
CSC 247/447 Notes updated Sept. 9, 2008

A Quick Introduction to Common Lisp

Lisp is a functional language well-suited to sym-

bolic AI, based on the λ-calculus and with list

structures as a very flexible basic data type; pro-

grams are themselves list structures, and thus can

be created and manipulated just like other data.

This introduction isn’t intended to give you all the details, but just enough to get across
the essential ideas, and to let you get under way quickly. The best way to make use of
it is in front of a computer, trying out all the things mentioned.

Basic characteristics of Lisp and Common Lisp:

• Lisp is primarily intended for manipulating symbolic data in the form of list struc-
tures, e.g.,

(THREE (BLIND MICE) SEE (HOW (THEY RUN)) !)

• Arithmetic is included, e.g.,
(SQRT (+ (* 3 3) (* 4 4))) or (sqrt (+ (* 3 3) (* 4 4)))

(Common Lisp is case-insensitive, except in strings between quotes " ... ", specially
delimited symbols like |Very Unusual Symbol!|, and for characters prefixed with
“\”).

• Common Lisp (unlike John McCarthy’s original “pure” Lisp) has arrays and record
structures; this leads to more understandable and efficient code, much as in typed
languages, but there is no obligatory typing.

• All computation consists of expression evaluation. For instance, typing in the above
(SQRT ...) expression and hitting the enter key immediately gives 5.

• Lisp is a functional language based on Alonzo Church’s λ-calculus (which like
Turing machines provides a complete basis for all computable functions). For
instance, a function for the square root of the sum of two squares can be expressed
as

(lambda (x y) (sqrt (+ (* x x) (* y y)))).
We can save this function by giving it a name using defun (examples will be seen
soon), or we can apply it directly, as in

((lambda (x y) (sqrt (+ (* x x) (* y y)))) base height),
where base and height are assumed to be variables that have been assigned some
numerical values.

• Since data are list structures and programs are list structures, we can manipulate
programs just like data. We can also easily define special-purpose list-structured
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languages (e.g., for planning or for NLP) and write interpreters for these languages
in Lisp.

• List structures are a very flexible data type – it’s hard to think of any types of
information that can’t be easily represented as list structures. And as long as we’re
using list structures as our data types, we can enter data just by supplying list
structures – we need not write special reading or structure-building functions. For
instance,

(SETQ X ’(THREE (BLIND MICE) SEE (HOW (THEY RUN)) !))

sets the variable X to the indicated list structure value; and
(READ)

will read in any list structre. Similarly printing out list structures requires no
special printing functions (the functions PRINT and FORMAT do almost everything
we need). Common Lisp arrays and record structures are also pretty easy to handle
in I/O.

• The simplicity and elegance of Lisp, and its unmatched flexibility and ease of use
for AI applications, have made it very durable: it is the second-oldest high-level
programming language (after FORTRAN), yet is still in common use.

Getting started

Go to the directory where you want to work (and where you’ll typically have various
program files and data files), and type

acl

(or whatever name is used in the available Lisp implementation – it has sometimes
been lisp, alisp, cl, etc.) The system will respond with loading and initialization
messages, followed by a prompt like

CL-USER(1):

You can now type in expressions and have them evaluated. Whenever you’ve got balanced
brackets and hit enter, the value (or an error message) is printed, and then you’re
prompted for further input.

Getting out

To escape from Common Lisp, type
(exit), or :exit

Saying “Hello”

According to N. Wirth (author of ALGOLW and Pascal), a good way to get an initial
glimpse of a language is to see a program that prints “hello”. Here’s the Lisp version
(just one quoted symbol!):

’hello
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When you hit enter, you’ll get
HELLO

which is the result of evaluating ’hello. If you want lower case, you can use the character
string

"hello"

which yields "hello" (still in quotes) – i.e., strings evaluate to themselves. If you want
the quotes to be invisible, you can use

(format t "hello")

However, besides getting “hello” without quotes you’ll now also get NIL on a new line;
that’s because the format function is special, having both an effect and a value: the effect
is to print out the material in quotes (plus possibly values of variables – see example
below), and the value is NIL.

