
10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 1/13

CONTRIBUTED ARTICLES

The Silent (R)evolution of SAT

VIEW AS: SHARE:

Credit: Igor Kisselev

The Silent (R)evolution of SAT

CACM

03:35

By Johannes K. Fichte, Daniel Le Berre, Markus Hecher, Stefan Szeider
Communications of the ACM, June 2023, Vol. 66 No. 6, Pages 64-72
10.1145/3560469
Comments (1)

The propositional satisfiability problem (SAT) was the first to be
shown NP-complete by Cook and Levin. SAT remained the
embodiment of theoretical worst-case hardness. However, in
stark contrast to its theoretical hardness, SAT has emerged as a
central target problem for efficiently solving a wide variety of
computational problems. SAT solving technology has
continuously advanced since a breakthrough around the
millennium, which catapulted practical SAT solving ahead by
orders of magnitudes. Today, the many flavors of SAT technology
can be found in all areas of technological innovation.

Back to Top

Key Insights

SAT asks whether a given propositional formula
is satisfiable. That is, can we set the formula's

variables to values 1 (True) or 0 (False) in such a way that the entire formula evaluates to 1? F = (x1 ∨ x2 ∨ x3)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x2 ∨ x3) is a simple propositional formula in conjunctive normal form

(CNF), where x1, x2, and x3 are propositional variables and ∨, ∧, and ¬ refer to the logical operators OR

(disjunction), AND (conjunction), and NOT (negation), respectively. A variable xi or a negated variable ¬xi is a

literal, and a disjunction of literals is a clause. So, the above formula F is a conjunction of four clauses. The
formula is satisfiable; we can satisfy it by the truth assignment that sets x1 and x2 to 1, and x3 to 0: the first,

third, and fourth clauses are satisfied by x2 = 1 because the clauses contain x2. The second clause is satisfied
by x3 = 0 because it contains ¬x3. In consequence, all clauses are satisfied. A truth assignment naturally

extends from variables to literals by setting ¬x to the opposite value of x. Hence, a formula is satisfiable if and
only if there is a truth assignment that sets at least one literal in each clause to 1.

ARTICLE CONTENTS:

Introduction
Key Insights
Eras of Practical SAT Solving
The Art of Using SAT Solvers
Outlook
Acknowledgments
References
Authors
Footnotes
Sidebar
Sidebar

MORE NEWS & OPINIONS

Rethinking Conference Formats
Anna Förster

Coaxing Performance from the
Complexity of HPC
Anton Demin, Oleg Shakhov, Andrei Sukhov

Home / Magazine Archive / June 2023 (Vol. 66, No. 6) / The Silent (R)evolution of SAT / Full Text

What Does a 'Twinkling' Star
Sound Like?
Northwestern Now

ACM.org Join ACM About Communications ACM Resources Alerts & Feeds

HOME VIDEOS

University of Rochester Library
SIGN OUT (Lenhart Schubert)

Search

CURRENT ISSUE NEWS BLOGS OPINION RESEARCH PRACTICE CAREERS ARCHIVE

PRINT

https://cacm.acm.org/about-communications/mobile-apps/
https://dl.acm.org/citation.cfm?id=3599937.3560469&coll=portal&dl=ACM
https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/pdf
https://dl.acm.org/ft_gateway.cfm?id=3560469&ftid=2272790&dwn=1
https://cacm.acm.org/#email
https://cacm.acm.org/#reddit
https://cacm.acm.org/#hacker_news
https://cacm.acm.org/#facebook
https://cacm.acm.org/#twitter
https://cacm.acm.org/#linkedin
https://www.addtoany.com/share#url=https%3A%2F%2Fcacm.acm.org%2Fmagazines%2F2023%2F6%2F273222-the-silent-revolution-of-sat%2Ffulltext&title=The%20Silent%20(R)evolution%20of%20SAT%20%7C%20June%202023%20%7C%20Communications%20of%20the%20ACM
https://vimeo.com/user4730653
https://vimeo.com/845930666
https://vimeo.com/user4730653
https://vimeo.com/845930666
https://cacm.acm.org/magazines/2023/11/277428-rethinking-conference-formats
https://cacm.acm.org/blogs/blog-cacm/275134-coaxing-performance-from-the-complexity-of-hpc
https://cacm.acm.org/
https://cacm.acm.org/magazines/decade
https://cacm.acm.org/magazines/2023/6
https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat
https://cacm.acm.org/news/275204-what-does-a-twinkling-star-sound-like
http://www.acm.org/
https://services.acm.org/public/qj/brandingqj/cacm.cfm
https://cacm.acm.org/about-communications
https://cacm.acm.org/acm-resources
https://cacm.acm.org/alerts-and-feeds
https://www.facebook.com/Communications-of-the-ACM-521319564596131/
https://twitter.com/cacmmag
https://cacm.acm.org/alerts-and-feeds/rss-feeds
https://cacm.acm.org/
https://cacm.acm.org/videos
https://cacm.acm.org/
https://cacm.acm.org/logout
https://cacm.acm.org/
https://cacm.acm.org/magazines/2023/11
https://cacm.acm.org/news
https://cacm.acm.org/blogs/about-the-blogs
https://cacm.acm.org/opinion
https://cacm.acm.org/research
https://cacm.acm.org/practice
https://cacm.acm.org/careers
https://cacm.acm.org/magazines

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 2/13

Example 1 shows a larger formula that is unsatisfiable—that is, not satisfied by any assignment. The focus on

CNF formulas is not a restriction. The so-called Tseitin transformation39 efficiently transforms any
propositional formula into CNF without affecting its satisfiability.

