND MAO, W. Tamper-resistant execution in an un-
trusted operating system using a virtual machine monitor. Tech.
rep., Fudan University, Parallel Processing Insitute, 2007.

https://clang.llvm.org
https://clang.llvm.org
https://www.spec.org/cpu2017
http://www.bzip.org

[19] CHEN, S., ZHANG, X., REITER, M. K., AND ZHANG, Y. De-
tecting privileged side-channel attacks in shielded execution with
DÉJÀ VU. In Proceedings of the 2017 ACM Asia Conference on
Computer and Communications Security (2017), ASIA CCS’17,
pp. 7–18.

[20] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM,
P., WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND
PORTS, D. R. Overshadow: a virtualization-based approach
to retrofitting protection in commodity operating systems. In
Proceedings of the 13th International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (2008), ASPLOS’08, pp. 2–13.

[21] CHENG, Y., DING, X., AND DENG, R. H. Efficient
virtualization-based application protection against untrusted op-
erating system. In Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security (2015),
ASIA CCS’15, pp. 345–356.

[22] CHIAPPETTA, M., SAVAS, E., AND YILMAZ, C. Real time de-
tection of cache-based side-channel attacks using hardware per-
formance counters. Appl. Soft Comput. 49, C (Dec. 2016), 1162–
1174.

[23] COSTAN, V., AND DEVADAS, S. Intel SGX explained. IACR
Cryptology ePrint Archive 2016 (2016), 86.

[24] COSTAN, V., LEBEDEV, I., AND DEVADAS, S. Sanctum:
Minimal hardware extensions for strong software isolation. In
Proceedings of the 25th USENIX Security Symposium (2016),
SEC’16, pp. 857–874.

[25] CRISWELL, J. Secure Virtual Architecture: Security for Com-
modity Software Systems. PhD thesis, Computer Science Depart-
ment, University of Illinois at Urbana-Champaign, Urbana, IL,
August 2014.

[26] CRISWELL, J., DAUTENHAHN, N., AND ADVE, V. Virtual
Ghost: Protecting applications from hostile operating systems.
In Proceedings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (2014), ASPLOS’14.

[27] CRISWELL, J., GEOFFRAY, N., AND ADVE, V. Memory safety
for low-level software/hardware interactions. In Proceedings of
the 18th Usenix Security Symposium (2009), SEC’09.

[28] CRISWELL, J., LENHARTH, A., DHURJATI, D., AND ADVE,
V. Secure Virtual Architecture: A safe execution environment
for commodity operating systems. In Proceedings of the ACM
Symposium on Operating System Principles (2007), SOSP’07.

[29] CRISWELL, J., MONROE, B., AND ADVE, V. A virtual instruc-
tion set interface for operating system kernels. In Workshop on
the Interaction between Operating Systems and Computer Archi-
tecture (2006), WIOSCA’06, pp. 26–33.

[30] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,
AND ZADECK, F. K. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Transac-
tions on Programming Languages and Systems (October 1991),
13(4):451–490.

[31] D. KAPLAN, J. P., AND WOLLER, T. White Paper AMD Memory
Encryption. AMD, 4 2016.

[32] DENNING, D. E. A lattice model of secure information flow.
Commun. ACM 19, 5 (May 1976), 236–243.

[33] DHURJATI, D., KOWSHIK, S., AND ADVE, V. SAFECode: En-
forcing alias analysis for weakly typed languages. In ACM Con-
ference on Programming Language Design and Implementation
(2006), PLDI’06.

[34] DONG, X., SHEN, Z., CRISWELL, J., COX, A., AND
DWARKADAS, S. Spectres, Virtual Ghosts, and hardware sup-
port. In Proceedings of the 7th International Workshop on Hard-
ware and Architectural Support for Security and Privacy (2018),
HASP’18, pp. 5:1–5:9.

[35] GODFREY, M. On the prevention of cache-based side-channel at-
tacks in a cloud environment. Master’s thesis, School of Comput-
ing, Queen’s University, Kingston, Ontario, Canada, Sept 2013.

[36] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache tem-
plate attacks: Automating attacks on inclusive last-level caches.
In Proceedings of the 24th USENIX Security Symposium (2015),
SEC’15, pp. 897–912.

[37] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache
games – bringing access-based cache attacks on AES to prac-
tice. In Proceedings of the 2011 IEEE Symposium on Security
and Privacy (2011), SP ’11, pp. 490–505.

[38] HÄHNEL, M., CUI, W., AND PEINADO, M. High-resolution
side channels for untrusted operating systems. In Proceedings of
the 2017 USENIX Annual Technical Conference (2017), pp. 299–
312.

[39] HETZELT, F., AND BUHREN, R. Security analysis of encrypted
virtual machines. In Proceedings of the 13th ACM International
Conference on Virtual Execution Environments (2017), VEE’17,
pp. 129–142.

