
CSC 244/444 Lecture Notes Nov. 21, 2022

Neural-Network-Based Reasoning

Neural networks have proved effective primarily for learning
to classify images, speech, text and other patterns, but meth-
ods are being investigated for training them to produce more
complex outputs, including answers to questions requiring in-
ference. Only very simplified versions of such tasks can be
realized at present, and they require massive training data, but
there is increased interest in this area

NLP and Relation Inference

Deep neural nets (DNNs) have had a lot of success in various “shallow” pattern trans-
duction tasks. Reasoning requiring multiple steps and use of world knowledge (including
QA dependent on reasoning, and natural language dialogue) are still largely outside the
scope of DNN methods, but activity in this area is growing. For instance, inferring re-
lations such as that Pablo Picasso’s citizenship was Spanish, given that he was born in
Spain, and given many examples of individuals born in Spain who have Spanish citizen-
ship, is an example of a simple inference that is currently possible. Some more directly
logical methods are beginning to be addressed as well.

These notes are primarily about a noteworthy 2013 paper from Stanford about rela-
tional inference (like the one about Pablo Picasso) using DNNs. However, recent (2022)
work by Andrew McCallum’s group at UMass excels all earlier approaches to relation
QA, even though it uses DNNs only to code NL questions as knowledge-base queries,
while finding answers by statistical-similarity methods applied to entities and paths in
the relational database. The notes also provide a brief look at some other work aimed
at NN-based reasoning.

R. Socher, et al., Reasoning with neural tensor networks ...

Reference: R. Socher, D. Chen, C.D. Manning, and A.Y. Ng, “Reasoning with neural
tensor networks for knowledge base completion”, NIPS 2013.
https://nlp.stanford.edu/pubs/SocherChenManningNg NIPS2013.pdf

Authors’ abstract:

Knowledge bases are an important resource for question answering and other tasks
but often suffer from incompleteness and lack of ability to reason over their discrete
entities and relationships. In this paper we introduce an expressive neural tensor
network suitable for reasoning over relationships between two entities. Previous
work represented entities as either discrete atomic units or with a single entity vec-
tor representation. We show that performance can be improved when entities are

1



represented as an average of their constituting word vectors. This allows sharing of
statistical strength between, for instance, facts involving the “Sumatran tiger” and
“Bengal tiger.” Lastly, we demonstrate that all models improve when these word
vectors are initialized with vectors learned from unsupervised large corpora. We
assess the model by considering the problem of predicting additional true relations
between entities given a subset of the knowledge base. Our model outperforms
previous models and can classify unseen relationships in WordNet and FreeBase
with an accuracy of 86.2% and 90.0%, respectively.

Let’s first take a look at the kinds of inference examples they are targeting. For
example, they want to compute the likelihood of

• (Pablo Picasso, nationality, Spain), using the available Freebase triples,1 not in-
cluding this particular triple but perhaps ones like (Pablo Picasso, place of birth,
Malaga) and (Malaga, located in, Spain) (where the subject and object have unique
identifiers associated with them), and many instances like (Cervantes, nationality,
Spain), (Cervantes, place of birth, Alcala de Henares), (Alcala de Henares, located
in, Spain), etc. In other words, this is a kind of analogy making;

• (German shepherd, hypernym, vertebrate), given the Wordnet relation between
German shepherd and dog, and between dog and vertebrate; it’s unclear if the
latter was given directly or indirectly. WordNet provides a chain from dog to
canine to carnivore to placental mammal to mammal to vertebrate, so the question
is whether the system was provided transitive closure information, or had to figure
this out; probably the former. If so, then the training data may also have contained
transitive closure information such as (beagle, hypernym, vertebrate), which would
greatly simplify analogy-making.

To get a sense of their method, let’s first of all review how the operation of a simple
neural unit with d numerical inputs and one output can be written in vector notation.
Suppose an entity (participating in a relation of interest) is represented as a column
vector e1 = (e11, ..., e1d)T of d numerical features. (Since we’ve written down the ele-
ments as a row vector for convenience here, we get the column vector by transposing
it, as indicated by superscript T .) These (so-called embedding) features are typically
based on co-occurrence frequencies of the entity name with other words in large sets of
sentences or in a DB like Freebase (with frequencies of high-frequency words like the
or have deemphasized); d may be very large to begin with, but is typically reduced by
dimensionality reduction methods – the authors used d = 100. In such a vector space,
similar entities tend to be close together (in terms of the cosine between them), as a
result of their tendency to occur in similar contexts (similar nearby words).

