
CSC 244/444 Lecture Notes Sep. 28, 2023

Resolution Principle Theorem Proving

The Resolution Principle along with paramodulation
provides a simple basis for mechanized inference and
question answering

Introduction: A Simple Example

The Resolution Principle was proposed by J. Alan Robinson in 1965 as a basis for
mechanical theorem proving, and has dominated mechanized deduction in AI since then.
It is a descendant of Herbrand’s proof procedure (1930) and Prawitz’ improvement of
it (1960). In the late 70’s Robert Kowalski in Britain and Alain Colmerauer in France
developed the logic programming language Prolog, which uses resolution-based inference
as its fundamental computational operation. This language (and logic programming
more generally) became very influential in AI, and further enhanced the significance of
resolution.

Proving a conclusion ϕ from a set of premises ∆ using the resolution principle involves
two stages. First, we add the denial of ϕ to the premises, i.e., we form ∆,¬ϕ (strictly,
we should say ∆ ∪ {¬ϕ}), and we convert this to clause form. In clause form, we have
a set of disjunctions called clauses, where the disjuncts in each clause are literals, i.e.,
either atoms (atomic formulas of form π(τ1, ..., τn) or σ = τ) or negated atoms; there are
no explicit quantifiers, but free variables are regarded as universally quantified. Then we
repeatedly apply resolution (and, possibly, factoring and paramodulation) till we derive
the empty clause 2. This contradiction establishes the desired conclusion, ϕ.

For example, suppose our premises are

1. (∀x ((Dog(x) ⇒ Barks(x))) (All dogs bark)

and

2. Dog(Snoopy),

and we wish to prove that “Something barks”, i.e.,

(∃x Barks(x)).

We form the denial of this desired conclusion and add it to our premises:

3. ¬(∃x Barks(x)).

We now convert these formulas to clause form. For formula (1), this is

1’. ¬Dog(x) ∨ Barks(x) (Any x either isn’t a dog, or barks)

1

Note that universal quantification of x is implicit, and we’ve converted the conditional
to a disjunction. You can see intuitively that this says the same as (1). The two literals
in this clause happen to be atoms. Formula (2) is unchanged in clause form – it has just
one literal, and such clauses are called unit clauses. For formula (3), we first “pass the
negation through the quantifier”, changing ∃ to ∀ in doing so:

(∀x ¬Barks(x)).

Note that in general ¬(∃ν ϕ) is equivalent to (∀ν ¬ϕ); i.e., if nothing exists which is ϕ,
then surely everything is not ϕ (and vice versa). In fact it’s not hard to prove that the
entailment relation “|=” holds in both directions. (Similarly ¬(∀ν ϕ) is equivalent to
(∃ν ¬ϕ).) Now we just drop the universal quantifier, getting the unit clause

3’. ¬Barks(x).

This completes the conversion to clause form. In the second stage, we repeatedly resolve
pairs of clauses till we get the empty clause. First, we resolve (1’) and (2), by unifying the
literal ¬Dog(x) with the literal Dog(Snoopy), (i.e., letting x = Snoopy), and “cancelling”
the resolved literals. The conclusion is the disjunction of remaining literals, in this case
just

4. Barks(Snoopy) r[1’a,2] (resolve literal “a” of clause 1’ with clause 2)

Notice that since we substituted Snoopy for x, this is now a special case of the original
literal Barks(x) in (1’). Next we resolve (4) and (3’), again using unifier x = Snoopy;
when we cancel the unified literals, we are left with no literals, i.e., the empty clause:

5. 2

This completes the resolution proof.

We now need to spell out the details of how we convert to clause form starting with
arbitrary formulas of FOL, how we unify arbitrary literals, and how we form the resolvent
after unifying literals of two clauses. Eventually we’ll also talk about factoring (needed
for completeness if we use the simplest form of resolution), and paramodulation (needed
if we want to handle equality, i.e., full FOL).