Figure. Example 1. Under each of the 29 truth assignments to the variables x1, …, x9, at least

one of G's clauses evaluates to 0, making the formula G unsatisfiable.*

At first glance, the SAT problem looks inconspicuous since it is simple to state, does not look difficult to solve,

and seems uninteresting for practical purposes. Still, Stephen Cook7 and Leonid Levin29 showed
independently in the 1970s that SAT is NP-complete, making it the first NP-complete problem. So, suppose
one could solve SAT in polynomial time on arbitrary input. In that case, one could also solve any NP-complete
problem in polynomial time, and it would follow that P equals NP. Thus, in terms of worst-case complexity
theory, SAT embodies computational hardness. Also, in modern complexity theory, SAT continues to serve as

a hard benchmark problem in the form of the (Strong) Exponential Time Hypothesis.4

In stark contrast to its theoretical worst-case hardness, the SAT problem has emerged as an essential
instrument for efficiently solving a wide variety of computational problems, ranging from hardware and

software verification to planning, combinatorial design, and software dependency.1,4 In this way, SAT
significantly impacts today's technological innovation. SAT is widely applied in knowledge representation,

reasoning,19 and artificial intelligence (AI).9 Although SAT is mainly associated with symbolic AI, it
contributes to non-symbolic AI by providing model-counting algorithms, which are essential tools for

probabilistic reasoning,9 and allocates a main backbone for neurosymbolic AI.24 Notably, using SAT, long-
standing open problems in mathematical combinatorics were successfully solved—for example, the

Pythagorean Triples Problem.4,21 Solving such challenging problems with SAT requires the ability to
efficiently translate the original problem into an instance of the SAT problem and the availability of computer
programs, called SAT solvers, which efficiently evaluate SAT instances. Initial progress in practical SAT
solving began in the early 1990s, leading to a breakthrough around the millennium. The last two decades have
brought further enormous technological advancement and innovation to SAT solving. Today, SAT solvers are
so powerful and robust that they have become primary tools for solving hard computational problems. Solvers
have been embedded into complex procedures to solve more complex problems, such as optimization
problems (MaxSAT, Pseudo-Boolean Optimization) or quantified satisfiability (QSAT).

"The story of satisfiability is the tale of a triumph of software engineering, blended with rich doses of beautiful
mathematics," writes Donald E. Knuth in the preface to the second part of the fourth volume of The Art of

Computer Programming,28 which contains a section on satisfiability that stretches well over 300 pages.

As we observed incredible advances in computer hardware, yielding ever-faster processors, large and efficient
memory, and massively parallel computing units, one could ask whether progress in SAT solving is the sole
result of hardware advancement. A recent Time Leap Challenge addressed this question by running a race
between 20-year-old SAT solvers on new computer hardware and modern SAT solvers on 20-year-old

computer hardware.16 The experiments confirm Knuth's statement on engineering and mathematics.
Although hardware improvements make old solvers faster, algorithmic progress dominates and drives today's
SAT solving.

This article aims to shed light on the continuing progress of practical SAT solving through a series of
evolutionary innovations and improvements that have been ongoing since the revolutionary breakthrough
around the millennium. Overall, we argue that SAT has earned the title of a silent (r)evolution. We tell the
story of SAT divided into three eras: the pre-revolution, the revolution, and the evolution.

Back to Top

Eras of Practical SAT Solving

https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf1.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf1.jpg

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 3/13

Era I: The pre-revolution. The building blocks of today's SAT success are various and date back even to

the first half of the 20th century. We refer to other sources for a detailed description of SAT's history4 and
focus on a few important milestones of the modern era. Complete and incomplete solvers were the prevalent

SAT solvers in the 1990s. Incomplete solvers, based on stochastic local search,23 were successfully applied to
planning problems4 and satisfiable instances. In contrast, complete solvers, based on backtracking search,
were used to solve combinatorial problems (such as puzzles, N-queens, and Latin squares) as well as uniform
random k-SAT formulas (including unsatisfiable ones). These early complete solvers followed the general
approach, called DPLL, which was first proposed by Davis, Logemann, and Loveland (DLL) as a memory-

efficient refinement of an earlier algorithm by Davis and Putnam (DP).a,11,12

In modern terminology, DPLL is a backtracking algorithm that performs a depth-first exploration of a binary
search tree on truth assignments (see Example 2). It applies the following two optimization steps repeatedly
after a variable has been assigned, propagating the current partial assignment: if the current assignment sets
all but one literal of a clause to 0 (the clause is a unit clause), then we can safely set the remaining unassigned
literal to 1—unit propagation is the repeated application of this process; if the current assignment satisfies all
clauses containing some uassigned literal, then we can safely set that literal to 0—the opposite literal is called
a pure literal. Backtracking occurs when the current partial assignment sets all the literals of a clause to 0.

Figure. Example 2. Search Tree: Illustration of a possible run of the DPLL algorithm on the
formula G from Example 1. Circles indicate decision variables, and unit propagation is
represented by the list of propagated literals. After obtaining inconsistency (⊝) in one branch,
DPLL chronologically backtracks to the last decision, which in our example causes the search
to run into the same conflict several times.