[40] HOFMANN, O. S., KIM, S., DUNN, A. M., LEE, M. Z., AND
WITCHEL, E. InkTag: secure applications on an untrusted op-
erating system. In Proceedings of the 18th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (2013), ASPLOS’13, pp. 265–278.

[41] HU, W.-M. Reducing timing channels with fuzzy time. J. Com-
put. Secur. 1, 3-4 (May 1992), 233–254.

[42] INTEL. Software Guard Extensions Programming Reference, Oc-
tober 2014. Document Number: 3329298-002.

[43] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$A: A
shared cache attack that works across cores and defies VM sand-
boxing – and its application to AES. In Proceedings of the 2015
IEEE Symposium on Security and Privacy (May 2015), SP’15,
pp. 591–604.

[44] KIM, T., PEINADO, M., AND MAINAR-RUIZ, G. STEALTH-
MEM: System-level protection against cache-based side channel
attacks in the cloud. In Presented as part of the 21st USENIX
Security Symposium (2012), pp. 189–204.

[45] KOCH, W. GnuPG, 2017. https://gnupg.org.

[46] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG,
M., LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M.,
AND YAROM, Y. Spectre attacks: Exploiting speculative execu-
tion.

[47] LATTNER, C., AND ADVE, V. LLVM: A compilation framework
for lifelong program analysis and transformation. In Proceedings
of the Conference on Code Generation and Optimization (2004),
CGO’04, pp. 75–88.

[48] LI, X., KASHYAP, V., OBERG, J. K., TIWARI, M., RAJARATHI-
NAM, V. R., KASTNER, R., SHERWOOD, T., HARDEKOPF, B.,
AND CHONG, F. T. Sapper: A language for hardware-level
security policy enforcement. In Proceedings of the 19th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (2014), ASPLOS’14, pp. 97–
112.

[49] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS,
W., MANGARD, S., KOCHER, P., GENKIN, D., YAROMN, Y.,
AND HAMBURG, M. Meltdown.

https://gnupg.org

[50] LIU, F., GE, Q., YAROM, Y., MCKEEN, F., ROZAS, C.,
HEISER, G., AND LEE, R. B. CATalyst: Defeating last-level
cache side channel attacks in cloud computing. In Proceedings
of the 2016 IEEE International Symposium on High Performance
Computer Architecture (2016), HPCA’16, pp. 406–418.

[51] LIU, F., AND LEE, R. B. Random fill cache architecture. In Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (2014), MICRO’14, pp. 203–215.

[52] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-level cache side-channel attacks are practical. In Pro-
ceedings of the 2015 IEEE Symposium on Security and Privacy
(2015), SP’15, pp. 605–622.

[53] MARTIN, R., DEMME, J., AND SETHUMADHAVAN, S. Time-
Warp: Rethinking timekeeping and performance monitoring
mechanisms to mitigate side-channel attacks. In Proceedings of
the 39th Annual International Symposium on Computer Architec-
ture (2012), ISCA’12, pp. 118–129.

[54] MCKUSICK, M. K., NEVILLE-NEIL, G. V., AND WATSON, R.
N. M. The Design and Implementation of the FreeBSD Operating
System, second ed. Pearson Education, 2015.

[55] MCVOY, L., AND STAELIN, C. lmbench: portable tools for per-
formance analysis. In Proceedings of the 1996 USENIX Annual
Technical Conference (1996), ATC’96, pp. 23–23.

[56] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. SoftBound: Highly compatible and complete
spatial memory safety for C. In Proceedings of the 2009 ACM
Conference on Programming Language Design and Implementa-
tion (2009), PLDI’09, pp. 245–258.

[57] NAVARRO, J., IYER, S., DRUSCHEL, P., AND COX, A.
Practical, transparent operating system support for superpages.
SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 89–104.

[58] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks
and countermeasures: The case of AES. In Proceedings of the
2006 The Cryptographers’ Track at the RSA Conference on Top-
ics in Cryptology (2006), CT-RSA’06, pp. 1–20.

[59] PAYER, M. HexPADS: A platform to detect “stealth” attacks. In
Proceedings of the 8th International Symposium on Engineering
Secure Software and Systems - Volume 9639 (2016), ESSoS’16,
pp. 138–154.

[60] RUSSINOVICH, M. E., AND SOLOMON, D. A. Microsoft Win-
dows Internals, Fourth Edition: Microsoft Windows Server(TM)
2003, Windows XP, and Windows 2000 (Pro-Developer). Mi-
crosoft Press, Redmond, WA, USA, 2004.

[61] SHI, J., SONG, X., CHEN, H., AND ZANG, B. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page col-
oring. In Proceedings of the 2011 IEEE/IFIP 41st International
Conference on Dependable Systems and Networks Workshops
(2011), DSN-W’11, pp. 194–199.

