
CSC 244/444 Lecture Notes Sept. 13, 2023

Semantics of First-Order Logic

A notation becomes a “representation” only when
we can explain, in a formal way, how the notation
can make true or false statements about some do-
main; this is what model-theoretic semantics does
in logic.

We now have a set of syntactic expressions for formalizing knowledge, but we have
only talked about the meanings of these expressions in an informal way. We now need
to provide a model-theoretic semantics for this syntax, specifying precisely what the
possible ways are of using a first-order language to talk about some domain of interest.

Why is this important? Because, (1) that is the only way that we can verify that the
facts we write down in the representation actually can mean what we intuitively intend
them to mean; representations without formal semantics have often turned out to be
incoherent when examined from this perspective; and (2) that is the only way we can
judge whether proposed methods of making inferences are reasonable – i.e., that they
give conclusions that are guaranteed to be true whenever the premises are, or at least
are probably true, or at least possibly true. Without such guarantees, we will probably
end up with an irrational “intelligent agent”!

Models

Our goal, then, is to specify precisely how all the terms, predicates, and formulas (sen-
tences) of a first-order language can be interpreted so that terms refer to individuals,
predicates refer to properties and relations, and formulas are either true or false.

So we begin by fixing a domain of interest, called the

domain of discourse: D.

This can be any nonempty set at all – e.g., a set of (actual or imaginary) blocks on a
table that you want to encode knowledge about; a set of numbers or other mathematical
objects; a set of possible electronic circuits and their components; the set of all physical
objects in the universe; the set of all physical objects, events, cultural and social entities
in the world; etc.

NB: A common mistake is to think that the individuals inD are just symbolic
objects or abstractions of some sort. They can be, but they can perfectly well
be real, tangible objects in the world, if that’s what we want to talk about in
the logic!! The mistake comes from the fact that when we say that such-and-
such terms in FOL refer to such and such individuals, we naturally can’t place
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those individuals themselves on the written page, but can only use words or
other “metasymbols” (e.g., Abraham Lincoln, a, b, c, ..., below) for them.
Thus we seem to be relating symbols of the logic to other symbols – but
we’re not! We’re relating symbols of the logic to entities in the domain of
discourse.

Next, we need to specify a possible correspondence between the basic symbols (con-
stants) of FOL and the domain of discourse. We do this by letting individual constants
denote individuals in D, letting function constants denote functions that map individu-
als (or n-tuples of them) to individuals, and letting predicate constants denote sets (or
n-ary relations) formed from individuals in D. More precisely, we define an

interpretation: I

as a function that maps

• each individual constant to an individual ∈ D; e.g., I(ABE) = Abraham Lincoln,
in other words, ABE denotes Abraham Lincoln under interpretation I;

• each n-adic function constant to a function ∈ Dn →D; (the notation A → B in
general refers to the class of all function that map the elements of A into elements
of B; An refers to the set of all n-tuples of elements belonging to set A;) e.g.,
I(weight) = the function that maps each object in D into the weight in kilograms of
that object; thus weight denotes a function in the class D→ R under interpretation
I, where R is the set of nonnegative real numbers;

• each n-adic predicate constant to a subset of Dn (i.e., an n-adic relation over D);
e.g., I(Loves) = the set of pairs of people such that the first loves the second; thus
Loves denotes a subset of D2 under interpretation I (where presumably D includes
people).

Since I is a function, we have written the interpretation (denotation, semantic value) of
atomic symbols like ABE, weight, etc., as I(ABE), I(weight), etc.1 However, we will
generally use a slightly more concise “superscript” notation, ABEI , weightI , etc.

Before giving a more complete illustration, we define a model as a domain of discourse
together with an interpretation:

1Important note: I is a strange function compared to most of the ones you might be used to from
mathematics, because it is a function on symbols. When we write something like sin θ in calculus, we are
not referring to the sine of the symbol θ (which has a particular oval shape and cross-bar), but rather to
the sine of whatever angle θ refers to. By contrast, when we write I(C), we really are talking about the
value of I for the symbol “C” itself. So we might more accurately write I(“C”), or in Lisp-like notation,
I(’C). We could not be referring to the value of C, because it doesn’t have a value – till we supply one,
using I! Another way of putting this distinction is that in sin θ we are using θ (namely, to refer to an
angle), while in I(C) we are mentioning C. This is much like the contrast between the use and mention
of “Rome” in the sentences, “Rome is an ancient city”, and ”Rome is a 4-letter word”.
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model M = (D,I).2