Heuristic methods that decide when and how variables are assigned play a crucial role in the context of

DPLL.8

Early implementation challenges. Three SAT competitions were organized in the 1990s. The second

competition, 1993's DIMACS implementation challenge,4 introduced the standard ASCII input format for SAT
solvers, which is still in use. This standardized input format supports reusing SAT solvers as black boxes and
sharing benchmarks. The DIMACS CNF format describes a propositional formula. The preamble provides the
format (CNF), the number of variables, and the number of clauses. The remaining lines denote clauses, where
each literal is represented by a signed integer, using 0 as a separator. Example 3 illustrates our running
example containing nine variables and 17 clauses in the DIMACS CNF format.

Figure. Example 3. DIMACS CNF representation of Example 1's formula G. Try this example at
http://bit.ly/406Lqc7 using for instance kissat SAT solver http://bit.ly/3oa8zx9 to solve it with
a real SAT solver.

Era II: The revolution. The first pillar of the revolution30 was the solver GRASP,31 which proposed a new
architecture, combining non-chronological backtracking, conflict analysis, and learning, today referred to as
conflict driven clause learning (CDCL). CDCL is more than just DPLL with learning, since it is no longer a
pure backtracking search. It captures unit propagation in a directed acyclic implication graph that is used to

https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf2.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf2.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf1.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf3.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf3.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf1.jpg
http://bit.ly/406Lqc7
http://bit.ly/3oa8zx9

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 4/13

perform conflict analysis and clause learning, which prominently drives the search. Modern SAT solvers use

the trail data structure proposed by MiniSat13 to capture the search tree and the implication graph.

The second pillar was the CDCL-based solver Chaff,32 specially designed to solve large benchmark instances
by taking the characteristics of the host computer into account and achieving an unprecedented balance
between the sophistication of algorithms and data structures on the one side and the practical efficiency on
the other. Chaff introduced the Watched Literal data structure, a "lazy" scheme for performing unit
propagation that allowed cost-free backtracking. The branching heuristics (VSIDS) and conflict analysis
procedure were carefully designed with a new tradeoff between reasoning power and computation cost: The
emphasis on recent conflicts leads to a locality-based search.

We illustrate CDCL for our running example in Example 4. Many conflict clauses are learned during the
search, which is quite demanding on memory. Modern CDCL solvers frequently delete learned clauses and

heuristically predict the ones to keep.4 Various heuristics, such as VSIDS,32 EVSIDS,13 or LRB,4 are available
for optimizing the search and assigning the variables. Those heuristics impose low overhead, generate almost
no cost for backtracking, and are updated when learning clauses. To escape unlucky search tree exploration
during the search, solvers frequently unassign all variables and restart the search (but keep the learned

clauses). Common heuristic schemes that decide when to restart are Luby or Rapid Restarts.4 Also, machine-

learning techniques have been used to optimize heuristics.4 Still, more careful analysis is needed to better
understand how the components of the solver and their interaction affect its overall efficiency.14,27

Figure. Example 4. Propagation Graph: Trace of a possible CDCL run on the formula G from
Example 1.

Some critical applications drew much attention to practical SAT solving from academia and industry. For

example, bounded model checking (BMC)4 provided numerous challenging benchmarks, which were soon
tackled. BMC, which checks the correctness of sequential systems over a bounded number of steps, was
proposed after the failure of standard model checking with binary decision diagrams (BDDs), a graph-based

canonical representation of propositional formulas.6 The BMC benchmarks were extensive, with tens of
thousands of variables and clauses. Combining conflict-driven heuristics with conflict analysis (CDCL) could
solve BMC benchmarks up to two orders of magnitude faster than any other approach. These impressive
results applied to other application benchmarks as well. The computer-aided verification (CAV) community
acknowledged the central role of GRASP and Chaff for that outstanding progress by presenting their authors
with the CAV 2009 award for "fundamental contributions to the development of high-performance Boolean
satisfiability solvers."

https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf4.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf4.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf1.jpg

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 5/13

Era III: The evolution. While improving solvers is an important goal, the community has progressed in
new modeling techniques and methods for certifying results.

Efficient SAT encodings. It is challenging to express a computational problem as a CNF formula that the
solver can solve efficiently. Encodings may blow up the resulting CNF formula quite notably, resulting in
quadratic, cubic, or even worse overhead compared to the original problem instance. Usually, one faces a
tradeoff between space and simplicity. Intuitively, one would try to keep the instance as small and concise as
possible, balancing the number of variables and the number of clauses. If we have n variables and add m

auxiliary variables, the potential search space grows from 2n to 2n+m. Still, in practice, adding such variables

can reduce the number of clauses, thereby speeding up the search.4 A similar pattern was observed by early
automatic test pattern-generation programs, such as path-oriented decision making (PODEM).4 This is
particularly relevant when encoding properties that constrain the number of variables from a set of variables
that must be set to 1, called cardinality constraints. We give a simple example in Example 5.

Figure. Example 5. Encoding techniques based on binary adders.37

Assumptions. Using SAT solvers as "oracles" is far more complex in practice than just having an NP oracle in
theoretical considerations. On the one hand, as successful as SAT solvers are, they are not NP oracles. SAT
solvers need time for solving and may not even answer within a reasonable time. On the other hand, modern
SAT solvers are more sophisticated than NP oracles. They admit stateful procedures, where clauses may be
added or removed during solving. To control added clauses without invalidating learned clauses, modern

solvers support assumptions, popularized by MiniSat,13 which are additional literals introduced for
representing the state of clauses. It turned out that assumptions are highly versatile and useful. We
demonstrate assumptions in Example 6.