But suppose we want a more elaborate greeting, wherein the user is asked for her/his
name. Then we could define a hello-function as follows:

(defun hello ()

(format t "Hello, what’s your first name?~%")

(setq *name* (read))

(format t "Nice to meet you, ~a" *name*) )

Note that the first argument of defun is a function name, the second is a list of arguments
(here, none), and after that we have any number of expressions which will be evaluated
in sequence, and which comprise the “body” of the definition. In effect, defun just
makes a λ-expression out of the argument list and the body, and makes this lambda
expression the function-value of the first argument (the function name). In other words,
it provides a way of naming a λ-expression. (Note that the function value of a symbol
won’t interfere with other ordinary values we might associate with it; but generally it’s
wise to steer away from such multiple uses of a symbol.)

The ~% in the first format statement means “go to new line”. The setq expression
sets the global value of *name* to be whatever Lisp expression is read in by (read).
A symbol can have both a global value, and a value local to a particular function call.
But it’s conventional to use an initial and final “*” for global variables, and to avoid
using these as local variables. (We’ll see local variables in later examples.) The ~a in
the second format statement means “print the value of the next expression given as
additional argument of format” – and in this case the next argument is *name*, and its
value is whatever name the user supplied.

When we type in this function definition and hit enter, we get
HELLO

which is just the name of the function we’ve defined. (So even an expression that defines
a function gets a value.) However, defun is primarily evaluated for its effect, not its
value, and the effect as indicated is that Lisp will now “remember” the definition of the
hello function.

To execute the hello function, we type
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(hello)

and hit enter, with the result
Hello, what’s your first name?

Joe (assumed as user input)
Nice to meet you, JOE

NIL

The final NIL is the value returned by the hello function when it terminates. Of course,
we can also use the expression (hello) as part of another program, which does not
immediately terminate after the greeting.

In general, we can evaluate functions for particular arguments by writing

(function-name arg1 arg2 ... argn)

Since hello had no arguments, we wrote (hello). Except for certain functions like
defun, setq, and a few others, arguments are first evaluated, and only then is the
function applied to the argument values.

Loading Lisp code from a file

If you have placed Lisp code (a series of symbolic expressions) in a file my-file.lisp,
you can run this code and then continue on-line as follows (assuming you are already in
Lisp, having typed lisp at some point):

(load "myfile.lisp")

assuming that this file is in the same directory as the one from which you are running
Lisp. You can also use the shorter version (load "myfile"), i.e., without the “.lisp”
extension – but this will use a compiled version of the file if one exists. If you are user
“smith” and the desired file my-file is in a directory lisp-programs, you could also
use

(load "/u/smith/lisp-programs/my-file.lisp")

(or without the “.lisp”), no matter what directory you are currently in. After this is
evaluated, you can use functions and constants that were defined in my-file.lisp.
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Data types

The smallest symbolic expressions are atoms, and we build larger expressions out of
these. Atoms come in several varieties, as indicated in the following tree:

atoms

numeric fractions (ratios), e.g.,

fixed point, e.g.,

floating point, e.g.,

symbols
(literal atoms)

boolean values:

nonboolean, 
e.g.,

characters, e.g.,

(can be printed as 

strings, e.g.,

−17, 3400, ...

1/2, 8/3, ...

−17.0, 34.5, 2.3E15, ...

T, NIL (= ())

John, LOVES, Mary123,
123Mary?!, |Strange symbol|,
@%^*+=/~<−>, \(op\.cit\.\)

#\a, #\A, #\b, #\B, #\!, #\#, #\Space, ...

a, A, b, !, #,   , ...

"This is a long string"

)

As an oddball category of literal atoms we should also mention keywords;
these start with a colon (e.g., :key) and have very special uses. A colon in
the middle of an atom also has a special meaning: the part before the colon is
a package name, and the part after it is the name of a function in the package
referred to. But we won’t go into that here.

Dotted pairs – discussed below

List structures – e.g.,
(3 "blind" mice)

(A B (C D E))

NIL (same as ( ))
(this (list (is (nested to (depth 5) see?))))

