Representing Knowledge in First-Order Logic

Much of the knowledge that we can informally express in ordinary language can be formally represented in first-order logic (FOL).

The previous lecture mentioned various examples of the many sorts of knowledge that people have—and that computers will have to acquire, if they are going to converse, or reason, or plan intelligently.

Why logic?

The question then is how to represent this knowledge, i.e., what form it should have inside the computer. Keep in mind that the representation should be one that makes it possible not only to retrieve the knowledge but also to use it for various kinds of inference and for planning of goal-directed action. A possibility that comes to mind immediately—since we’re considering knowledge expressible in language—is “Why not use ordinary language, e.g., English?”

Well, as you can probably guess, ordinary language is just too informal and ambiguous to serve as a knowledge representation that we can use reliably for inference, planning, etc. For instance, imagine trying to tell a computer the following fact:

I saw the moons of Jupiter with a telescope last night.

If we imagine the computer just storing this away as is (as a string or as a sequence of words), we can see that the following problems could arise:

- The computer wouldn’t know who “I” is—it may even interpret this as being about itself.
- It wouldn’t know what “last night” is—what this means all depends on when it was uttered. Also, it could modify “telescope” (cf., “the accident last night was terrible”).
- It wouldn’t know whether “with a telescope” modifies “saw” or “moons” (i.e., it might be that some moons of Jupiter have telescopes on them, and those are the ones I saw!)
- The verb “saw” could refer to the action of “sawing”!
- “Jupiter” could refer to the god, rather than the planet
We might say that FOL is a formalized, unambiguous form of ordinary language that avoids problems like the above. Its invention is one of the most important mathematical achievements of the 19th and 20th centuries, and has had an enormous impact on mathematics, philosophy, and AI.

Basically, the way FOL avoids problems like the above is by

- using brackets and fixed operator-operand ordering to avoid syntactic ambiguity;
- allowing any one symbol (like “T” or “saw”) to have just one interpretation (where “interpretation” is a precisely defined notion);¹
- using formalized versions of and, or, not, implies, is equivalent to, and is identical to, as a means of combining information, where these operators have fixed, well-defined meanings;
- using quantifiers \exists, \forall and variables like x, y, z to talk about an existing, but unspecified individual, or about all individuals.

In the early, somewhat arrogant days of AI, people working on KR often thought they could safely ignore logic as a representation, since after all they were working within a completely new “paradigm” – a new way of looking at reasoning and intelligence, namely in terms of symbolic information processing. They came up with many supposedly new representations inspired by the computational needs of question-answering, and simple inferencing. But ultimately these representations turned out to be very, very close to FOL, but with a new terminology, and new ways of writing things down or drawing them. There were some genuinely new features, particularly notational devices (and data structures) that indicated how knowledge was to be accessed and used; but in terms of content of the knowledge representation, the new notations tended to be a re-invention of FOL – but less precise!

In retrospect, this is not really surprising. Any representation for particular and general facts about the world surely needs at least the following devices:

- A way of referring to individuals that we want to say something about, and a way of saying that an individual has a certain property, or that certain individuals are related in a particular way (e.g., that Mary is single, or that she is married to John, or that Barack Obama was a president of the US);
- Ways of saying that a certain statement is true and a certain other statement is true as well; that one or another of two statements are true; or that a statement does not hold;
- A way of saying that all individuals (of a specified type) have a certain property (e.g., that all birds have wings).

¹More generally, logic avoids context-dependent meanings, evident in such sentences as “He got one too”, or questions like “What about you?”.
• A way of saying that two things are identical (e.g., that 2 plus 2 equals 4, or that the Morning Star is the planet Venus)

• A way of referring to entities that are functionally determined by other entities (e.g., the sum of 2 and 2; the weight of an object; the surface of an object)

But taken together, these requirements virtually force you to adopt (at least) FOL as a representation! In fact, the last requirement is really technically redundant, as is the requirement for “or” (“and” together with “not” can express “A or B”, viz., “not ((not A) and (not B))”).

So, better to learn it than reinvent it! A lot is known about how to precisely characterize meaning in FOL, and how to perform inferences (see below), and it is both very difficult and a waste of time to keep rediscovering these things, in slightly different notations. That is not to say “FOL is all you need”; it isn’t. But it’s an important, fundamental part of what you need!

The syntax of first-order logic

The list of requirements above very directly motivates the syntax of FOL. The syntax allows us to form formulas similar to English sentences, such as Dog(Odie) (“Odie is a dog”), or Loves(Romeo,Juliet), or (∀x (Dog(x) ⇒ ¬Can-talk(x))) (“For any object x, if x is a dog, it cannot talk”, i.e., “Dogs can’t talk”). We build such formulas systematically from smaller pieces, as follows.