Figure. Example 6. Assumptions make our running formula satisfiable again.

Inprocessing/preprocessing. SAT solvers run various simplification rules to eliminate unnecessary variables
or clauses. Several simplification rules exist; some can be carried out in linear time while others require
quadratic time. Extremely beneficial is preprocessing, where the instance is simplified before the actual solver

is started.4 Interestingly, one such preprocessing task is to run a restricted form of the Davis-Putnam

https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf5.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf5.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf6.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf6.jpg

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 6/13

procedure on a subset of variables (bounded variable elimination). However, modern solvers such as
Lingeling implement more sophisticated rules, which are run during the search before the next variables are

assigned (inprocessing) and take learned clauses into account.4 More time-consuming inprocessing
techniques such as equivalence learning, cardinality constraints, or parity detection can be applied with a
limited budget and interleaved with search.

Parallel solving. In the 2000s, Moore's law started approaching its limits in CPU performance on single cores,
and the clock-speed improvements for silicon-based chips started to slow down. Parallel computation was one
way to compensate for this trend, and it found its way into consumer hardware. Around the same time,
parallel computing also started to become more fashionable in SAT solving, aiming to improve overall

processing performance and tackle huge instances.21 The two main techniques that evolved are parallel-
portfolio and divide-and-conquer solving.

In parallel-portfolio solving, a problem instance is independently given to a collection of solvers competing for
a solution in parallel. Usually, the collection comprises different solvers or one solver with different heuristics.
While parallel SAT solvers optimize performance to solve large instances, they may produce different
satisfying assignments or unsatisfiability proofs for a given input formula because they are inherently non-
deterministic due to race conditions. Nevertheless, some recent parallel solvers achieve determinism with a
reasonable runtime overhead. Determinism is critical for applications requiring reproducibility, such as
scheduling or model checking. Over the last years, massive parallelization using graphics processing units
(GPUs) or tensor processing units (TPUs) has become a popular approach in computer science and ML.
Aspects of modern SAT solving have been successfully implemented and tested on GPUs, including solvers

tailored for counting the number of satisfying assignments.17 Still, SAT solving has not yet benefited from
massive parallelization.

Divide-and-conquer divides a formula into multiple formulas. The workload is shared among multiple solvers
that run in parallel and can even synchronize learned clauses. However, modern sequential SAT solvers do not
need to exhaust the search space to find a solution or refute a formula; learned clauses allow for shortcuts,
making it hard to decompose instances because of the increased synchronization efforts for learned clauses. A
popular version is cube-and-conquer, which partitions an instance by a look-ahead technique into up to a

million sub-instances and then solves the sub-instances with a CDCL-based solver.21

Correctness of solvers and emitting proofs. The results of early SAT solvers were hard to validate. While it is
easy to check whether an assignment returned by a solver satisfies the given formula, in the past, no technique
was available to verify correctness if the solver claimed that an instance is unsatisfiable. During the first
competitions, one could only check whether emitted assignments were correct and that solvers did not
provide inconsistent results. If solver A outputs "satisfiable" and solver B outputs "unsatisfiable" on the same
formula, one would check whether the assignment given by A indeed satisfies the formula. If so, solver B is
incorrect; otherwise, solver A is incorrect, but nothing can be concluded about solver B. Solver correctness has
been addressed by intensive testing, including fuzzing and asking for traces that give rise to an unsatisfiability

proof within a dedicated propositional proof system.4 Such traces can be automatically checked using third-
party tools, which can be specified, implemented, and fully verified. The relationship between CDCL runs and
propositional proof systems is now well understood. All the relevant proof systems rely on the resolution rule,
which derives a new clause from two clauses containing exactly one opposite literal. For instance, in Example
4, the clause c18 = x1 can be derived by resolution from c4 = x1 ∨ ¬x7 and c11 = x1 ∨ x7; clause ¬x1 ∨ x6 can be

derived by resolution from c17 = x7 ∨ x6 ∨ ¬x1 and c15 = x6 ∨ ¬x7 ∨ ¬x1. In theory, CDCL-solvers follow

resolution proofs that reuse derived clauses (DAG-like resolution).3,34 They can be exponentially more

succinct than tree-like resolution proofs, corresponding to DPLL-solvers.4 In the early 2000s, techniques to
ensure the correctness of unsatisfiability results using variants of resolution proofs were presented.4 However,
they were invasive to the solver and produced enormous proofs. In the 2010s, techniques emerged that
provide proofs that are compact, easy to emit, can be checked efficiently, and offer high expressiveness. One

popular proof format is Deletion and Resolution Asymmetric Tautology (DRAT).4 Example 7a provides a
DRAT proof for our running example but uses only a fragment of DRAT's features.

https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf4.jpg
https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf7.jpg

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 7/13

Figure. Example 7. Illustration of a DRAT proof for our running example.

Problem decomposition and verification. Problem decomposition and verification were a game-changer for
solving long-standing open math problems using SAT technology—for example, invalidating a hypothesis on

Pythagorean triples.22 As described previously, modern SAT solvers emit proofs that cover all types of present
solving techniques, including preprocessing and inprocessing. A proof of a mathematical statement such as
the propositional Pythagorean triples problem can be longer than 200TB, which is more data than the Hubble
Space Telescope accumulated in about 20 years. Such proofs are clearly beyond human understanding and
not human-verifiable simply because of their length but can still be automatically checked. As a result, it leads
to using SAT solvers as brute-force technology for mathematical applications. This progress in SAT solving
fulfills, finally, some of the early promises in automated reasoning and deduction from the 1960s.

