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Abstract

Discoplan is a durable and efficient system for inferring state constraints (invari-
ants) in planning domains, specified in the PDDL language. It is exceptional in the
range of constraint types it can discover and verify, and it directly allows for conditional
effects in action operators. However, although various aspects of Discoplan have been
previously described and its utility in planning demonstrated, the underlying method-
ology, the algorithms for the discovery and inductive verification of constraints, and
the proofs of correctness of the algorithms and their complexity analysis have never
been laid out in adequate detail. The purpose of this paper is to remedy these lacunae.

1 Introduction

State constraints, also called state invariants, have long been known to be useful in re-
ducing planning complexity by enabling avoidance of unreachable states. Even Genesereth
and Nilsson’s classic book on logical foundations of artificial intelligence pointed out that
state constraints enabled “unachievability pruning” in deductive planning (see [15], section
2.9), and planning techniques developed since then (especially those employing satisfiabil-
ity testing or related techniques) make crucial use of state constraints for efficient plan
generation. The importance of computing and exploiting state constraints in planning has
been reiterated many times; recent examples are [1, 30].

While many useful state constraints can be “intuited” via human understanding of
a planning domain, manual axiomatization is an undesirable and unnecessary burden, if
constraints can be automatically inferred. Moreover, it is well-known in the planning com-
munity that errors in operator specifications occur all too easily, and automated constraint
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and algorithms underlying Discoplan and their soundness proofs and complexity analyses.



inference often reveals such “bugs” quickly by bringing to light the bizarre constraints they
engender. Thus, inference of state constraints becomes an increasingly important debug-
ging tool as planning domains are scaled up from toy problems to real-world problems.

In this paper we describe Discoplan, one the first and most successful systems for
inferring and using state invariants. It is cited by many researchers in the field (e.g.,
[1, 3, 7, 8, 9, 10, 12, 14, 24, 25, 28, 29, 30, 35, 38, 39, 40]), and it contributed to the growth
of interest in this important research topic in automated planning. Over the years various
other systems have been proposed, some of them using and developing quite similar ideas,
such as Discoplan’s hypothesize-and-test paradigm. Discoplan is also the invariant
inference system that supports the largest set of types of invariants for non-quantitative
domains, including some types that no other system infers.

A comprehensive treatment of the full range of methods, algorithms, theoretical results,
and experimental evaluations that have been developed for Discoplan over the years is
beyond the scope of a single paper. Aspects of Discoplan covered in previously pub-
lished work include the use of parameter domain inference to speed up planning [18], the
basic idea behind our method of deriving constraints, with demonstration of their utility
in SAT-planning [19], and extensions of our techniques to allow for conditional effects,
antisymmetry constraints, OR and XOR contraints, as well as other types of constraints
and some methods of bootstrapping [21, 20, 22]. However, no detailed description of the
algorithms and methodology, proofs of correctness, and complexity analyses have been
provided before, and the goal of this paper is to provide these important details.

We will focus on our most essential methods and on the basic types of state constraints,
on which additional inference methods and specific techniques are built. These techniques
are at the core of Discoplan, and generally suffice for efficient inference of the great
majority of the invariants discovered by the full Discoplan system. The interested reader
can find a description of the additional methods and techniques, together with an empirical
evaluation of the whole system in [19, 21, 16].

1.1 Related Work

Many approaches to infer and use state invariants have been proposed for planning [5, 8,
9, 13, 17, 27, 26, 14, 25, 29, 30, 32, 36, 37, 38, 41], and more recently also for temporal
planning [25, 39]. While a detailed comparison between Discoplan and all other existing
systems for automatic inference of state invariants is outside the scope of this paper, in the
following we briefly outline the main differences. (The interested reader can see [16] for an
in-depth comparison with several other systems.)

Most of the related work relies on techniques similar to our hypothesize-and-test paradigm,
with specific differences in the ways hypotheses are generated, weakened, and tested; an
exception is Fox and Long’s Tim system, which uses a hierarchy of inferred object types
containing sets of functionally equivalent objects.