As a detailed example of the concepts we’ve introduced, let’s consider a simple world
of two red blocks a, b and a blue block c on a table d. Here a, b, c, d are our metalinguistic
names for the objects we want to talk about. These names are not part of the first-
order language under consideration, but just “handy” ways of referring to the objects
of interest. In other words, they are part of the metalanguage – which often includes
chunks of English prose – that we use to talk about the (first-order) object language
under consideration, the domain of discourse, and the way the symbols of the object
language relate to the objects in the domain of discourse.

a red

c blue b red

table d

In the object language, we might describe this situation by the formulas:

Block(B1), Block(B2), Red(B1), Red(B2), Blue(B3),
On(B1,B3), On(B3,T), On(B2,T)

where B1 is intended to refer to red block a, B2 is intended to refer to red block b, B3
is intended to refer to the blue block c, and T is intended to refer to the table d.

We can take the domain of discourse to be just

D = {a, b, c, d},

(which is a set of 4 objects, not a set of 4 names!) Let’s assume that in our first-order
language we use only B1, B2, B3, and T as individual constants, and only Block, Red,
Blue and On as predicate constants. Then we can express their intended meanings by
the following interpretation I:

B1I = a
B2I = b
B3I = c
TI = d
BlockI = {a, b, c}
RedI = {a, b}
BlueI = {c}
OnI = {⟨a, c⟩ , ⟨c, d⟩ , ⟨b, d⟩ }

2Brachman & Levesque write I = (D,I), and refer to I as an “interpretation” and I as the “interpre-
tation mapping”. They use the term “model” for I only when considering a set of formulas S that are
true relative to I = (D,I), i.e., when I is a “model of” S. The more standard terminology used herein
seems less confusing... The previous Genesereth & Nilsson text also used unconventional terminology
here, in particular writing |I| for D, and not specifying a domain separately. This is somewhat mislead-
ing, since in general the domain D is not determined by the interpretation function I – many possible
choices of domain may be compatible with an interpretation of a first-order language. In particular, this
is so if our first-order language has no function symbols.
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Let’s expand the example a little to also allow for a function. Let base be a function
constant that we interpret as giving us, for any object, the “base” the object rests on:

baseI = {⟨a, c⟩ , ⟨b, d⟩ , ⟨c, d⟩ , ⟨d, d⟩ }

Note that this function is almost the same, set-theoretically, as OnI . But recall that
function constants in FOL denote total functions. Thus, the above interpretation of base
also supplies a value for argument d (the table), namely itself – it is its own “base”.
This is just an arbitrary choice, assuming that we don’t really intend base to have any
particular value for the table. (And if we were to say it rests on the floor, we would then
have to specify what the value of the base function is when applied to the floor, etc.!)

N.B.: Don’t assume from the above specification of I that to use logic
we actually have to spell out such interpretations! In an application, we will
usually have in mind that certain constants should denote certain individuals
or sets, but the only time we actually spell such things out is when we’re
illustrating or analyzing properties of the logic.

Given that we have a function symbol like base, how do we now interpret a function
term like

base(B1) ?

The answer is just that we take the function denoted by base, i.e., baseI , and apply it to
the individual denoted by B1, i.e., B1I . The resulting individual, baseI(B1I) = baseI(a)
= c (the blue block), is the denotation (or semantic value) of base(B1).

Variable and Term Assignments

Before we can state the general rule for interpreting function terms, we need to consider
the possibility that a term may be a variable, or a function term involving a variable,
such as base(x), or base(base(x)). To be able to interpret such terms, we introduce a

variable assignment U ∈ VARIABLES→D,

i.e., U maps each variable to an individual.

Let’s extend our example accordingly by also adding VARIABLES = {x, y, z} to our
first-order language, and assigning them values

xU = yU = zU = a.