The weights applied to the components of e1 can be written as a row vector V , also
of length d. Then the weighted sum of e1-components is

∑d
i=1 vie1i, often written as

1There are nearly 2 billion, extracted from Wikipedia and “curated” by human judges

2



V e1 = (v1, ..., vd)

 e11
...

e1d

 .
We can then add a bias constant b to this weighted sum, and apply a sigmoid function
or the tanh function f to obtain the unit’s output g(e1), also throwing in a final scale
factor u [normalizing the output?], i.e.,

g(e1) = u.f

(v1, ..., vd)

 e11
...

e1d

+ b

 .

This might for example be suitable for classifying the type of a given named entity
(represented in terms of its word co-occurrence features) as being a person or something
else.

Neural tensor networks

So now suppose we’re trying to determine if two named entities e1, e2 are in a particular
relation R (such as nationality, relating Picasso and Spain). The simplest way is just to
apply the above method to the concatenation of e1 and e2, which is a column vector of
length 2d; the (row) weight vector V will now also be of length 2d. So we have (without
writing out elements of the concatenated e1 and e2),

g(e1, R, e2) = u.f

(
(v1, ..., v2d)

[
e1
e2

]
+ b

)
.

But according to the authors, this simple NN, combining the two vectors linearly
before applying nonlinear thresholding, (a) does not sufficiently allow for the relation-
ships among their elements, and (b) does not allow for the fact that two entity names
may share some substrings (Bengal tiger, Sumatran tiger), and therefore in general an
entity should be represented in terms of several vectors, corresponding to separate co-
occurrence behavior for their constituent words. They allow for k vectors per pair of
entities, with k = 4 in their experiments. So this should allow separate modeling of the
interaction beween the words of any 2-word entities (or between a 3- or 4-word entity
and a 1-word entity).

To relate entity vectors more “intimately” than just forming the weighted sum of
their concatenation, they combine them in the following fashion (which in effect allows
for products of components of e1 with components of e2):

eT1 We2,

3



where W is a d by d weight matrix. In vector/matrix algebra the order of multiplication
is generally taken to be rightmost-to-leftmost. So we are applying W to column vector
e2, thus linearly transforming it and obtaining another column vector of length d; then
we’re applying row vector eT1 (i.e., (e11, ..., e1d)) to that result, obtaining a single number.2

Note that if W were the identity matrix (with 1’s on the diagonal and 0’s elsewhere),
eT1 We2 would just be the dot product of e1 and e2, which makes clear that eT1 We2 allows
element-wise interaction between e1 and e2.

That takes care of point (a) above; to allow for (b), the authors use k weight matrices
like W , where each corresponds to two words, one from each of the two entity names (as
mentioned, allowing for up to 4 combinations). In accord with common practice, they
term the resulting d-by-d-by-k array

W [1:k]

a tensor. In ML, a tensor is just an array with more than 2 dimensions. Having a
term distinct from vector and matrix is appropriate because once we have 3 or more
dimensions, a variety of different kinds of products can be defined, beyond those at
lower dimensions. The only products we need here, however, are the matrix products
eT1 W

[i]e2 using each d-by-d “slice” of W [1:k]. The single numbers yielded by each of
these products are regarded as forming a column vector of length k. We write this as
eT1 W

[1:k]e2.

This column vector, eT1 W
[1:k]e2, becomes the first term in the revised expression to

which threshold function f is applied. The second term is like the simpler one worked out
above, based on the concatenation of e1 and e2, but with weight vector V now extended
to have k rows, intuitively intended as an appropriate weighting for each combination of
a word of e1 with a word of e2:

V

[
e1
e2

]
=

 v11...v1,2d
...

vk1...vk,2d





e11
...

e1d
e21
...

e2d


.