Terms

First, the basic terms used to refer to individuals are

individual constants: A, B, C, USA, CSC244, John, Mary, Block1, Block2, ...

and

individual variables: x, y, z, x1, y1, block1, block2, ...

(Since there are no other variables in FOL, we often just say “variables”.) Two points should be noted about the interpretation of individual constants (informally speaking). First, we can let them refer to any individuals we please. So A or John (or both) could refer to John or to the US or to the number 17 or to the chair you are sitting on, etc. (assuming that these are things you wish to be able to talk about in your knowledge base). In this respect logic is unlike a natural language – in English we cannot use John to refer to countries, numbers, or chairs, except perhaps by special prior agreement, as some sort

Brachman & Levesque instead use lower case here, perhaps influenced by Prolog conventions, but we will follow our natural instinct to capitalize names, and use lower case for variables!
of secret code or joke. The second point is that since in logic meanings are unambiguous, a constant or variable denotes exactly one thing. This is also unlike ordinary language, since a name like John can refer to any number of individuals with that name, depending on context.

It can also be quite useful to allow numerals

0, 1, 2, ..., 10, 11, 12, ...

as individual constants. This raises certain questions that we’ll get back to later. For now let’s just note that (given the above “freedom of interpretation”) numerals could refer to people or countries, or anything else; in fact, 0 could refer to the number 17, etc. So at some point we presumably want to impose some constraints on the meanings of numerals.

For referring to the values of functions, we introduce

function constants: f, g, h, weight, father-of, surface-of, sum, ...

For each function constant, we have to decide how many arguments it takes – this is called its arity (or adicity). Thus weight might be a unary (or, monadic) function constant (arity 1), and sum might be a binary (or, dyadic) function constant (arity 2). But note that function constants can be interpreted to mean anything we want them to mean, just as in the case of individual constants. For instance, weight might actually refer to the surface area of an object, and sum to the distance between two given objects; however, we usually do not choose our constants so perversely! Using functions, we can form

function terms: weight(John), sum(weight(x),weight(y)), ...

In general, we can recursively define terms as being either individual constants, or individual variables, or functions applied to an appropriate number of terms. Terms containing no variables are called ground terms, while others are non-ground terms.

An important technical point here is that we assume that functions always have values, no matter what objects they are applied to. (They are total functions.)

weight(17), father-of(Pacific-Ocean)

are presumed to have values, perhaps chosen in some arbitrary way since we don’t really expect to refer to these values.

In addition to ordinary function constants like those above, some texts (G & N) also allow certain mathematical function symbols, such as

., +, −, *, /, ↑, ∪, ∩.

These constants have certain “intended interpretations”, and can be written in infix rather than prefix form; e.g.,

3Genesereth & Nilsson allow this, while Brachman & Levesque don’t – though in ch. 4 they use 0, 1, 2, ... to abbreviate Zero, succ(Zero), succ(succ(Zero)), ...
(A . x), (A + 2), etc.,
rather than .(A,x), +(A,2), etc. (“.” is intended to refer to addition of an initial element to
a sequence, like the Lisp cons function.) However, unless we somehow define or constrain
the interpretations of these function constants, they can in principle refer to any functions
at all. (We’ll come back to that.)

Formulas

Formulas (also often called sentences) describe properties and relationships (including
identity) of objects. Thus, besides terms referring to objects, we also need symbols
referring to properties and relations. These are called

predicate constants: A, B, C, Dog, Person, Loves, Married-to, Smokes, ...

These again have to have a fixed arity, such as 1 in the case of Dog and 2 in the case
of Loves (or perhaps 3, allowing for a time or situation where the relation holds). And
again these predicate constants can refer to any properties and relationships we like, not
necessarily the ones we would expect from their resemblance to English.

Note that we allow any capitalized (or completely upper-case) symbols for both indi-
vidual constants and predicate constants. However, any one symbol can be used in only
one way. Similarly a lower-case symbol can be used as a variable, individual constant, or
function constant, but not simultaneously. Also note that we need not explicitly specify
whether something is an individual constant, function, or predicate – it can be inferred
from the way we use these symbols (if, in fact, we do use them consistently). Similarly,
the arity of functions and predicates is evident from the way we use them.