Conversion to Clause form

Starting with any closed formula, we perform the following 6 transformations. (All but
Skolemization – step 4 – are based on logical equivalences, i.e., the original formula
entails, and is entailed by, its replacement.)

1. Eliminate ⇒ and ⇔ :

Replace (ϕ⇔ ψ) by ((ϕ⇒ ψ) ∧ (ψ ⇒ ϕ))
(ϕ⇒ ψ) by (¬ϕ ∨ ψ)

2. Move ¬ inward (so that we are left only with negated atomic wffs):

2

Replace ¬(ϕ ∨ ψ) by (¬ϕ ∧ ¬ψ)
¬(ϕ ∧ ψ) by (¬ϕ ∨ ¬ψ)
¬¬ϕ by ϕ
¬(∀xϕ) by (∃x¬ϕ)
¬(∃xϕ) by (∀x¬ϕ)

Actually, steps 1 and 2 can be neatly combined with a single recursive algorithm
T :
T (ϕ⇔ ψ) = (T (ϕ⇒ ψ) ∧ T (ψ ⇒ ϕ))
T (ϕ⇒ ψ) = (T (¬ϕ) ∨ T (ψ))
T (¬(ϕ ∨ ψ)) = (T (¬ϕ) ∧ T (¬ψ))
T (¬(ϕ ∧ ψ)) = (T (¬ϕ) ∨ T (¬ψ))
T (¬(∀xϕ)) = (∃xT (¬ϕ))
T (¬(∃xϕ)) = (∀xT (¬ϕ))
We also need to add additional rules for the remaining possibilities, where T just
moves inward without making any change, e.g., T (ϕ ∨ ψ) = (T (ϕ) ∨ T (ψ)),
T (∀xϕ) = (∀xT (ϕ)), etc. Also when T reaches a literal, it just returns that
literal without change:
T (¬π(τ1, ..., τn)) = ¬π(τ1, ..., τn)
T (π(τ1, ..., τn)) = π(τ1, ..., τn).

3. Standardize apart:
Rename any duplicate variables so that each quantifier binds a unique variable.

4. Eliminate existential quantifiers by Skolemization, making sure that depen-
dencies of existential variables on universal variables are reflected in the Skolem
functions’ argument structure.

For an existential not lying within the scope of any universal quantifier, we just drop
the ∃ν from ∃νϕ, substituting a new name (Skolem constant) for all occurrences
of the variable in ϕ, as in Existential Instantiation. But note that we are applying
the rule more generally now – e.g., in embedded occurrences like

P(A) ∨ ((∃x Q(B,x)) ∧ (∀y ¬R(y))).
This would become P(A) ∨ (Q(B,C) ∧ (∀y ¬R(y))) upon Skolemization, with new
constant C. If we had a wide-scope universal, as in

(∀y (P(y) ∨ ((∃x Q(B,x)) ∧¬R(y)))),
we would get (∀y (P(y) ∨ (Q(B,f(y)) ∧¬R(y)))) after Skolemization, with new
Skolem function term f(y). The intuitive justification for functional Skolemization
is this. First of all, it can be shown that at this point of the transformation to
clause form, all the formulas we obtain can be equivalently rewritten in prenex
form, i.e., with all quantifiers moved to the left. For example, the formula above
can be rewritten equivalently as

(∀y (∃x (P(y) ∨ (Q(B,x) ∧¬R(y))))).

3

So we have formulas of form

(∀ν(∀ω...(∃σϕ)...)),

after Skolemizing top-level existentials. This says that corresponding to each ν,
and each ω, and each ..., there exists a σ such that ϕ holds. But if that is so,
then there also exists a function which supplies such a value σ corresponding to
arguments ν, ω, So we can make up a name like f(ν, ω, ...) for such a function
and substitute it for σ.