So instead of a single number, we now obtain another length-k column vector. We
also double up the bias term b into a k-vector. The sum of these three k-vectors is

2In general, when you multiply two matrices, you take the dot product of row i of the first matrix
with column j of the second matrix, to get the element of the ith row, jth column of the result. (The
dot product is the sum of element-by-element products.) So, multiplying a matrix with m rows and k
columns times a matrix with k rows and n columns, gives an m-by-n matrix. In the two multiplications
at hand, we are first multiplying a d-by-d matrix times a d-by-1 matrix (a column vector), yielding
another d-by-1 matrix, and then multiplying a 1-by-d matrix (a row vector) by a d-by-1 matrix (column
vector), yielding a 1-by-1 “matrix”, i.e., a number.

4



then thresholded element-by-element using f , and finally a scaling vector u of length k
(instead of a single scale factor) is used to obtain the desired result – a weighted decision
whether relation R holds between e1 and e2 (perhaps just the average of the k individual
+1/-1 “decisions” based on the k constituent word combinations):

g(e1, R, e2) = uT .f

(
eT1 W

[1:k]e2 + V

[
e1
e2

]
+ b

)
.

Of course, this particular “neural tensor network (NTN) is aimed at a single relation R,
and the authors actually trained and tested separate NTNs for about a dozen relations
from each of Freebase and WordNet. So in the paper, they subscript the various weight

arrays with R in the above formula: uTR,W
[1:k]
R , VR,, and bR.

Comments

The authors report improvements over earlier methods, moving accuracy scores on pos-
itive and negative relations (the latter restricted to appropriate entity types, exclusive
of ones like (Pablo Picasso, nationality, Rembrandt)) upward from about 86% to more
than 88%. Getting it right for nearly 9 out of 10 “questions” is quite impressive.

The main formula for the neural tensor network above may give the impression that
there’s only one thresholding operation f being applied to a 2-element column vector –
a 2-unit NN, where each unit has 2d weighted inputs. But viewed in terms of standard
NN units, this is deceptive: The multiplications in the tensor term form products of the
components of the e1 and e2 vectors, and multiplication is not what standard NN units
do. So hidden in the tensor term – if we were to implement the network using standard
NN units – there would be layers that do the multiplications, and for this nonlinear
operation many additional units would be required.

However, the lesson learned from NN research is not so much that we should limit
ourselves to basic NN units, but rather that we should use layers of linear and nonlin-
ear operations, where the resulting outputs are differentiable with respect to the free
parameters of the system. The question of how such generalized methods might be im-
plemented in mammalian brains seems not to concern researchers in this area too much,
especially given the theoretical knowledge that just about anything can be done with 2
hidden layers and enough neural units. Differentiability ensures that we can apply learn-
ing methods based on gradient descent-like optimization or backpropagation. It might be
an interesting biological question how brains implement various complex functions using
organic neurons, but for NN developers it would just make the learning problem harder
to replace multiplication units, etc., with multiple layers of more elementary units.

The authors regard their results as demonstrating “commonsense reasoning”. This
is a bit of an overstatement. Keep in mind that the information in Freebase is in a
very simple, regularized form. There is nothing enabling an inference like, “John got
stuck on his way to work” given that his car got a flat tire on his way to work, and

5



knowledge such as “If a car gets a flat tire, it can no longer be driven”, among other
necessary items. Essentially the reasoning in the NTN, such as it is, consists of making
analogies – i.e., similar entities tend to be related in similar ways. (The ConceptNet
system, the main product of the Open Mind Common Sense project at MIT, has similar
capabilities.) Moreover, a dozen static relations don’t go very far in reasoning about our
dynamic world. The Wordnet relations used were also very simple hierarchy relations,
it seems (they don’t specify).

A paper at the 2019 NeurIPS conference (previously NIPS, the premier machine
learning conference) goes beyond the set of relations covered by Socher et al., handling
about 1345 of the 25,000 relation types in Freebase:

Meng Qu & Jian Tang, “Probabilistic Logic Neural Networks for Reasoning” (2019,
mentioned earier). https://arxiv.org/pdf/1906.08495.pdf

By combining multiple techniques, including Markov Logic Networks, with the corre-
sponding distribution optimized via variational EM (expectation maximization), and
knowledge graph embeddings, they achieved success rates close to 90% in verifying/disconfirming
omitted triples, which is close to what Socher et al. achieved for 13 relation types. How-
ever, note that verification is easier than actually finding an entity e2 that satisfies an
incomplete relation (e1, R, ?). Until the following work by Andrew McCallum’s group,
it was difficult to get accuracies above 70%.