Note: In general, expressions are evaluated when they occur as an argument
(non-initial list element). However, T, NIL, numbers, characters, strings and
keywords evaluate to themselves. In addition, quotation – e.g., ’THIS or
’(a b) – prevents evaluation of the expression quoted (in the two examples
we just get back THIS and (A B)). Also as previously noted, certain special
functions prevent evaluation of (some of) their arguments (e.g., defun, setq,
etc.). Initial list elements are interpreted as functions, unless the list is inside
a quoted context. So for instance (+ x y) evaluates to the sum of values
associated with x and y, but ’(+ x y) just evaluates to the expression (+ x

y).

Arrays – e.g., we can define an array A using
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(setq A (make-array ’(3 4) :initial-contents

’((a b c d) 2 3 4)

("this" 5 6 7)

(#\C 8 9 10)) ))

Retrieving a value: (setq value (aref A 2 3)) ⇒ 6

Changing a value: (setf (aref A 2 3) 12)

The :initial-contents keyword, together with the expression following it
supplying the initial contents of the array, is optional. Optional parameters
are standardly indicated with keywords, which as mentioned start with a
colon and evaluate to themselves.

Hash tables – e.g.,

(setq A (make-hash-table)) ; creates it

(setf (gethash ’color A) ’brown) ; sets value of an entry

(setf (gethash ’name A) ’fred) ; sets value of an entry

(gethash ’color A) ; yields BROWN

(gethash ’name A) ; yields FRED

(gethash ’pointy A) ; yields NIL

Record structures – e.g.,

(defstruct course

name time credits room instructor)

(setq CSC242 (make-course :name "Artificial Intelligence"

:time ’TR3\:00-4\:15

:credits 4

:room ’CSB601

:instructor "John McCarthy"))

(setf (course-instructor CSC242) "Marvin Minsky") ; changes instructor

(course-time CSC242) ; yields |TR3:00-4:15|

Other data structures:
functions, packages, streams, ...
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Dotted pairs and binary trees

It’s usually most convenient to think of our data (and programs) as atoms and lists.
However, list structures are actually built out of dotted pairs. You can think of these as
pairs of storage locations (cells) where each location contains a pointer either to an atom
or to another dotted pair. In this way we can build up arbitrary binary trees, and these
can be used to represent list structures. (But while all list structures can be represented
as binary trees, not all binary trees represent list structures; so dotted pairs in principle
provide slightly more flexibility than list structures.) Here are examples of how we build
list structures out of dotted pairs:

A

A B

BA C

B

C ED

X

A

(A)    is really   (A . NIL),  or internally, Here denotes a 
pointer to NIL

(A B)   is really   (A . (B . NIL)),  or internally,

A

B

as tree drawn more
like a list:

(A B (C D E)) −− suppose this is the value of X; then we have

(A B C)   is really   (A . (B . (C . NIL))), i.e.,

A

B C

(A . (B . C))

(also written as (A B . C)), where
we can’t get rid of all the dots

As a dotted pair structure this is

An example showing that not all binary trees are lists is the following tree:

The left part of a dotted pair (i.e., the destination of the left pointer) is called its CAR,
and the right part its CDR (pronounced “could’r”). CAR also has the alternative name
first, since it picks out the first element of a list, as seen in the following.

(car ’(A)) is the same as (car ’(A . NIL)) which yields A

(cdr ’(A)) is the same as (cdr ’(A . NIL)) which yields NIL

(car ’(A B)) is the same as (car ’(A . (B . NIL)) which yields A
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(cdr ’(A B)) is the same as (cdr ’(A . (B . NIL)) which yields

(B . NIL),

i.e., (B)

Similarly (car ’(A B C)) yields A "first of list"

(cdr ’(A B C)) yields (B C) "rest of list"

There are also functions second, third, ..., tenth for easy access to the first few ele-
ments of a list, though we could also use (car (cdr ...)), (car (cdr (cdr ...))),
etc. Additional “easy access” functions you should know about are caar, cadr, cdar,

cddr, caaar, ... cddddr as well as nth, nthcdr, and last (which does not give
the last element of a list, but rather the last dotted pair, i.e., a list containing just the
last element). Here are some more examples, assuming that we have defined x by the
indicated setq:

(setq x ’(A B (C D E)))

(car x) ==> A

(cdr x) ==> (B (C D E))

(car (cdr x)) = (cadr x) ==> B

(cdr (cdr x)) = (cddr x) ==> ((C D E))

(car (cdr (cdr x))) = (caddr x) ==> (C D E)