Modern competitions and open source. Since 2002, the SAT community has organized annual competitive

events that encourage novel solver design and gather new benchmark instances.26 Competitions continue to
impact progress in solver development and provide a way to independently assess the efficiency of submitted
solvers. In 2002, few solvers used the CDCL architecture (4 out of 19). Solvers were not robust, and many of
them crashed during the competition—for example, on instances with many variables, many clauses, or very
long clauses. Fortunately, this changed the following year due to various widely available benchmarks and
published expected results. Initially, many solvers were closed source. Strict submission requirements and the

success of the free solver MiniSat13 shifted the community to open source. MiniSat code was simple to read,
compact, and designed for extendibility. It implemented CDCL and outperformed all other solvers in 2005

due to minimizing learned clauses and the preprocessor SatELite.4 Over time, the open source principle
enabled researchers to implement their ideas on top of the best available solvers and understand crucial
implementation details usually not shared in papers. As of 2023, offsprings of MiniSat, such as Glucose,
MapleSAT, and MapleCOMSPS, still participate in the SAT competition. While competitions continuously
raise standards in efficient solving, there is no single best solver in practice. Various solvers perform
differently depending on the considered class of benchmarks or the configuration of their internal heuristics.

This diversity can be exploited by systems such as SATzilla,4 which predict the performance of existing solvers
and select the most promising ones. A more sophisticated approach is automatic algorithm selection and

tuning. Tools such as AUTOFOLIO or SMAC4 find good parameters for a given solver on a target set of
benchmarks.

Theoretical understanding of efficient solving. In 2014, Moshe Vardi pointed out the lack of theoretical

understanding of the success in practical SAT solving.40 Meanwhile, the understanding improved from

various viewpoints.18 Solvers are well-engineered, constantly improved, and efficiently solve many classes of
real-world instances. Still, they perform poorly on certain random and cryptographic instances. A standard
view is that industrial instances contain a "hidden structure" that the SAT solver manages to use implicitly.
Any theoretical analysis that ignores structural properties of the SAT instance hence cannot match up with the
empirically observed solver performance. This shortcoming led to several research lines aiming to capture the
hidden structure in a SAT instance mathematically. One line focuses on capturing structure that correlates

well with empirically observed solver performance.2 This provides a statistical correlation but no guarantee
that every SAT instance that exhibits this structure is solved quickly. Another line of research takes a causal
approach; it uses the theoretical framework of parameterized complexity to obtain asymptotic performance

guarantees for algorithms that explicitly detect and exploit the hidden structure.4 The underlying fixed-
parameter algorithms are specific to the parameter under consideration and generally do not aim at providing
a theoretical explanation of CDCL-solver performance.

https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf7.jpg

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 8/13

Back to Top

The Art of Using SAT Solvers
A SAT solver can be seen as a powerful engine; however, reaching a solution or guaranteeing that there is
none requires more than an engine alone. Therefore, the SAT community developed innovative and powerful
methods for using and adapting SAT engines.

Single-call solving. Static encodings transform an input instance of the problem of interest into a CNF
formula. Encoding can be accomplished in a high-level programming language such as Python, which

produces a DIMACS CNF file. Slightly higher-level access can be obtained by PySAT,25 a popular Python
library for encoding problems and using state-of-the-art SAT solvers. SAT engines are highly optimized on the
low-level DIMACS CNF format for squeezing out every ounce of performance. Over time, engineers have
shifted to more human-readable and reusable languages; some go beyond the propositional case. Examples

include the ASP input language19 or the MiniZinc constraint modeling language.38 The "Selected
Formalisms…" sidebar on the previous page lists other formalisms that focus on modeling and problem
solving with more expressive languages. Still, detailed domain knowledge and the skill of efficiently driving
the engine are often helpful.

Multi-call solving. Modern SAT solvers can go beyond single-call solving. Many such solvers can modify an
already-solved formula, reusing information from a previous solving process (incremental solving) and
outputting a subset of the input clauses that remain unsatisfiable (unsatisfiable core). Some of these
techniques resulted in efficient solving methods for problem formalisms beyond SAT, where the SAT engine
drives the solving process. The "Propositional Problems" sidebar on this page lists such selected formalisms at
the propositional level.

SAT solvers as subroutines. Many hard computational problems of practical significance, particularly in
AI, are beyond NP. An unexpectedly successful application of SAT solvers comes in terms of QBF solvers for
the QSAT problem ("Propositional Problems" sidebar). Several successful QBF solvers, such as CAQE and

RAReQS,4 employ SAT solvers. RAReQS uses two interacting SAT solvers internally to determine the validity
of the QSAT instance. Each solver acts as the existential or the universal player in a two-player game. The SAT
solvers drive the procedure: The models found refine the abstraction of the players. This generic approach is
called Counter Example Guided Abstraction Refinement (CEGAR). Other successful QBF solvers, such as

DepQBF4 and Qute,33 extend the CDCL procedure to the quantified case, with special methods for identifying
and dealing with the dependencies between variables imposed by the quantifiers. In hardware or software

verification, the model-checking tool IC35 goes further than finding bugs by proving safety properties. IC3
uses incremental SAT to check the reachability of states from both the initial states and the states of interest.
A different flavor of multi-call solving can be used for optimization problems, which are too large to be
encoded into a single SAT or MaxSAT instance and where optimal solutions are out of reach. The SAT-based
Local Improvement Method (SLIM) starts with an initial solution provided with some standard heuristics.
Then, SLIM repeatedly replaces local parts with improved solutions obtained by a SAT or MaxSAT solver. The
method has been successfully applied for graph decomposition, decision-tree induction, and Bayesian

Network structure learning.35

Core-guided optimization. SAT solvers can also solve optimization problems for minimizing or
maximizing an objective function. For instance, such a function could count the variables from a subset of
variables set to 1. Incremental solving provides the means to optimize with a SAT solver: The solver is used by
progressively adding more and more clauses that further constrain the instance until it becomes unsatisfiable.