Dung Thai, et al.: A Case-Based Reasoning Approach for Question
Answering ...

Reference: Dung Thai, Srinivas Ravishankar, Ibrahim Abdelaziz, Mudit Chaudhary,
Nandana Mihindukulasooriya, Tahira Naseem, Rajarshi Das, Pavan Kapanipathi, Achille
Fokoue, and Andrew McCallum, “CBR-iKB: A case-based reasoning approach for ques-
tion answering over incomplete knowledge bases”, arXiv:2204.08554v1, https://arxiv.org/
pdf/2204.08554v1.pdf.

The authors refer to databases of relational triples as knowledge graphs (KGs), as has
become rather common in AI. (Traditionally, KGs were called semantic networks – and
these generally allowed more FOL-like propositions, above and beyond binary relations
over specific entities.) They tested on Freebase-derived KGs, among others, such as a
movie database. In their examples, they use KG relations like

“Ken Whisenhunt” —head coach–> “Tennessee Titans”,
“Ken Whisenhunt” —head–> “Ryan Tannehill”
“Ryan Tannehill” —play for–> “Tennessee Titans”, etc.

Their system accepts NL questions such as “What team does Ryan Tannehill play for?”,
which is translated into a KG query

(“Ryan Tannehill” play for ?).

The translation is the only aspect of the system using DNNs, namely a language model

6



(LM). The training data for this consist of questions and answer-entities, and the goal
is to derive queries like the above in such a way that the answer is verified in the KG by
a relation like

“Ryan Tannehill” —play for–> “Tennessee Titans”.

The basic idea is to answer questions (e1 R ?) that are not directly answered by
a link (e1 R e2) in th KG by using paths from e1 to candidates e2 in the KG that are
similar to paths from e1 to the correct answer e2, and/or similar to paths from entities
e′1 similar to e1 to the correct answer e′2. Answers are correct if they are given by a direct
link in the knowledge graph, or (less reliably) by relation extraction from relevant NL
documents.

So this requires notions of entity similarity and path similarity. First, path similarity
is just based on the sequence of relations (rather than entities) on the path. And then
entity similarity is based on having similar sets of emerging paths from the entities.
We won’t get into the technicalities of the similarity measures. They use hierarchical
clustering methods to organize the entities, so as to enable k-NN (k-nearest-neighbor)
retrieval of entities similar to a given entity.

Let’s call the sequence of relations (R1, R2, ..., Rk) a “rule” applicable to query (e1
R ?) if there is a direct link (e1 R e2) and a path (e1 R1 e′ R2 e′′ ... Rk e2) from e1 to
e2 in the KG. (Note: the rule could still just be a single relation; e.g., besides the “head
coach” link above, the KG might also include “Ken Whisenhunt” —coach–> “Tennessee
Titans”, which would be alternative evidence that the head coach relation holds.)

They evaluate the reliability of such rules by checking all paths with the same se-
quence of relations, and seeing how often a direct link (e1Re2) is present in the KG when
the path leads from e1 to e2. It seems the rule reliability is further evaluated by also
checking how often the rule gives correct results (e′1 R e′2) for elements e′1 similar to e1.
In other words, rule reliability is evaluated on groups of similar entities. Correctness of
answers supplied by rules may also be checked when there’s no direct link (e′1 R e′2), but
text-based relation retrieval suggests its correctness.

Then, when a new question is asked, and mapped to (e1R ?) via the LM, and it
can’t be directly answered via an existing link (e1Re2), they first of all find the rules
that apply to (e′1 R ?) for entities e′1 similar to e1, using the k-NN method. The rules
starting at those nearest neighbors are then applied to find e′2 candidates, and an answer
is selected based on the reliability and degree of consensus of the rules employed.