This assignment is completely arbitrary, and in fact, in general the initially given assign-
ment function serves only to get us “off the ground” in the recursive semantic interpre-
tation of our first-order language. As we shall see, the values assigned to variables will
be systematically altered when we take account of the quantifiers binding them.
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We can now state the general rule for interpreting a function term as follows, where
we use TIU for the general term assignment, which assigns a semantic value to every
term, given an interpretation I and a variable assignment U . (Thus TIU extends both
I and U so as to interpret not only simple terms but also function terms.)

term assignment TIU :

TIU (τ) = τI if τ is an individual constant
= τU if τ is a variable

TIU (α(τ1, ..., τn)) = αI(TIU (τ1), ..., TIU (τn)) if α is an n-ary function constant
and τ1, ..., τn are terms

Going back to our example, we can see that, e.g.,

TIU (base(B1)) = baseI(TIU (B1)) = baseI(B1I) = baseI(a) = c;
TIU (base(x)) = baseI(TIU (x)) = baseI(xU ) = baseI(a) = c;
TIU (base(base(B1))) = baseI(TIU (base(B1)) = baseI(c) = d.

Satisfaction

Since we now know how to interpret terms, we are ready to interpret a predicate applied
to a sequence of terms, i.e., an atomic formula. First we recursively (inductively) define
satisfaction of a formula ϕ by a variable assignment U relative to a model M, written as

|=M ϕ [U ].

This notion is close to that of truth, but is dependent on a particular variable assignment
U . Later we will eliminate the dependence on the variable assignment, and define truth
of ϕ in model M, written

|=M ϕ.

Starting with atomic formulas, we consider an n-ary predicate π applied to arbitrary
terms τ1, ..., τn:

|=M π(τ1, ..., τn) [U ] iff ⟨TIU (τ1), ...,TIU (τn)⟩ ∈ πI ,

in other words, the variable assignment U satisfies the formula relative to M (= (D,I))
iff the n-tuple which is the interpretation of the argument terms τ1, ..., τn belongs to the
relation πI that is the interpretation of the predicate π. In the case of our earlier blocks
example, we can write, e.g.,

|=M Block(B1) [U ], |=M Red(B1) [U ], |=M On(B1,B3) [U ], etc.

Recall that equality receives a fixed interpretation in FOL, rather than being freely
interpretable. This fixed interpretation is given by the following satisfaction conditions
for equations (which are also considered atomic formulas):

|=M σ = τ [U ] iff TIU (σ) = TIU (τ).
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For the earlier blocks example, we have, e.g.,

|=M B1 = x [U ], |=M base(B1) = B3 [U ], |=M base(base(B1)) = base(B3) [U ], etc.

For formulas that are not satified, we use the notation

|=/M ϕ [U ];

e.g.,

|=/M Block(T) [U ], |=/M On(B1,T) [U ],
|=/M x = B3 [U ], |=/M base(B1) = base(B2) [U ], etc.

Next we consider logically compound formulas, built up by using the logical connec-
tives:

|=M ¬ϕ [U ] iff |=/M ϕ [U ]
|=M (ϕ ∧ ψ) [U ] iff |=M ϕ [U ] and |=M ψ [U ]
|=M (ϕ ∨ ψ) [U ] iff |=M ϕ [U ] or |=M ψ [U ]
|=M (ϕ⇒ ψ) [U ] iff |=/M ϕ [U ] or |=M ψ [U ]
|=M (ψ ⇐ ϕ) [U ] iff |=/M ϕ [U ] or |=M ψ [U ]
|=M (ϕ⇔ ψ) [U ] iff |=M ϕ [U ] and |=M ψ [U ] or |=/M ϕ [U ] and |=/M ψ [U ]

Arguably, these interpretations of the logical connectives are quite close to those of the
corresponding English words not, and, or, if...then..., ...if..., if and only if. In the case
of English or, it has often been suggested that this is more like exclusive or (i.e., one or
the other but not both). For instance, in

Every guest drank tea or coffee

we feel that the alternatives are exclusive. However, this is only a “conversational impli-
cature” – something we infer by default, but which can be denied without contradiction.3

For instance, we can say without contradiction,

Every guest had tea or coffee. In fact, some had both.

In the case of ⇒ , we should mention that this corresponds to if...then... only when we
use if...then... factually, as in

If John is awake, (then) he heard what you just said

rather than counterfactually, as in

If John were awake, (then) he would have heard what you just said

3This concept is due to H.P. Grice (“Logic and conversation”, in The Logic of Grammar, ed. by
D. Davidson & G. Harman, Dickenson, 1975), who suggested that conversational implicatures arise
from “conversational maxims”, such as “Be relevant”, ”Be brief”, “Be truthful”, and (roughly) “Be as
informative as is required”. Concerning the last maxim, suppose you know that John had tea and coffee.
Then you would be withholding information if you said “John had tea or coffee,” even though this is
true. The hearer assumes you are conforming with the conversational maxims, so if you say “John had
tea or coffee,” the inference is that John did not have both, else you would have said and!
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where it is implied (or at least implicated!) that John is not awake. Such a sentence is
not true merely because the antecedent is false. For instance,

If John were asleep, he would have heard what you just said

seems to be false even when the antecedent is false (John is awake) and the consequent
is true (he did hear what you just said).