Recall that a SAT solver can provide for an unsatisfiable instance with an unsatisfiable core.4 To satisfy the
maximum number of clauses, at least one clause from the unsatisfiable core needs to be disregarded. This can
be expressed using assumptions, a technique referred to as core-guided optimization. Notably, core-guided
optimization is very successful when solving problems such as MaxSAT, the problem of maximizing the
number of satisfied clauses (Prepositional Problems sidebar). Example 8 describes the use of soft clauses on
our running example, which is the basis for MaxSAT. A popular approach for MaxSAT solving uses as a
subroutine the computation of a minimal hitting set on unsatisfiable cores, usually achieved using a Mixed-
Integer Programming (MIP) solver.

https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf8.jpg

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 9/13

Figure. Example 8. Soft clauses allow us to deal with inconsistent requirements.

Back to Top

Outlook
Over the last two decades, SAT solving techniques have changed how we tackle hard computational problems.
The SAT revolution is significantly less known than the celebrated success of machine learning with its
ubiquitous and widely reported impact on technology and society. SAT solvers have influenced modern

technology more silently. They are used in computational biology,20 for planning,4 to verify modern

hardware,4 operating systems, software,4 and even mathematical statements.4 This makes SAT crucial to the
progress of modern information technology. Still, critical Computer Science challenges related to SAT solving
are still ahead: How can we further improve parallel search to take full advantage of modern massively
parallel hardware? Why does SAT solving often work so well in practice, and what characterizes the cases
where it struggles? How can we improve the process of coming up with good encodings? Finally, will SAT be
widely applied also to computational physics, chemistry, or non-symbolic AI? To some extent, the revolutions
of SAT and machine learning are complementary. There is much potential in combining the two.

Back to Top

Acknowledgments
This work was carried out while the authors visited the Simons Institute for the Theory of Computing. It has
been supported by a Google Fellowship at the Simons Institute; the Austrian Science Fund (FWF); Grants
J4656, Y698, and P32830; and the Vienna Science and Technology Fund, Grant WWTF ICT19-065.

Back to Top

References
1. Abate, P. et al. Dependency solving: A separate concern in component evolution management. J. Systems
and Software 85, 10 (2012), 2228–2240.

2. Ansótegui, C. et al. Community structure in industrial SAT instances. J. Artificial Intelligence Research 66
(2019), 443–472.

3. Atserias, A., Fichte, J.K., and Thurley, M. Clause-learning algorithms with many restarts and bounded-
width resolution. J. Artificial Intelligence Research 40, 1 (2011), 353–373.

4. A. Biere, M. Heule, H. van Maaren, and T. Walsh, (Eds.). Handbook of Satisfiability (2nd Edition). IOS
Press, Amsterdam, Netherlands (2021).

5. Bradley, A.R. SAT-based model checking without unrolling. In Verification, Model Checking, and Abstract

Interpretation-12th Intern. Conf. Proceedings (Lecture Notes in Computer Science 6538), R. Jhala and D.A.
Schmidt (Eds.). Springer (January 2011), 70–87.

6. Bryant, R.E. Graph-based algorithms for Boolean function manipulation. IEEE Transactions in Computing
C-35, 8 (August 1986), 677–691.

7. Cook, S.A. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual Symp. on
Theory of Computing, ACM (1971), M.A. Harrison, R.B. Banerji, and J.D. Ullman (Eds.) 151–158.

8. Cook, S.A. and Mitchell, D.G. Finding hard instances of satisfiability problem: A survey. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 5 (1997).

9. Darwiche, A. Three modern roles for logic in AI. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symp. on Principles of Database Systems (2020), 229–243.

https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf8.jpg

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 10/13

10. Darwiche, A. and Marquis, P. A knowledge compilation map. J. Artificial Intelligence Research 17, 1
(2002), 229–264.

11. Davis, M., Logemann, G., and Loveland, D. A machine program for theorem-proving. Communications of
the ACM 5, 7 (July 1962), 394–397.

12. Davis, M. and Putnam, H. A computing procedure for quantification theory. J. of the ACM 7, 3 (1960),
201–215.

13. Eén, N. and Sörensson, N. An extensible SAT-solver. In Proceedings of the 6th Intern. Conf. on Theory
and Applications of Satisfiability Testing, E. Giunchiglia and A. Tacchella (Eds.), Springer Verlag (2003),
502–518.

14. Elffers, J. et al. Seeking practical CDCL insights from theoretical SAT benchmarks. In Proceedings of the
27th Intern. Joint Conf. on Artificial Intelligence, J. Lang (Ed.), (2018), 1300–1308.

15. Fichte, J.K., Hecher, M., and Hamiti, F. The model counting competition 2020. ACM J. Experimental
Algorithmics 26, 13 (December 2021).