[62] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M. T-SGX:
Eradicating controlled-channel attacks against enclave programs.
In Proceedings of the Network Distributed Security Symposium.

[63] SHINDE, S., CHUA, Z. L., NARAYANAN, V., AND SAXENA, P.
Preventing page faults from telling your secrets. In Proceedings
of the 11th ACM Asia Conference on Computer and Communica-
tions Security (2016), ASIA CCS’16, pp. 317–328.

[64] SINGH, A. Mac OS X Internals. Addison-Wesley Professional,
2006.

[65] THE OPENBSD PROJECT. OpenSSH, 2014. https://www.

openssh.com.

[66] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient cache
attacks on AES, and countermeasures. J. Cryptol. 23, 1 (Jan.
2010), 37–71.

[67] VAN BULCK, J., WEICHBRODT, N., KAPITZA, R., PIESSENS,
F., AND STRACKX, R. Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution. In
Proceedings of the 26th USENIX Security Symposium (2017),
SEC’17, pp. 1041–1056.

[68] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. In Proceedings
of the 14th ACM Symposium on Operating Systems Principles
(1993), SOSP’93.

[69] WANG, W., CHEN, G., PAN, X., ZHANG, Y., WANG, X.,
BINDSCHAEDLER, V., TANG, H., AND GUNTER, C. A. Leaky
cauldron on the dark land: Understanding memory side-channel
hazards in SGX. In Proceedings of the 2017 ACM Conference
on Computer and Communications Security (2017), CCS’17,
pp. 2421–2434.

[70] WANG, Y., FERRAIUOLO, A., ZHANG, D., MYERS, A. C.,
AND SUH, G. E. SecDCP: Secure dynamic cache partitioning
for efficient timing channel protection. In Proceedings of the
53rd Annual Design Automation Conference (2016), DAC’16,
pp. 74:1–74:6.

[71] WANG, Z., AND LEE, R. B. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings of the
34th Annual International Symposium on Computer Architecture
(2007), ISCA’07, pp. 494–505.

[72] WHEELER, D. A. SLOCCount Version 2.26, 2004.

[73] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating sys-
tems. In Proceedings of the 2015 IEEE Symposium on Security
and Privacy (2015), pp. 640–656.

[74] YAN, M., GOPIREDDY, B., SHULL, T., AND TORRELLAS, J.
Secure hierarchy-aware cache replacement policy (SHARP): De-
fending against cache-based side channel atacks. In Proceedings
of the 44th Annual International Symposium on Computer Archi-
tecture (2017), ISCA’17, pp. 347–360.

[75] YANG, J., AND SHIN, K. G. Using hypervisor to provide data
secrecy for user applications on a per-page basis. In Proceedings
of the 4th ACM International Conference on Virtual Execution
Environments (2008), VEE’08, pp. 71–80.

[76] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A high reso-
lution, low noise, L3 cache side-channel attack. In Proceedings of
the 23rd USENIX Security Symposium (2014), SEC’14, pp. 719–
732.

[77] ZHANG, D., WANG, Y., SUH, G. E., AND MYERS, A. C. A
hardware design language for timing-sensitive information-flow
security. In Proceedings of the 20th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (2015), ASPLOS’15, pp. 503–516.

[78] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART,
T. Cross-VM side channels and their use to extract private keys.
In Proceedings of the 2012 ACM Conference on Computer and
Communications Security (2012), CCS’12, pp. 305–316.

[79] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-tenant side-channel attacks in PaaS clouds. In Proceedings
of the 2014 ACM Conference on Computer and Communications
Security (2014), CCS’14, pp. 990–1003.

[80] ZHOU, Z., REITER, M. K., AND ZHANG, Y. A software ap-
proach to defeating side channels in last-level caches. In Pro-
ceedings of the 2016 ACM Conference on Computer and Com-
munications Security (2016), CCS’16, pp. 871–882.

https://www.openssh.com
https://www.openssh.com

	Introduction
	Attack Model
	Side-Channel Attacks
	Page Table Side Channels
	Cache Side Channels
	Instruction Tracing Side Channels

	Virtual Ghost Improvements
	Design
	Intel Memory Protection Extensions
	SVA Internal Direct Map

	Side-Channel Mitigations
	Page Table Side Channels
	Page Allocation Side Channels
	Code Translation Side Channels
	LLC Side Channels
	Instruction Tracing Side Channels

	Impact on Speculation Side Channels
	Implementation
	Evaluation
	Methodology
	Virtual Ghost Optimizations
	Page Table Side-Channel Defenses
	LLC Side-Channel Defenses
	Evaluation of Combined Defenses

	Related Work
	Conclusions