Another major difference concerns the syntactic restrictions on the types of inferred
invariants. For instance, in Tim formulas φ and ψ of an implicative constraint φ⇒ ψ cannot
involve more than one universally quantified variable, cannot be propositional literals,
must both be positive without constant arguments, and moreover ψ cannot be an EQ/NEQ-
condition; in Rintanen’s system [36, 37] supplementary conditions involving constants are
not generated (e.g., ((IMPLIES (ON ?X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE)); Helmert’s
system [25] focuses on mutex invariants. Moreover, some of the existing systems infer
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only grounded invariants, while Discoplan discovers first-order invariants (contrary to
comments in [7]), and no other system infers Discoplan’s type constraints.

Concerning the supported planning language, Discoplan can directly deal with action
models (operators) involving some features that other systems can handle only by precom-
piling them away [4, 33]. These are EQ/NEQ-conditions, negated preconditions, constants,
and especially conditional effects. In practice compilation of conditional effects can be an
acceptable solution when they are very few, but in general it leads to an exponential blow-
up of the domain actions, or to a polynomial increase in the plan size, which can make
plan generation substantially harder or even infeasible.

The only other approach supporting conditional effects is Helmert’s, which adopts a
method similar to our hypothesize-and-test paradigm with a different method for refining
hypothesized invariants and verifying them. This technique was designed primarily to
derive invariants whose use is helpful in building concise finite-domain representations
in the translation of the planning problem specification from PDDL to SAS+ [6] that is
used in the context of the Fast Downward planner [25]. The translation uses invariants
corresponding to mutually exclusive atomic propositions, stating that at most one of such
propositions can hold in any reachable state. A set of propositions that are pairwise
mutually exclusive can be encoded as a single state SAS+ variable whose value specifies
which of the propositions is true (or that none of them is true at all). Discoplan was
designed to be a general tool and discovers more types of invariants. In particular, with
respect to the class of Discoplan’s invariants investigated in this paper, Helmert’s system
does not infer implicative constraints where both φ and ψ are positive or ψ is a persistent
precondition (one that remains true when the operator is applied), sv-constraints where
more than one variable is starred, and some constraints involving constant symbols and
EQ/NEQ-conditions. Moreover, we observed that for some benchmark domains Discoplan
derives some mutex invariants that are not found by Helmert’s technique.

On the other hand, other systems have their own advantages, and in general there
is no system or approach that universally outperforms all others in terms of the number
of inferred invariants, the computation time to derive them, or features of the planning
language that are supported. For instance, Tim is often very fast; Rintanen’s approach
is general, relatively simple and elegant, but slower than others (although recent efforts
have been dedicated to improving efficiency [40]); Helmert’s approach supports universally
quantified variables in preconditions and effects (Discoplan makes only very limited al-
lowance for such variables), and since it focuses on a particular class of invariants, it can be
much more efficient for these invariants, especially with large pddl domain specifications.
Finally, we should mention some additional types of constraints (not discussed here), most
of which only Discoplan is capable of discovering, namely OR-XOR constraints, strict sv-
constraints, n-valuedness constraints for n > 1, n-ary disjunctive constraints for arbitrary
positive n, and the latter in conjunction with sv-constraints.

1.2 Overview

The technical presentation of our constraint discovery techniques begins in section 2 with
the assumed representations for planning domains and domain constraints, and a prelimi-
nary technique for discovering type constraints, i.e., monadic constraints on objects in the
initial state that are not affected by any operator. For example, in a transportation domain
certain objects might be designated as vehicles and more specifically as trucks, airplanes,
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or trains, others as locations (such as cities), others still as particular kinds of cargo, etc.
Often these properties are related hierarchically (for instance, all trucks are also vehicles)
and by exclusion relations (for instance, no truck is an airplane).

In section 3, we motivate and present our hypothesize-and-test paradigm for discovering
a variety of constraints “hinted at” by operator precondition-effect structure. For example,
in a traditional blocks world the Put operator has effects (ON ?x ?y) and (NOT (CLEAR ?y))