16. Fichte, J.K., Hecher, M., and Szeider, S. A time leap challenge for SAT-solving. In Proceedings of the 26th

Intern. Conf. on Principles and Practice of Constraint Programming, H.Simonis (Ed.). Springer Verlag,
Louvain-la-Neuve, Belgium (2020), 267–285.

17. Fichte, J.K., Hecher, M., and Zisser, M. An improved GPU-based SAT model counter. In Proceedings of

the 25th Intern. Conf. on Principles and Practice of Constraint Programming, T. Schiex and S. de Givry
(Eds.), (2019), 491–509.

18. Ganesh, V. and Vardi, M.Y. Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press,
(2021), 547–566.

19. Gebser, M. et al. Answer Set Solving in Practice. Morgan & Claypool (2012).

20. Guerra, J. and Lynce, I. Reasoning over biological networks using maximum satisfiability. In Proceedings
of the 18th Intern. Conf. Principles and Practice of Constraint Programming (Lecture Notes in Computer
Science 7514), M. Milano (Ed.). Springer Verlag, Québec City, QC, Canada (2012), 941–956.

21. Hamadi, Y. and Sais, L. (Eds.). Handbook of Parallel Constraint Reasoning. Springer (2018).

22. Heule, M.J.H. and Kullmann, O. The science of brute force. Communications of the ACM 60, 8 (July
2017), 70–79.

23. Hoos, H.H. and Stützle, T. Towards a characterisation of the behaviour of stochastic local search
algorithms for SAT. Artificial Intelligence 112, 1 (1999), 213–232.

24. Ignatiev, A. et al. Reasoning-based learning of interpretable ML models. In Proceedings of the 30th Intern.
Joint Conf. on Artificial Intelligence, Zhi-Hua Zhou (Ed.), (August 2021), 4458–4465.

25. Ignatiev, A., Morgado, A., and Marques-Silva, J. PySAT: A Python toolkit for prototyping with SAT oracles.

In Proceedings of the 21st Intern. Conf. on Theory and Applications of Satisfiability Testing (Lecture Notes in
Computer Science 10929), O. Beyersdorff and C.M. Wintersteiger (Eds.). Springer Verlag (2018), 428–437.

26. Järvisalo, M. et al. The International SAT Solver Competitions. AI Magazine. The AAAI Press (2012).

27. Katebi, H., Sakallah, K.A., and Marques-Silva, J.P. Empirical study of the anatomy of modern SAT solvers.

In Proceedings of the 14th Intern. Conf. on Theory and Applications of Satisfiability Testing (Lecture Notes
in Computer Science 6695), K.A. Sakallah and L. Simon (Eds.). Springer Verlag (2011), 343–356.

28. Knuth, D.E. The Art of Computer Programming Vol. 4B, Combinatorial Algorithms, Part 2. Addison-
Wesley (2023).

29. Levin, L. Universal sequential search problems. Problems of Information Transmission 9, 3 (1973), 265–
266.

30. Malik, S. and Zhang, L. Boolean satisfiability from theoretical hardness to practical success.
Communications of the ACM 52, 8 (August 2009), 76–82.

31. Marques-Silva, J. and Sakallah, K.A. GRASP: A search algorithm for propositional satisfiability. IEEE
Trans. Comput. 48, 5 (May 1999), 506–521.

32. Moskewicz, M.W. et al. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Annual
Design Automation Conf., J. Rabaey (Ed.). Association for Computing Machinery (2001), 530–535.

33. Peitl, T., Slivovsky, F., and Szeider, S. Dependency learning for QBF. J. Artificial Intelligence Research 65
(2019), 180–208.

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 11/13

34. Pipatsrisawat, K. and Darwiche, A. On the power of clause-learning SAT solvers as resolution engines.
Artificial Intelligence 175, 2 (2011), 512–525.

35. Ramaswamy, V.P. and Szeider, S. Turbocharging treewidth-bounded Bayesian network structure learning.

In Proceedings of the 35th AAAI Conf. on Artificial Intelligence, The AAAI Press (2021), 3895–3903.

36. Rossi, F., van Beek, P., and Walsh, T. Handbook of Constraint Programming. Elsevier Science Publishers,
North-Holland, USA (2006).

37. Sinz, C. Towards an optimal CNF encoding of Boolean cardinality constraints. In Proceedings of the 11th

Intern. Conf. on Principles and Practice of Constraint Programming (Lecture Notes in Computer Science
3709), P. van Beek (Ed.). Springer Verlag, Sitges, Spain (2005), 827–831.

38. Stuckey, P.J. et al. The MiniZinc Challenge 2008–2013. AI Magazine 35, 2 (June 2014), 55–60.

39. Tseytin, G.S. On the complexity of derivation in propositional calculus. Automation of Reasoning:
Classical Papers in Computational Logic 2 (1983), 466–483.

40. Vardi, M.Y. Boolean satisfiability: Theory and engineering. Communications of the ACM 57, 3 (March
2014), 5.

Back to Top

Authors
Johannes K. Fichte is an associate professor at IDA, Institutionen för datavetenskap, Linköping University,
Sweden.

Daniel Le Berre is a professor at Artois University and CNRS, Centre de Recherche en Informatique de
Lens, France.

Markus Hecher (hecher@mit.edu) is a PostDoc at the Computer Science & Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, USA.

