RESOLUTION STRATEGIES

- Improve efficiency
- Preserve completeness

Clause elimination

- "pure" literal elimination
 \[P(A) \lor Q(x, A) \lor \neg P(...), \quad P(x) \lor \neg P(x) \lor Q(A, x) \]
 unity
 no such literal

- tautology elimination
 \[P(A) \lor \neg P(A) \lor P(B), \quad P(x) \lor \neg P(x) \lor Q(A, x) \]
 cannot help in a refutation
 eg. we would have to have clauses with literals resolvable against \(P(A) \lor \neg P(A) \)
 but then these clauses can be resolved against each other.

- subsumption elimination
 \[P(A) \text{ subsumes } P(x) \lor Q(x, B) \]
 \[P(x) \lor Q(x) \lor R(g, y) \]
 \[P(A) \lor Q(A, B) \]
 \[P(x) \lor \neg P(x) \lor Q(A, x) \]

Proof strategies

- Breadth-first
 complete but inefficient

- Depth-first
 efficient but incomplete

- Unit resolution
 (one or both parents length 1)
 efficient but incomplete

- Unit preference
 (use unit resolution if possible)
 efficient & complete

- Set of support
 denial clauses "guide" proof
 \(\neg P(x) \lor Q(x) \lor R(g, y) \)
 \(P(A) \lor Q(A, B) \)
 \(P(x) \lor \neg P(x) \)
 \(Q(e) \)
 \(R(A; B) \lor \neg Q(A) \)
 non-SOS steps
- Connection-graph method: (grads)

- Ordered resolution
 Resolve initial literals only
 Complete for Horn clauses (prolog)

\[P(A) \iff \neg Q(x), Q(x) :\neg P(x) \]
\[P(A) \equiv \text{True}, \quad \text{False} \equiv Q(x), \quad Q(x) \equiv P(x) \]
\[P(A), \quad \neg Q(x), \quad P(x) \implies Q(x) \]

\[\text{Quacks}(x) :\neg \text{Happy}(x), \text{Duck}(x) \]
\[\quad :\neg \text{Quacks}(\text{Daffy}) \]
\[\quad \text{goal denial} \]
\[\quad \text{if} \quad \text{Happy}(\text{Daffy}), \text{Duck}(\text{Daffy}) \]

- Model Generation (elimination)

Efficient!

Think of "model" as "all true ground atoms"

Use prolog on horn subset
If refuted \(\rightarrow \) done
If fail \(\rightarrow \) expand horn set using a +ve literal from a non-horn clause whose antecedent (if any) we can prove.
If we refute all possibilities \(\rightarrow \) done
O.w. expand horn set again, ...

E.g.
\[\neg P, \neg Q, \neg KVS; \neg SVPVQ, RVVPVQ \]

- can't refute
- can prove antecedent which is empty (prove antecedent \(\equiv \) eliminate +ve literals)

Add \(R \)
- can't refute \(\rightarrow \) bigger model

Add \(P \)
- can prove \(S \)
- can prove \(S \) (eliminate \(\neg S \))

Add \(Q \)
- can refute \(\rightarrow \) we're done

If we also have \(\text{Happy}(\text{Daffy}) \iff \& \quad \text{Duck}(\text{Daffy}) \iff \)
we'll have a refutation & thus a proof of Quacks (Daffy);

The latex notes contain James Allen's less trivial example,
Where we show that some bird quacks: \(\iff \text{Bird}(x), \text{Quacks}(x) \)