(when ?y is not the TABLE), suggesting the constraint that whenever (ON ?X ?Y) holds, so does
(NOT (CLEAR ?Y)) (when ?Y is not the TABLE).1 Verifying such a potential state constraint
requires an inductive proof that if the constraint holds in a given state, then it still holds
in any successor state that can be generated by an operator application; and as basis case,
the constraint needs to be verified in the initial state. In order to efficiently implement the
inductive proof step, we proceduralize appropriate verification conditions, aimed at specific
types of constraints. For example, for the implicative constraint mentioned above, we need
to be sure that whenever the antecedent (ON ?X ?Y) is made true by some operator for some
?X and ?Y (where ?Y is not the TABLE), the consequent (NOT (CLEAR ?Y)) is also made true
by that operator, or persists from the prior state. In addition, we need to be sure that
whenever (NOT (CLEAR ?Y)) is made false (i.e., (CLEAR ?Y) is made true) by some operator
for some ?Y (where ?Y is not the TABLE), then (ON ?X ?Y) is also made false for all ?X, or this
condition persists from the prior state. (Note that if it can be shown simultaneously that
for any given ?Y, (ON ?X ?Y) holds for at most one ?X, then proving that (ON ?X ?Y) becomes
false for some ?X is sufficient to show that it becomes false for all ?X. This observation
provides a preliminary glimpse of the way in which single-valuedness constraints interact
with implicative constraints – an important theme in much of what follows.) In general,
formulating verification conditions for a given type of constraint is a matter of considering
all the ways a constraint of that type could be falsified by an operator application (when
it was true in the prior state), and positing sufficient conditions on the preconditions and
effects of operators to ensure that no such violation can occur.

After stating the generic algorithm we employ for hypothesizing and verifying con-
straints (subsection 3.1), we discuss in more detail how verification conditions, supporting
the inductive proofs of hypothetical constraints, are formulated (subsection 3.2), how po-
tential supplementary conditions are collected (subsection 3.3) how irredundant subsets are
selected from them (subsection 3.4), and how constraints and their potential supplementary
conditions are filtered through the initial state (subsection 3.5). The most subtle aspect
is the collection of supplementary conditions, which serve to “excuse” apparent violations
of the verification conditions. For example, coming back to the previous blocks-world il-
lustration, one hypothesis based on the Put operator would just be that (ON ?X ?Y) implies
(NOT (CLEAR ?Y)). The corresponding verification conditions would be found to be violated
by the Put operator when the value of the parameter ?y corresponding to variable ?Y is
the TABLE, since in that case no effect (NOT (CLEAR ?y)) is asserted even though (ON ?x ?y)

is asserted. But our algorithms would take note of the precondition (EQ ?y TABLE) as a pos-
sible “excuse” in that case, and would ultimately “rescue” the implicative constraint (in
conjunction with a single-valuedness constraint) by adding (NOT (EQ ?Y TABLE)) as a supple-

1Note that we use lower-case symbols such as ?x and ?y for operator parameters, and upper-case
symbols such as ?X and ?Y for implicitly universal variables in state constraints. Also, we generally write
operator names with an initial capital (e.g., Put), and use uniform upper case for predicates, constants and
logical connectives (AND, OR, NOT, IMPLIES); however, for computer-interpretable operator specifications
we assume case-insensitivity (and prefer uniform lower case for compactness of presentation).
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mentary condition. In the final subsection (3.6), we provide some methodological remarks
on the pros and cons of bootstrapping in hypotheses testing.

In section 4, we present our basic instantiations of the hypothesize-and-test paradigm,
considering implicative and single-valuedness constraints first in isolation and then in com-
bination. In particular, in section 4.1 we outline the discovery of “simple” implicative
constraints, as an instance of our hypothesize-and-test paradigm. These are ones that do
not require simultaneous consideration of single-valuedness constraints. An example is the
Trains world constraint that when ?X is AT ?Y, then ?Y is a CITY [2, 18]. An example of a
single-valuedness constraint (sv-constraint) that can be discovered in isolation (section 4.2)
is the “logistics” world constraint that ?X can be AT only one ?Y, whenever ?X is an AIRPLANE

(similarly, if ?X is a TRUCK). An example of a combined implicative and sv-constraint (section
4.3) is the blocks-world constraint mentioned above, or the Trains world constraint that
if ?Y (e.g., a boxcar) is COUPLED to ?X (an engine), then ?Y is not LOOSE, and furthermore, it
is not COUPLED to anything else (single-valued in ?Y).

In contemplating the details (in section 4) of our various instantiations of the hypothesize-
and-test paradigm, one may well wonder why separate verification conditions and algo-
rithms are needed for each class of invariants. The answer is that distinct methods of
mathematical induction, and hence distinct algorithmic techniques, are needed for each
class. Unfortunately, we have no uniform, efficient proof procedures for reasoning about
dynamic worlds by mathematical induction, incorporating a closed world assumption and
unique names assumption (see below), and capable of handling equalities and inequalities.
Thus, some human ingenuity is required to formulate verification conditions that will en-
able inductive proofs to succeed for most of the cases of interest, and to write code that
efficiently and correctly implements the induction steps in each case.