We should note here that we also allow the equality predicate, =, but rather than
being freely interpretable, this predicate has a fixed meaning: it holds only for a pair of
arguments that refer to the same object. As in the case of binary mathematical functions,
we use infix form (possibly surrounded by brackets, if there is ambiguity)

A = B, etc.,

for equality statements, rather than prefix form =(A,B), etc. The presence of the equality
predicate distinguishes FOL from the First-Order Predicate Calculus (FOPC), i.e., FOL
is FOPC plus equality. We may also provide some additional mathematical predicates
(as G & N but not B & L do), namely

<, >, ≤, ≥, ∈, ⊆, ⊇.

But again we should not be misled by the “familiar look” of these predicates – unlike
=, they are in principle freely interpretable. They won’t automatically “mean what we
think they mean” (unless we constrain their meanings somehow).

Using predicates and terms, we can now form
atomic formulas: Dog(Fido), Loves(Romeo,Juliet), f(x) = y, etc.

Formulas containing no variables are called **ground formulas**.

There are two general ways of forming complex formulas from atomic formulas, namely, by use of logical connectives and by use of quantifiers. We use the following

logical connectives: ¬, ∧, ∨, ⇒, ⇔.

Intuitively these mean *not, and, or, implies, implied by,* and *if and only if (equivalent to)* respectively. “⇒” may also be written as “⊃” and “⇔” as “≡” (as is done in B & L). ¬ is a unary (1-place) logical connective, while the others are binary (2-place) logical connectives, and as such allow formation of compound sentences such as

¬Likes(Merkel,Putin), Loves(Romeo,Juliet)∧Loves(Juliet,Romeo), At-home(Mary)∨At-work(Mary), Poodle(Fifi)⇒Dog(Fifi), (A > B)⇔(B < A).

Finally, we introduce the two

quantifiers: ∀, ∃.

Their use is illustrated by the following examples:

(∀x Entity(x)), (∀x (Poodle(x) ⇒ Dog(x))),
(∃x Robot(x)), (∃x (Robot(x) ∧ Smart(x))),
(∀x (Robot(x) ⇒ (∃y Built(y,x)))),
(∃x (Robot(x) ∧ (∀y (Robot(y) ⇒ x=y))))).

These can be read respectively as *Everything is an entity; Every poodle is a dog; There exists a robot; Some robot is smart* (Note that this requires ∧ rather than ⇒!); *For every robot, there is someone (or something) that built this robot; and, There is only one (i.e., exactly one) robot.*

As you see, a quantifier is always followed immediately by a variable, and is said to *bind* that variable. The quantifier and variable are immediately followed by a formula, called the *scope* of the quantifier. The quantifier, variable, and scope are enclosed in parentheses, except where no ambiguity can arise.

An occurrence of a variable ν in a formula is said to be a **free** occurrence if it is not in the scope of any ∀- or ∃-quantifier that binds ν. A formula that contains no free variables is called a **closed formula**. The term **sentence** is also frequently reserved for closed formulas (though as noted it is commonly used for arbitrary formulas as well). Note that **ground formulas** are always closed, but some closed formulas are not ground formulas, because they contain quantifiers.

4We prefer “⇒” and “⇔” because they are ascii-printable and can be Lisp atoms; also “⊃” can be confused with “superset”, if we want to use such a relation.
BNF notation; first-order logic and first-order languages

We can now summarize and formalize these syntactic devices as follows, using “BNF” notation (ignoring the infixed, mathematical functions and relations, and also ignoring correct correspondence between the arity of function and predicate constants, and the number of arguments to which they are applied):

(\text{individual constant}) ::= A | B | C | USA | CSC244 | John | Block1 | Block2 |
(\text{variable}) ::= x | y | z | x1 | x2 | block1 |
(\text{function constant}) ::= f | g | h | weight | sum | mother-of |
(\text{term}) ::= (\text{individual constant}) | (\text{variable}) |
(\text{function constant}) (\langle \text{term} \rangle , ..., \langle \text{term} \rangle)
(\text{predicate constant}) ::= A | B | C | Dog | Loves | Owes |
(\text{binary connective}) ::= \land | \lor | \Rightarrow | \Leftarrow | \Leftrightarrow
(\text{formula}) ::= \langle \text{predicate constant} \rangle (\langle \text{term} \rangle , ..., \langle \text{term} \rangle) | (\langle \text{term} \rangle = \langle \text{term} \rangle)
| \neg (\text{formula}) | (\langle \text{formula} \rangle \langle \text{binary connective} \rangle \langle \text{formula} \rangle)
| (\forall \langle \text{variable} \rangle \langle \text{formula} \rangle) | (\exists \langle \text{variable} \rangle \langle \text{formula} \rangle)

Note that expressions of form \langle \rangle above are metalinguistic symbols – they vary over expressions in the formalism being defined, rather than being part of that formalism.