Finally, the satisfaction conditions for quantification can be stated as follows (this is
the trickiest part of truth-conditional semantics, and why it took decades, from Frege’s
first formulation of FOL till Tarski’s work on semantics, to properly formalize it):

|=M (∀ν ϕ) [U ] iff for all d ∈ D, |=M ϕ [U ′], where U ′ is the same as U
except that νU

′
= d

|=M (∃ν ϕ) [U ] iff for some d ∈ D, |=M ϕ [U ′], where U ′ is the same as U
except that νU

′
= d

Intuitively, the ∀-condition just says that ϕ (the sentence that comprises the scope of
the quantifier) must be satisfied for all ways of choosing an individual d as the value of
variable ν. Similarly for the ∃-condition, except that there need only be some such d for
which ϕ is satisfied.

Truth

It is now a simple step to define truth in a model in terms of satisfaction. In most
presentations of FOL semantics, truth is defined only for closed formulas – ones with no
free variables. For instance,

Loves(John,Mary), (∀x (Person(x) ⇒ (∃y (Person(y) ∧Loves(x,y)))))

are closed formulas, while

Loves(John,x), (Ghost(x) ⇒ (∃x Supernatural-being(x)))

are open, i.e., contain at least one occurrence of a free variable. (Note that in the second
formula one occurrence of x is free, the other is bound; the two occurrences have nothing
to do with each other – the formula is equivalent to (Ghost(x) ⇒ (∃y Supernatural-
being(y))).)

Closed formulas are the ones that are similar to English sentences, while open formu-
las are incomplete, in the sense that they are “missing” at least some quantifiers. From
that perspective, it is sufficient to define truth for closed formulas.

For a closed formula ϕ we can define truth in a model M, written |=M ϕ, as

|=M ϕ iff for all variable assignments U , |=M ϕ [U ].

In other words, U satisfies ϕ relative to M, regardless of U . But it is easy to see that we

7



could just as easily have said

|=M ϕ iff for some variable assignment U , |=M ϕ [U ],

since for closed wffs, one variable assignment is as good as any other; the quantifiers
binding the variables “try out” different values for them, regardless of the “initial” values.

The G & N text also defines truth for open formulas, using the first definition above
(quantifying over all assignments).4 In other words, G & N wish to be able to treat
open formulas as if they made complete, well-defined statements – namely, as if all free
variables were universally quantified. Perhaps they do this in anticipation of clause form,
used later in the text in connection with inference based on the resolution principle; in
clause form, all quantifiers are implicit. However, this leads to some technical problems
which are not quite properly dealt with in the text, so let’s limit ourselves to talking
about the truth of closed formulas.

The important point is that we now have a complete notion of how a given first-
order language can be interpreted so as to make true (or false) statements about a given
domain of discourse. This puts us in a position to define logical consequence, and to
relate logical consequence to deductive inference.

4B & L’s notation and definitions for satisfaction and truth are less clear than G & N’s, so we have
adhered to the latter. B & L use J (and the term “interpretation”) for a pair (D,I) (a domain and
interpretation function), where we use the more conventional symbolism M (“model”). (B & L use
the term “model” only when talking about truth of a set of sentences in a model, i.e., about models of
sentences.) They notate a term assignment function TIU as ∥ · ∥J ,µ where again J = (D,I) and µ is a
variable assignment. Also they write J , µ |= ϕ where we write |=M ϕ[U ], and instead of formally defining
truth in a model in terms of satisfaction, they remark that the truth relation J |= ϕ corresponds to the
satisfaction relation when the latter does not depend on the variable assignment. It’s unclear whether
they would therefore say that truth in a model is defined for all closed sentences as well as ones like
P(x)∨¬P(x) or P(x)∧¬P(x) (which are always satisfied, or never satisfied, regardless of the variable
assignment), or only for closed sentences.

8


