SAT-Solving

- Though Boolean (propositional) logic is much less expressive than FOL, many AI problems involve constraint-solving, where the constraints are easily expressed as Boolean formulas.
 - e.g., class scheduling (room/instructor/student available)
 - conference paper refereeing
 - hardware/software verification
 - propositional planning

- We can even handle quantified knowledge, if it is function-free (after Skolemization), by "grounding" quantified formulas (e.g., planning)

- Millions of variables can currently be handled in industrial-scale benchmark problems, & speeds have more or less been doubling every year.

Referred:
- p77-83 Brachman & Levesque
- Section 7.6 Russell & Norvig
- Malik & Zhang, "Boolean Satisfiability: ..."
- CADM 52(8), Aug. 2009, 76-82.

Most common algorithm: DPLL (Davis, Putnam, Logemann, Loveland)

Idea, for a set of clauses (CNF):

Repeat
- Choose a variable & set it to 1 or 0;
 - (Prefer variables of unit clauses & ones that appear with only one sign; the choice of 1 or 0 should make at least 1 clause true)
- Simplify the clauses accordingly, returning "SATISFIABLE" if no clauses remain;
 - Backtrack to an earlier choice if an inconsistency appears, or return "UNSATISFIABLE" if no choices remain

Until all clauses are satisfied

E.g.,
- \((x_1 \lor \neg x_2), (x_1 \lor x_3), (x_1 \lor x_3 \lor x_4), (x_1 \lor x_4) \)
 - Choose \(x_1 = 1 \) (appears positively only, in last clause)
- So: \((\neg x_2), (x_1 \lor x_3), (x_1 \lor x_3 \lor x_4), (x_1 \lor x_4) \)
 - Choose \(x_2 = 1 \) (not the best choice but OK)
 - So: \(\neg x_3, (\neg x_1 \lor x_3 \lor x_4) \lor (x_1 \lor x_4) \)
 - Choose \(x_3 = 0 \) (necessarily)
 - So: \(x_4 \)
 - Choose \(x_4 = 1 \) (necessarily)
 - So: SATISFIABLE (no clauses left)

Note: A satisfying assignment is easily extracted from a satisfiable clause set. Use arbitrary values for variables that didn't receive a value.
A major improvement from the mid-90's:
Conflict-driven learning (of new clauses that must be true if there is a satisfying assignment) with non-chronological backtracking (jumping backward over more recent choice points, to a point where a decision relevant to a detected conflict was made.)

Example from Malik & Zhang (with 3 clauses added):

<table>
<thead>
<tr>
<th>Clauses</th>
<th>Choices</th>
<th>DPLL would do</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg x_1 \lor x_4)</td>
<td>(x_1 = 0,) so (x_4 = 1)</td>
<td>choose (x_4 = 1) right away, (or (x_2 = 1)) but...</td>
</tr>
<tr>
<td>(x_1 \lor x_4)</td>
<td>(x_2 = 1,) so (x_3 = 0, x_4 = 1)</td>
<td>(x_7 = 0)</td>
</tr>
<tr>
<td>(x_1 \lor x_6 \lor x_8)</td>
<td>(x_3 = 1,) so (x_3 = 0, x_4 = 1)</td>
<td></td>
</tr>
<tr>
<td>(x_1 \lor x_8 \lor x_{12})</td>
<td>(x_2 = 0,) so (x_{11} = 1)</td>
<td></td>
</tr>
<tr>
<td>(x_1 \lor x_{10})</td>
<td>(x_7 = 1,) so (x_9 = 1, 0)</td>
<td></td>
</tr>
<tr>
<td>(x_2 \lor x_{11})</td>
<td>(x_3 \lor x_{10})</td>
<td></td>
</tr>
<tr>
<td>(x_4 \lor x_7 \lor x_8)</td>
<td>(x_4 \lor x_7 \lor x_8)</td>
<td></td>
</tr>
<tr>
<td>(x_7 \lor x_8 \lor x_{12})</td>
<td>(x_7 \lor x_{10} \lor x_7)</td>
<td></td>
</tr>
</tbody>
</table>

After the first 2 steps, since \(x_2 = 1 \) and \(x_1 = 0 \), we must have \(x_7 = 0 \), so we jump back to step 2 (step 3 is irrelevant to the conflict)

Other improvements to DPLL:
- "two-literal watching" (efficient unit clause usage)
- Local search (in the "vicinity" of the current assignment - see below (LS))

Other algorithms in the text: tableau (TAB), LS and GSAT.

TAB: Similar to DPLL, but we focus on some remaining clause, & choose one of its literals (not yet tried) to be true \(\pm 1 \) (backtracking to another of its literals, not yet chosen, if the rest of the procedure fails); eliminate clauses thereby made true, and recurse till all clauses are true (eliminated) or no choices remain.

LS: Searches within a growing Hamming distance of 2 or more starting assignments

GSAT: Starting with arbitrary assignment, keep flipping the truth value of a variable that will increase the number of true clauses as much as possible. Use a limit on the number of flips, & if necessary start with a new random assignment.

Doesn't guarantee finding a satisfying assignment if one exists, & doesn't prove unsatisfiability.