(cdr (cdr (cdr x))) = (cdddr x) ==> NIL

(first (third x)) = (caaddr x) ==> C

(second (third x)) ==> D

(last (third x)) ==> (E)

Constructing a dotted pair

CONS constructs a new dotted pair and returns a pointer to it. Examples:

(cons ’A ’B) ==> (A . B)

(cons ’A NIL) ==> (A . NIL) = (A)

When the second argument of a CONS is a list, we can think of its operation as inserting

the first argument at the head of the list given as second argument. Thus

(CONS ’A ’(B C))    yields  (A  B C)

A

B C

new dotted
   pair

(CONS ’(A B) ’(C (D E))) yields  ((A B) C (D E))

(CONS ’( ) ’( )) yields  (( ))  =  (NIL)

    etc.
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Basic mechanism: expression evaluation

Note that expressions like

yielding

~~~~~~~~

’hello HELLO

(load "my-file") NIL

(setq n 5) 5

(car ’(a b c)) A

(cons 3 n) (3 . 5)

are complete stand-alone programs.
This is in contrast with other programming languages, where expressions analogous
to these could only occur within the body of some function or procedure definition
(well, except for the “load” statement). However, only the second and third of the
above statements have any lasting effect. In particular, the second statements (as you’ve
learned) loads a file, and this file may contain function definitions, etc., that can be used
thereafter. The third statement, as discussed before, sets the global value of a variable.
Note again that setq does not evaluate its first argument; it does evaluate the second,
but since this is a number, it evaluates to itself. (Recall that the boolean literals T, NIL

(or ( )), characters, strings, and keywords also evaluate to themeselves.)

Of course, an extremely important type of expression is defun, whose evaluation makes
a function available for subsequent use. We now look at some simple examples.

Some simple examples of functions

true-listp – a function that checks whether its argument is a true list at the top level
(its elements need not be lists). Note the use of “tail-recursion” (recursion on the
cdr of the input).

Note: The predefined function LISTP just checks if its argument is nil or a cons

(i.e., a dotted pair); e.g., (listp ’(a . b)) = T. Also note that we can put
comments after a semicolon – the Lisp reader ignores semicolons and everything
following them.

(defun true-listp (x)

;~~~~~~~~~~~~~~~~~~~~

(or (null x) (and (listp x) (true-listp (cdr x)))) )

e.g., (true-listp ’(a (b . c) c)) ==> T

(true-listp ’(a . b)) ==> NIL

(true-listp 3) ==> NIL

(true-listp NIL) ==> T

(true-listp ’(a . (b c))) ==> T
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list-structure – a function that checks whether its argument is a true list structure
(i.e., it’s not an atom other than NIL and prints without “dots”). Again we use
tail-recursion.

(defun list-structure (x)

;~~~~~~~~~~~~~~~~~~~~

(or (null x)

(and (not (atom x)); we could use (listp x) instead

(or (atom (car x)) (list-structure (car x)))

(list-structure (cdr x)) )))

e.g., (list-structure ’a) ==> NIL

(list-structure ’(a b c)) ==> T

(list-structure ’(a (b . c) c)) ==> NIL

(list-structure ’(a . (b c))) ==> T

standard-dev – a function for computing the standard deviation (root mean square
deviation from the mean) of a list of numbers. This illustrates the use of the “fell
swoop” functions reduce and mapcar, as well as direct use of a lambda-expression.

(defun standard-dev (data)

;~~~~~~~~~~~~~~~~~~~~~~~~~

; data: a list of numbers

; RESULT: the root mean square deviation from the mean of the data

;

(let ((n (length data)) mean); define 2 local variables, supplying

; initial value = (length data) for n

(if (zerop n) (return-from standard-dev nil))

(if (= n 1) (return-from standard-dev 0))

(setq mean (/ (reduce #’+ data) n))

(sqrt (/ (reduce #’+

(mapcar #’(lambda (x) (expt (- x mean) 2))

data ))

n )))); end of standard-dev

e.g., (standard-dev ’()) ==> NIL

(standard-dev ’(1)) ==> 0

(standard-dev ’(2 6)) ==> 2

(standard-dev ’(1 4 1 5 9 2 6 5)) ==> 2.5708704

(cf., 5/sqrt(3) = 2.89 :-)
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