They test on Freebase-derived datasets, and get substantially better accuracy (78%)
than previous methods (66-71%), and way greater accuracy (70%) than others (30-
48%) when half the data are omitted. The lesson here seems to be that use of an
explicit knowledge base and structural similarities within the knowledge base
can outperform DNN methods whose “knowledge” is entirely implicit in the
DNN parameters.

7



B. Peng et al., Towards neural network-based reasoning

Reference: B. Peng, Z. Lu, H. Li, K.-F. Wong, “Towards neural network-based reason-
ing”, Aug. 2015, Cornell Univ. Library. (This seems not to have been published in a con-
ference venue or journal, but is frequently cited anyway.) https://arxiv.org/pdf/1508.05508v1.pdf

The authors tackle the bAbI question answering set; each has a few facts, and a
couple of questions, with answers. There are thousands of (algorithmically generated)
instances for various “tasks”. Two examples:

1. The office is east of the hallway.
2. The kitchen is north of the office.
3. The garden is west of the bedroom.
4. The office is west of the garden.
5. The bathroom is north of the garden.

How do you go from the kitchen to the garden? south, east; relies on 2 and 4.
How do you go from the office to the bathroom? east, north; relies on 4 and 5.

1.The triangle is above the pink rectangle.
2.The blue square is to the left of the triangle.

Is the pink rectangle to the right of the blue square?
Yes; relies on 1 and 2.
Is the blue square below the pink rectangle?
No; relies on 1 and 2.

The approach here looks interesting. It makes use of many seemingly separate NNs.
The words of a fact or sentence are represented as feature vectors (as in the above
paper). At the base level, a given question is represented, alongside the entire se-
quence of known facts. The word sequence corresponding to the question and each
fact is processed by a type of recurrent NN (RNN) called a “ gated recurrent unit”
(GRU), which like an LSTM uses Hadamard gates (component-by-component multipli-
cation) to enable long-term memory without “vanishing or exploding gradients”, and
seems to require fewer training data than LSTMs. (For some details on GRUs, see e.g.,
https://en.wikipedia.org/wiki/Gated recurrent unit.) Each fact RNN provides its out-
put, paired with the output of the question RNN, to a separate DNN, yielding an altered
representation of the question paired with an altered representation of the fact. (Each
has to some extent influenced the other – this is thought of as some sort of tacit infer-
ence process). Then the altered question representations (one for each fact) are pooled
into a single altered question representation, using a “softmax” operation; this is again
combined via a DNN with each (now altered) fact, etc. This process of combining the
altered question with each altered fact, followed by question pooling, continues over sev-
eral “inference” layers. The final pooled question representation is fed to a (separately
trained) answering module.

Comments

8



They seem to do very well in “end to end” reasoning [as opposed to step-by-step su-
pervised training? Haven’t really tried to understand]. As always, the NN methods use
alternating linear operations (using matrices or tensors on the vectors “passing through”
the successive layers) and element-wise nonlinear operations (softmax, e.g., for a 3-vector
x, y, z this is ex/S, ey/S, ez/S, where S normalizes the vectors to sum to 1, allowing their
interpretation as probabilities; or tanh – the hyperbolic tangent, which goes from -1 at
−∞, through 0 at 0, and to 1 at +∞. These are differentiable, as required for imple-
menting backprop.

Of course, the simple, artificial facts used in these experiments are quite restrictive,
and we can’t tell the system any general facts. Indeed, the idea of bAbI is that the sys-
tem should automatically internalize general rules based on thousands of closely related
examples. But it’s unclear whether rules in any sense are actually learned, e.g., when x
goes from place y to place z, then x ends up at z and is no longer at y; or that if x is to
the left of y then y is to the right of x. For all we know, the system is again just making
analogies between “patterns of examples” and the corresponding questions and answers.