Stefan Szeider is a professor and head of the Algorithms and Complexity Group at TU Wien, Vienna,
Austria.

Back to Top

Footnotes
a. DPLL combines DP and DLL to emphasize both contributions.

Back to Top

Sidebar
Selected Formalisms

Selected formalisms beyond propositional logic inspired by CDCL.

SAT Modulo Theories (SMT)

SMT4 extends SAT by theories of first-order logic, so that instances can express questions beyond CNF and
propositional variables. Among the more prominent theories supported by SMT solvers are the theory of
arithmetic over integers or real numbers, the theory of equality and uninterpreted functions, as well as
theories over different data structures such as arrays and bit-vectors. These theories are readily available in
many state-of-the-art SMT solvers, such as z3, cvc4, and MathSAT5. Initial attempts to solve SMT resulted in
translating instances to propositional formulas, where a SAT solver was responsible for solving. Over time,
more sophisticated techniques and architectures emerged. Still, the core of modern SMT architectures is
powered by SAT engines and often referred to by CDCL(T), where T denotes the theory under consideration.
The performance of current SMT solvers resulted in challenging SMT competitions, which further led to
standardized collections and libraries of instances. Some of these instances indeed stem from crucial
applications, mostly in the area of software verification.

Answer Set Programming (ASP)

Propositional ASP builds on top of SAT and adds concepts from knowledge representation and reasoning
(stable models). It can solve problems from the second level of the polynomial hierarchy. Non-propositional
ASP provides a declarative programming-oriented approach with first-order variables and extended

statements toward compact and human-readable representations of encodings.19 There, problems are
NEXPTIME-hard. Still, modern ASP solvers use CDCL-based techniques. ASP became a de facto successor of
Prolog. Modern ASP solvers even offer features from SMT, including ways to compactly define own theories.

Constraint Programming (CP)

mailto:hecher@mit.edu

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 12/13

CP focuses on modeling and solving combinatorial problems while offering engineers a wide variety of

constraints, which are not limited to the propositional domain.36 Furthermore, available constraints are very
expressive and high-level. Surprisingly, CDCL-based solvers have a strong influence as the core engine in

some solvers, as witnessed in the MiniZinc 2022 Challenge—for instance, PicatSAT and OR-Tools.38

Back to Top

Sidebar
Propositional Problems

A short list of selected propositional problems beyond SAT that employ CDCL.

Quantified Boolean Formulas (QBFs)

QBFs extend CNF formulas by quantifying variables universally (∀) or existentially (∃). SAT can be seen as the
special case where all variables are existentially quantified. With QBFs, one can encode some problems
exponentially more succinctly than with SAT, but checking whether a QBF is true (QSAT) is PSPACE

complete.4

Pseudo-Boolean (PB) Solving

PB solving supports linear constraints, which are more expressive than clauses. A linear constraint is a linear
combination of propositional variables—for example, 2x1 + … − 3xk ≤ 5. With the use of auxiliary variables

and clauses, such constraints can also be encoded in CNF, but linear constraints eliminate the need for
constructions, such as in Example 5. Furthermore, one can use stronger proof systems on such instances—for

example, Gaussian elimination or cutting planes.4

Maximum Satisfiability (MaxSAT)

One can extend CNFs by marking clauses as hard or soft.4 A hard clause must be satisfied and a soft clause
should be satisfied if possible. Then, the problem MaxSAT asks to find an assignment that satisfies all the
hard clauses and a maximum number of soft clauses. Today, there are many applications where MaxSAT
thrives, and the list of use cases ranges from configuration problems in industry and software management,
across combinatorial optimization, to data analysis and probabilistic reliability estimation of systems.

Sampling, Counting, Compilations

Advances in SAT solving have been extended to generating multiple diverse solutions (sampling), counting

the number of solutions,4,15 and compiling a CNF formula into another normal form, such as d-DNNF, where

various problems can be solved efficiently (knowledge compilation).10 Practical applications of counting and
sampling can be found in probabilistic reasoning and bioinformatics. Sampling is of particular interest in
testing or performance-model optimization. Knowledge compilation and compilers are ideal technologies for
various problems in decision making and AI.

 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs
International 4.0 License

The Digital Library is published by the Association for Computing Machinery. Copyright © 2023 ACM, Inc.

Comments

Sergey Bulanov

May 26, 2023 08:34

A non-computatinal approach to the SAT solver. This work was made approximately at 2002.
https://youtu.be/TBB_yWQxXh4

Displaying 1 comment

Comment on this article

https://dl.acm.org/cms/attachment/html/10.1145/3560469/assets/html/uf5.jpg

10/23/23, 10:37 AM The Silent (R)evolution of SAT | June 2023 | Communications of the ACM

https://cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext 13/13

Signed comments submitted to this site are moderated and will appear if they are relevant to the topic and not abusive. Your

comment will appear with your username if published. View our policy on comments

Notify me via email when subsequent user comments are published with this article.

SUBMIT FOR REVIEW

For Authors For Advertisers Privacy Policy Help Contact Us Mobile Site Copyright © 2023 by the ACM. All rights reserved.

https://cacm.acm.org/help#Q22
https://cacm.acm.org/about-communications/author-center
https://www.acm.org/publications/advertising
https://cacm.acm.org/privacy
https://cacm.acm.org/help
https://cacm.acm.org/about-communications/contact-us
https://m-cacm.acm.org/magazines/2023/6/273222-the-silent-revolution-of-sat/fulltext?mobile=true