Also, we are still not being perfectly precise: function and predicate constants should really be sorted into 1-place, 2-place, 3-place, 4-place, ... constants (also called modadic, dyadic, triadic, ..., or unary, binary, ternary, ...). Furthermore, a given alphanumeric string may only be used as one type of constant, with a fixed adicity (arity). In other words, the sets comprising the individual constants, the 1-place function constants, the 2-place function constants, ..., the 1-place predicate constants, the 2-place predicate constants, etc., are disjoint sets.

As a final point, observe that depending on exactly what individual constants, function constants and predicate constants we choose, we can get various first-order languages using the above schema. For instance, we might limit these constants to some finite sets, rather than having an unlimited supply of them. So FOL, as such, is not itself a unique language, but rather it is a formalism that allows for many first-order languages.

What FOL can and can’t do

We’ve indicated that logical representations provide an unambiguous way of capturing factual knowledge, of the sort we can readily express in words. But of course storing away factual knowledge is not an end in itself – the question is what we can do with such knowledge. In general, what we do besides retrieving relevant knowledge (e.g., to answer a question) is to make inferences. While our next major task is to spell out the semantics (meaning) of FOL, much of the rest of the course will be concerned with the use of FOL
to perform inference. (Some would say reasoning, though to this term tends to suggest figuring something out by a complex series of inferences.)

Factual knowledge and types of inference

When logicians talk about FOL, they generally have in mind the above syntax (perhaps leaving out some inessential features), the semantics we shall discuss, and the “deductive proof theory”. The deductive proof theory concerns the rules by which we derive true conclusions from true premises, and we will spend a good deal of time on this. However, it would be a mistake to think that in using FOL we are somehow restricted to using deduction for inference (a mistake quite often made by people who argue against the use of logical representations!) There are other important forms of inference besides deduction that FOL lends itself to, and it is worth looking at a list of these before we delve into semantics. We will eventually learn something about each of these, except perhaps abduction:

- **Deduction**: deriving logically necessary consequences
 - Mary has a poodle named Fifi. Therefore (given that all poodles are dogs), Mary has a dog.
 - Fifi’s mother is Lulu. Therefore (given that offspring are younger than their parents, and that mothers are parents), Fifi is younger than Lulu.
 - Fifi ate a cookie. Therefore (given certain facts about eating, which you can fill in), the cookie went inside Fifi.

- **Uncertain and nonmonotonic inference**: deriving likely consequences in the absence of information to the contrary
 - Given (only) that Tweety is a canary, tentatively conclude that Tweety flies.
 - Given that John is sniffling and has a sore throat but no fever, tentatively conclude that he has a cold. (In either example, further evidence may reverse the conclusion – that’s what “nonmonotonic” means.)

- **Analogical, pattern-based inference**: People do it with just a few or even a single example; Deep neural nets generally need thousands or millions of examples.
 - Suppose a 2-year-old encounters her first dog, and it comes up to her and wags its tail. When she encounters another similar-looking dog later, she anticipates that it will act similarly;
 - In “The Princess Bride”, the hero says to the villain: “Hello, my name is Inigo Montoya. You killed my father. Prepare to die.” He fails at first, but after a drawn-out battle, has the villain at his mercy and says, “My name is Inigo Montoya. You killed ...” how does this continue? Yes, you guessed it.
 - Arguably, our general world knowledge consists largely of schemas describing commonly encountered patterns of events and relationships, and we use these for prediction and retrodiction. For example, we can all describe the actions
and entities involved in dining at a restaurant, brushing one’s teeth, sweeping a floor, ordering from Amazon, tanking up a car, attending a class, etc. This knowledge tells us both how to act to achieve goals, and how to predict or retrodict events when observing others engaged in such routine activities.

- **Abduction** (and **induction**): formulating general hypotheses to account for multiple particular observations or facts; (induction: confirming or disconfirming such hypotheses based on observations)
 - Given that all the crows I’ve seen are black, conjecture that all crows are black. (Induction: gradually confirm the hypothesis after seeing more and more examples, and no counterexamples.)
 - Upon noticing that it is possible to “fit” ellipses to observations of the motions of several planets, conjecture that all planets follow elliptical orbits (Kepler).