2 Preliminaries

In this section we describe the assumed representation for planning domains and state con-
straints, introduce some notation, and propose a technique for computing type constraints.

2.1 Representation of Planning Domains and State Constraints

Discoplan handles both pddl [23] and ucpop-style [34] operators. Disjunctive conditions
are not handled. Universal quantification as well is disallowed by most of the specialized
routines implemented in Discoplan. These features of the planning language can be
compiled away [33], and in [16] additional techniques that support them are presented.

The following is a pddl encoding of a blocks-world Put operator illustrating most of
the features we allow for (equality and inequality conditions are indicated with the slightly
more compact ucpop-style notation “eq” and “neq”, respectively).

(action Put

:parameters (?x ?y ?z)

:precondition (and (on ?x ?z) (clear ?x) (neq ?x Table) (neq ?y ?z) (neq ?x ?y))

:effect (and (when (eq ?y Table)

(and (on ?x ?y) (clear ?z) (not (on ?x ?z))))

(when (and (neq ?y Table) (clear ?y))

(and (on ?x ?y) (clear ?z) (not (on ?x ?z)) (not (clear ?y))))) )
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Note the conditional effects signalled by the when-clauses. These serve here to dis-
tinguish the preconditions and effects of the operator when the destination ?y of a Put

action is the Table, and when it is not – where in the latter case, ?y must initially be
clear for the action to have any effect, and is not clear at the end. In general, the key-
word :effect may be followed by a conjunction of unconditional (primary) effects and
conditional (when)-clauses, where each conditional clause supplies some further precondi-
tions and corresponding effects. Discoplan converts such operators into a standardized,
conjunction-free form. A standardized operator consists of a name, a set of parameters,
and a set of when-clauses. Each when-clause contains a set of precondition literals and a
set of effect literals, any of which may have constant or parametric arguments and may
be positive or negated. The first when-clause, called the primary when-clause, contains
the preconditions that must be verifiable whenever the operator is applied to a state, and
the effects whose truth is assured in the resulting state. Each of the remaining, secondary
when-clauses (if any) specifies additional preconditions and effects, where satisfaction of
those preconditions along with the primary ones assures the truth of those effects in the
resulting state. We assume that operators are consistent, i.e., they never produce two
contradictory effects. Also, they do not have contradictory preconditions within the same
when-clause.2

We assume (as is done in pddl) that the initial state is exhaustively specified through a
set of ground predications, i.e., positive predicate instances with constant arguments. Thus
any ground predication not found in the initial state specification is taken to be false (a
simple closed world assumption (CWA)). EQ- (equality-) and NEQ- (nonequality-) formulas
are an exception to this. All formulas of form (EQ c c) and (NEQ c c′), where c and c′

are distinct constants, are taken to be implicitly true (and correspondingly, (EQ c c′) and
(NEQ c c) are taken to be false). This amounts to a simple (nondeductive) unique names
assumption (UNA).

In general we will take a state constraint, or invariant, to be any formula of function-
free first-order logic restricted to the vocabulary (individual and predicate constants) of a
particular planning domain, where that formula is true in all states reachable from a given
initial state. Individual constants and variables are interpreted as ranging over the objects
of the planning domain, but not over states or times. Thus state-dependence of truth
values is implicit. Of course, we are interested in contingent formulas rather than ones like
(∀x)CLEAR(x)∨¬CLEAR(x) that are logically true and thus provide no domain-dependent
information.

A formal understanding of the preceding remarks requires a definition of reachable
states, given an initial state in a planning domain, and this in turn depends on the definition
of states, operator instances, and the resulting state when an operator instance is applied
to a state. For readers not familiar with these notions, we provide informal explanations
here. More formal definitions and further clarifications can be found at the beginning of
Appendix A.