As a note on more recent work, it’s worth listing some papers from NeurIPS confer-
ences, and an arXiv paper on finding informal inference rules. NeurIPS 2019 had over
1000 papers, very few on reasoning; I haven’t checked more recent conferences several of
the ones below are just posters:

Schlag & Schmidhuber, “Learning to Reason with Third Order Tensor Products” (2018).
[From the abstract: “We combine Recurrent Neural Networks with Tensor Product Rep-
resentations to learn combinatorial representations of sequential data. This improves
symbolic interpretation and systematic generalisation.” They tackle the bAbI dataset,
like Peng et al. mentioned above, and do very well on it. The methods seem more gen-
eral than Peng et al.] https://papers.nips.cc/paper/8203-learning-to-reason-with-third-
order-tensor-products.pdf

Robert Ness, Kaushal Paneri, & Olga Vitek, “Integrating mechanistic and structural
causal models enables counterfactual inference in complex systems” (2019); poster, not
yet available.

Wang-Zhou Dai, Qiuling Xu, Yang Yu, & Zhi-Hua Zhou, “Bridging Machine Learning
and Logical Reasoning by Abductive Learning” (2019); not yet available.

Vaishak Belle & Brendan Juba, “Implicitly learning to reason in first-order logic” (2019).
A theoretical, theorem-oriented paper, not NN-based; https://delbp.github.io/papers/DeLBP-
2019 Accepted-1.pdf

Drew Hudson & Christopher Manning, “Learning by Abstraction: The Neural State
Machine for Visual Reasoning” (2019). [QA about images, e.g., “What is the red fruit
inside the bowl to the right of the coffee maker?”.] https://arxiv.org/pdf/1907.03950.pdf

Meng Qu & Jian Tang, “Probabilistic Logic Neural Networks for Reasoning” (2019,
mentioned earier). https://arxiv.org/pdf/1906.08495.pdf

9



So the field is moving forward, attempting to capture more of human understanding
and reasoning. However, the only truly competent (though generally specialized) dia-
logue systems and reasoning systems in AI remain those based on symbolic semantic
representations and knowledge representations.

Weir and Van Durme, “‘Dynamic generation of interpretable inference
rules...

A recent paper on inference rule generation is

Nathaniel Weir and Benjamin Van Durme, “Dynamic generation of interpretable infer-
ence rules in a neuro-symbolic expert system”, arXiv:2209.07662 [cs.CL]. https://arxiv.org/
abs/2209.07662.

Starting with facts and conditionals (in English) as a KB, they train on correct
conclusions (claims stated in English) requiring inference from the KB. Neural nets
are used in multiple ways: sequence-to-sequence (seq-to-seq) transducers (with encoder
& decoder layers) to map questions into a declarative form likely to be suitable for the
proof attempt; “soft unification” of predicate-argument pairs using an NN encoder whose
outputs can be compared with a cosine similarity metric; and seq-to-seq models that try
to decompose a hypothesis statement into a pair of statements that might support the
hypothesis, aided by templates (with gaps) that might be suitable for the supporting
statements.

In trying to confirm a hypothesis h, they search for potential rules – typically stating
that two KB facts f1 and f2 imply a conclusion h – that enable proofs of the conclusions in
the training corpus. For example, they combine the facts f1, f2 to obtain the conclusion
h:

f1: Chlorophyll is used by plants to produce carbohydrates;
f2: Carbohydrates are made of sugar;

h: Plants use chlorophyll to produce sugar.

Actually, in this example f1 is itself a fact derived by such inference rules, by combining

f3: Chlorophyll causes plants to absorb light; and
f4: Plants use light to produce carbohydrates via photosynthesis;

Above, the words in bold font indicate two of several standard relations (“use something
to” and “causes”) that are used in conclusions of inference rules. f3 and f4 are again
not directly available in the KB, but rather are obtained by single-premise inferences
from respective KB facts

f ′
3: Chlorophyll is used for absorbing light energy by plants; and
f ′
4: Photosynthesis is a source of food for the plant by converting carbon dioxide,

water, and sunlight into carbohydrates.

Some of their reasoning examples (in the Appendix of the paper) are reminiscent of
natural logic, if one takes generic nouns to be like universally quantified ones. (E.g., h

10



could be interpreted as “All plants use some chlorophyll to produce some sugar”, which
allows inferences by substitution of a more specific term for “plant” and a more general
terms for “chlorophyll” and “sugar”.) So this seems to be an interesting approach to
extracting informal inference rules from generic facts, enabling inference of other generic
facts.

11