- **Explanation**: postulating particular facts which, when combined with other available knowledge, can account for new observed facts (this is sometimes counted as a special case of abduction; it also shades over into uncertain, nonmonotonic inference, or schema-based inference).
 - Given that my parked car has disappeared, conclude that it was stolen or towed.
 - Given the observation of a slight, periodic wobble in the position of a certain star, conclude that a large planet is orbiting it.

- **Planning and plan recognition**: formulating plans to achieve given goals; and conjecturing other agents’ plans based on their actions or stated desires; again this relates to schemas, which include routine plans one can employ to achieve one’s recurring goals.
 - Given her goal of being in Baltimore in early November, a professor decides to book a flight, arrange for a TA to sub for her class, etc.
 - As I am about to pull out of my parking spot at a busy bank, I see another car stop and wait behind me. I infer that the driver wants to park in my spot, and (probably) go to the bank.

“**Know-how**” and the limits of **FOL**

Does the above list of inference modes cover the full range of intelligent behaviors that people are capable of?

It seems clear that the answer is “no”: we possess various specialized skills and know-how, including many motor skills and sensory processing abilities, that appear to have nothing to do with reasoning. Rather, they are best viewed as procedures operating on specialized data structures and I/O streams, and perhaps running on very specialized computational architectures. Imagine trying to implement any of the following activities in a humanoid robot using logical representations and operations as a basis:
• whistling
• riding a bike, catching a ball, using chopsticks, tying shoelaces
• interpreting retinal images
• speaking grammatically (well, this example is debatable...)
• learning a new language, a new skill, ...

Even if we could come up with logical descriptions of how we do these things (or how a humanoid robot could do them), such descriptions probably could not be used in any direct way in implementing them.

It would be wrong to conclude, though, that there is a sharp division between knowledge of how to do things – *procedural* knowledge – and factual knowledge. (This has tended to be the view taken by both sides in the “proceduralist-declarativist controversy” – a controversy that started in the late 60’s, with one side defending procedural representations and the other logical representations of knowledge.) For instance, consider the following kinds of procedural knowledge:

• cooking recipes
• assembly and installation instructions (for furniture, electronic equipment, etc.)
• emergency procedures (on airplanes, in medical emergencies, etc.)

etc. These are just as natural to express in language – and FOL – as facts about food, furniture, airplanes, etc. The difference is really just one of “mood”: declarative (or “indicative”) vs. imperative. Declarative sentences express facts while imperative sentences express what to do, but apart from that, they use the same grammatical constituents (noun phrases, verb phrases, etc.), with the same meanings.

In fact in a broad sense, standard programming languages such as C++ can be viewed as logics, but ones that make (mostly) imperative rather than declarative statements. Why, then, is it that programs in most programming languages look so little like FOL? Well, there are several reasons. First, the objects and operations they talk about tend to be ones inside the computer (storage locations, variables, assignment) or abstract mathematical ones (numbers, symbolic objects, subroutines), instead of being real-world things like food and cooking and furniture and so on. Second, the concern in procedural languages is very much with sequencing in time, while FOL makes no special provision for this (any more than for, say, sequencing in a spatial dimension – though it is entirely possible to “talk about” time and space). Third (a point related to the second), they use syntactic devices not seen in FOL – e.g., *begin*-end blocks, *if*-then statements, procedure declarations, loops, lambda-abstraction, etc. And at the same time, they tend not to have quantifiers \(\forall \) or \(\exists \). Still, the meaning of programs can be studied in much the

5 Prolog gives the illusion of being declarative, but is still interpreted imperatively, i.e., there is an “understood” way of executing a prolog program.
same way as the meaning of declarative logics.6 As well, certain languages have been developed, called \textit{dynamic logics} and \textit{executable temporal logics}, which have a more FOL-like syntax and can be used as high-level programming languages (or to describe what programs written in other programming languages do); e.g., see H. Barringer, M. Fisher, D. Gabbay, R. Owens and M. Reynolds, \textit{The Imperative Future: Principles of Executable Temporal Logic}, Research Studies Press LTD., 1996.

As a final comment, it should be noted that FOL is not quite expressive enough to cover everything we can easily express in ordinary language. For instance, it lacks good means for expressing modifiers such as “very”, “fake” (as in “fake blood”), “almost” (as in “he almost fell”), and temporal modifiers (as in “John woke up repeatedly during the night”), or for expressing belief (as in “Mary believes that John is an insomniac”), or for expressing “reification” – turning a concept or proposition into a thing (as in “Climbing rock walls without ropes is foolhardy”, or “That there is water on the Moon is surprising”). We may look at some useful extensions to FOL later in the course.

6E.g., see E. Stoy’s book \textit{Denotational Semantics}.