VARIABLES AS FUNCTIONS:
EFFICIENT REFERENCE TO DEPENDENT ENTITIES

Lenhart Schubert
University of Rochester

Thanks: Ken Shan, NSF grants 11S-0082928, 11IS—-0328849

FUNCTIONAL REFERENCE

(1) All of the graduates received a job offer (at the job fair),
and all of them accepted their offer.

(2) If all of the graduates received a job offer
then all of them accepted their offer.

(cf. donkey sentences)

LOGICAL FORMS FOR FUNCTIONAL REFERENCE

(1) All of the graduates received a job offer (at the job fair),
and all of them accepted their offer.

a. faulty LF for (1):
(Vx) [graduate(x) ——> (E| y) job—offer(y) & receive(x,y)]

& (Vx) [graduate(x) ——> accept(xi/)]

b. verbose LF for (1):
(V' x) [graduate(x) ——> (E| y) job—offer(y) & receive(x,y)]

& (Vx) [[graduate(x) & (E| y) job—offer(y) & receive(x,y)]

——> accept(x,y)]

c. functional LF for (1):
(Y x) [graduate(x) ——> (E| y) job—offer(y) & receive(x,y)]

& (Vx) [graduate(x) ——> accept(x,&x))]

3—variables as functions: Intuitive idea

e.g., Everyone has a mother & no—-one has a clone:

((I)) V x.d y mother—-of(x,y) & ~]z clone-of(x,z)

pj/ people

Satisfaction set for (I) , relative to model M = (D,1)?

[[(I) I, = {<U,V>| U, V are the same except that V(y)
is a function D—->D picking out "the"
mother of any given d in D}

(We don’t need such a function for z!
Negated formulas are "'static")

We could then use
y(x) for "the mother of x';
y(y(x)) for the grandmother of x;
y(Oedipus) = Jocasta,; etc.

"Functional DPL": Remarks on syntax

® Assume occurrence of =l y is unique:
We want permanent use of the implicit functions.

VY x. 9 y mother-of(x,y) & 7y father-of(x.y)

would yield only one function (for the father)

® Should we insist on functions getting the "right"
number of arguments?

We could, using the notion of "defining context™ .
But instead we allow "abuses" like

y(Oedipus)(Jocasta), Oedipus(y),

and ensure predications involving such terms are false.

"Functional DPL": Semantics

® Generalized variable assignments (gva’s) U, V, W, ...

of type Var——> /:F D

where ,}:_: ,}:U ,}?U,};u---

:F-' = Dn__> D= D-—> (D -_> ((D —-——> D)))

n

o [Ay) ¢ T, = {<UV>|forsomed€D,<U.q,vV> € [$1,}

e[V ¢ 1, = {<UV>|foralld€ D, <Uyg M:g> € [1T, .

where for all var’'s y, V'(y)=V(y)=U(y)
nscreens out” — __& if for all <W,W’> € [[(I) | M W’ (y)=W(y),

all var’s y that are :) —
not T —quantified in ¢ and otherwise V’(y) = V(y)(d)}
(or are 7 —quantified in

a static subformula, like

the earlier "clone—of" subformula)

Semantics (cont’d)

® Predication, negation, conjunction are as in DPL
but (crucially) disjunction & conditional are dynamic:

o [PV U,

1é1, v I,

old—>yr,
(“weak" conditional) <U,U> ¢ [[(I) I, or for some gva U’,
<uu>€erd1, & <uVv>€PI,,}

{<U,V>| either V=U & for no gva U’,

E.g., Johnhas adog or acat;
he keeps it in the house.

E.g., If Johnis lucky, he’ll get a fax from Mary;
(?) it will contain a job offer.

Semantics (concluded)

® Truth: MU E¢ iff for somegvaV, <U,V> € [[(I)]]NI

® Entailment:
¢ E Y iff for all models M and all U,V,
if <U,v> € [@],, then for some gva’s
VW, <Uv> o, &<viws € [V,

This aligns = with »:[(I)I:LIJ iff I=(|)%LIJ]

Also we have the "detachment"

| (GxP0) > QWL FYPY) E QW) |

® The semantics can be generalized to restricted quantifiers

Vx:)P, Mostx:P)P, etc.

Remarks on mapping anaphors

to functional expressions

(3) Every student x wrote a paper y;

No student z who took the exam handed in their paper on time
y(2)

(4) Every student x that didn’t take the exam wrote a paper y;

No student z handed in their paper on time.*
y(z)? NO!

* Example due to Ken Shan

10

Remarks on mapping anaphors

to functional expressions (cont’'d)

Suppose the defining context for y is

(Vx: C(x)) 2y ...

and we’'re considering a preliminary LF of form
(Vz: C'(2)) § [the P].
Does substitution of y(z) for "the P" yield a potential reading?

A necessary condition (for the case of atomic C, C’):
I(C’) € I(C) in theintended model M = (D,))

(along with other "standard" constraints).

10

11

Bridging anaphora

(5) Prior knowledge: Every house has a front door

(V x) [nouse(x) — Ey. door(y) & part-of(y,x) & at—front—of(y,x)]

(6) New facts:

a. Cora walked up to the house z;
b. She knocked on the door.

knock-on(Cora,y(z))

Advantages:
® Simplicity

® Avoids uniqueness presumption
(Houses can have multiple doors, even in front!)

11

12

Frames, scripts, generic sentences

(5) Again consider: Every house has a front door
(V x) [house(x) —> . door(y) & part-of(y,x) & at-front-of(y,x)]

The "creation" of a function y can be viewed as
the creation of a frame slot —— directly via NLP!

(7) Similarly for events:
When someone eats [e] at a restaurant,
they enter [el], find [e2] a table to sit at,
wait [e4] for the server, select [e4] a meal, ...

Both subevents and roles (table, server, etc.)
could again be created directly via NLP ==> scripts.

A remaining problem: For non-universal generic quantifiers,
the functions created may have some "arbitrary" values, and
this can lead to faulty LFs for sentences with functional reference.

A possible solution: partial functions!

12

Conclusions & further work

@® By letting j—variables acquire functional values in

V—contexts, we can easily represent functional reference

® The resulting "functional DPL" differs in some minor
respects from DPL: among the logical operators,
only negation is uniformly static

® Further work:
— exploration of the logic

- translation to FOL
— more detailed study of NL ——> LF
mapping for functional anaphora

— develop a partial-function variant;
hence deal with dependencies on
generic quantifiers other than

13

13