For instance, suppose it is true that for every pair of persons in the world, there
is a third person that speaks all the languages that the first two persons speak,
which we can symbolize as

(∀x (∀y (∃z S(x,y,z)))),

assuming our domain of discourse consists of the world’s people. If that is so, then
for each pair of people x, y, we should be able to supply a specific third person, z
(perhaps chosen from many possibilities), who speaks all the languages of x and y,
something like this:

x y f(x,y)
Smith Lafrance Trudeau
Smith Glukov Yevtushenko
Merkel Yevtushenko Yevtushenko
Trudeau Yevtushenko Nabokov

etc.

So then we can rewrite the original statement as

(∀x (∀y S(x,y,f(x,y)))).

Intuitively, saying that z exists for all x, y is the same as saying that f(x,y) has a
value for all x, y. By introducing F, we say the latter automatically, since in FOL
a function is total, i.e., defined on the entire domain of discourse.

Final note: Recall that the B&L text reserves the term “sentence” for closed wffs,
i.e., containing no free variables (see p. 18), and it defines truth (in a model (D,I))
only for sentences (see p. 22). In class, we did not in principle disallow open wffs in
the definition of truth; since truth is defined in terms of satisfaction by all variable
assignments, this implies that a wff with free variables behaves semantically as if
all its free variables were universally quantified. Thus, for instance,

Physically-detectable(x)∨¬Exists(x)

would mean “Everything is either physically detectable or doesn’t exist”, just as if
there were a quantifier (∀x ...) prefixed to the formula. This is precisely how we
can interpret formulas in clause form. However, in resolution principle theorem-
proving, we assume that we always start out with closed formulas (i.e., with sen-
tences). This avoids complications in Skolemization.

4

5. Drop ∀ quantifiers. After this, the free variables are “understood” to be univer-
sally quantified.

6. Move ∨ inward, i.e., distribute ∨ over ∧ :

((ϕ ∧ ψ) ∨ χ) becomes ((ϕ ∨ χ) ∧ (ψ ∨ χ))
(χ ∨ (ϕ ∧ ψ)) becomes ((χ ∨ ϕ) ∧ (χ ∨ ψ))

7. Drop ∧ ’s. This leaves us with a set of clauses, where each clause is just a dis-
junction of literals, i.e., atomic formulas or negated atomic formulas (possibly with
free variables). We already saw examples like

¬Barks(x) and ¬Dog(x) ∨ Barks(x)

earlier. A single-literal clause like the first one here is called a unit clause. Some-
times a final step is taken, in which clauses are reformulated as sets of literals,
e.g.,

{¬Barks(x)}, {¬Dog(x), Barks(x)}.
This has the advantage that duplicate literals are “automatically” eliminated (as-
suming appropriate set-manipulation functions are implemented). On the other
hand, it can be a little confusing, since now set formation at the level of clauses
means conjunction, while set formation at the level of literals means disjunction.
But either notation is acceptable in this course.

Example of conversion to clause form

Let’s look at the following example (using some different bracket shapes for improved
clarity):

(∀x [(∃y [P(x,y) ∨Q(x,y)]) ⇒ (∃y R(x,y))])
Eliminate ⇒ :

(∀x [¬(∃y [P(x,y) ∨Q(x,y)]) ∨ (∃y R(x,y))])
Move ¬ inward:

(∀x [(∀y ¬[P(x,y) ∨Q(x,y)]) ∨ (∃y R(x,y))])
(∀x [(∀y [¬P(x,y) ∧¬Q(x,y)]) ∨ (∃y R(x,y))])

Standardize apart:
(∀x [(∀y [¬P(x,y) ∧¬Q(x,y)]) ∨ (∃z R(x,z))])

Skolemize:
(∀x [(∀y [¬P(x,y) ∧¬Q(x,y)]) ∨ R(x,f(x))])

Drop ∀: [[¬P(x,y) ∧¬Q(x,y)] ∨ R(x,f(x))]
Move ∨ inward: [[¬P(x,y) ∨ R(x,f(x))] ∧ [¬Q(x,y) ∨ R(x,f(x))]]
Drop ∧ : ¬P(x,y) ∨ R(x,f(x)), ¬Q(x,y) ∨ R(x,f(x))

Thus we obtain two clauses.

5