A planning domain consists of a set of PDDL operators with the structure described
above. All preconditions and effects are positive or negated predications over constants
and operator parameters (but EQ/NEQ-preconditions occur in positive form only). A state

2One point not illustrated by the above example is that some or all parameters may be typed, as in
:parameters (?x - block ?y ?z); in the standardized form of operators, such type information is
amalgamated into the primary preconditions. (Discoplan decides for itself which properties are type
properties – which may include ones not explicitly supplied as types of operator parameters.)
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of a planning domain is a finite set of ground atoms, exclusive of EQ/NEQ predications. (EQ

c c) and (NEQ c c′) (with c, c′ distinct) are regarded as tacitly present in every state. An
instance of an operator is obtained by grounding its parameters (substituting constants for
them), without thereby creating faulty EQ/NEQ preconditions, i.e., ones of type (NEQ c c)

or (EQ c c′) with c, c′ distinct.
The preconditions of a (primary or secondary) when-clause of an operator instance

are satisfied by a state if the positive preconditions of the instance occur in the state,
and the negative preconditions do not occur in positive form in the state. (Avoidance
of faulty EQ/NEQ preconditions is guaranteed by the definition of an operator instance.)
Evidently the instance is applicable to a state iff its primary preconditions are satisfied by
the state. The new state resulting from applying an operator instance to a given state is
obtained by implementing the positive and negative effects of the primary when-clause and
of each secondary when-clause whose preconditions are satisfied. Implementing a positive
effect means adding it to the state, and implementing a negative effect means removing
the positive version from the state. Operators are assumed to be formulated so that the
ordering of additions and deletions doesn’t matter.

Finally, a reachable state in a planning domain, for a given initial state, is one that can
be generated by a succession of operator instances, where each instance is applicable in the
state where it is applied, and its result state in turn satisfies the primary preconditions of
the next instance, or (for the final instance) is the reachable state in question.

2.2 Notational Variants

We will generally use abbreviated, computer-oriented ways of writing state constraints.
(Discoplan provides output options allowing for both the abbreviated notation and FOL
notation.) In particular, we omit quantifiers in the abbreviated form, and use Lisp-like
bracketing and prefixing. For example, the blocks-world constraint mentioned earlier, that
when an object ?X is ON an object ?Y, then ?Y is not clear, provided that ?Y is not the
TABLE, would be written as follows:

((IMPLIES (ON ?X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE)).

Note that we add supplementary conditions as a trailing list to the main implication (con-
ditional formula); they could of course be conjoined into the antecedent of the implication,
but we keep them separate because of the distinct methods by which they are obtained.
Written out in FOL, this state constraint is equivalent to either of the following (where in
the second formulation we allow for reverse implication, ‘⇐’):

∀x, y.(ON(x, y) ∧ ¬(y =TABLE)) ⇒ ¬CLEAR(y);
∀x, y.((ON(x, y)⇒ ¬CLEAR(y)) ⇐ ¬(y =TABLE).

We abbreviate sv-constraints by using “starred” variables, as in the following example
from the Trains domain: ((AT ?X ?*Y) (ENGINE ?X)). This states that whenever ?X is an
engine, there can be at most one value of ?Y such that ?X is AT ?Y; or in FOL notation,

∀x, y, z.(ENGINE(x)∧AT(x, y)∧AT(x, z)) ⇒ y = z.

In general, multiple argument positions of a predicate may be “starred”, indicating that
at most one tuple of values may fill those positions, given any particular tuple of values in
the remaining variable argument positions, and given that the supplementary conditions (if
any) hold. The “star” notation can also be used in the context of implicative constraints,
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again indicating single-valuedness under the assumption that the supplementary conditions
hold. For instance, in the first blocks-world example above, we could replace (ON ?X ?Y)

by (ON ?*X ?Y) to indicate that ON is single-valued in its first argument, for all pairs of
arguments where (NEQ ?Y TABLE) holds.

2.3 Type Constraints

We define static predicates as ones that do not occur in any operator effects; thus static
predications that are true (or false) in the initial state are true (or false, respectively) in
all reachable states. Nonstatic predicates are termed fluent predicates. Type constraints
are state invariants involving type-predicates, where a type-predicate is a static monadic
predicate that occurs positively in the initial state.3 In general, the result of this analysis
gives the following information about types:

• a list of type-predicates, each of which is associated with the set of objects of the
domain satisfying the predicate;

• a list of universal types (i.e., predicates that are satisfied by every object in the
domain);

• a list of supertype/subtype and incompatible relationships between type-predicates.

Type information is computed in polynomial time by an algorithm called Find-type-constraints
that is given in Figure 1. Find-type-constraints processes the initial state in the following
way; (the algorithm assumes that for each predicate P in the domain it is known whether
P is static – this information is computed during the initial standardization of the oper-
ators, and can be found in O(|s0| + |effects|) time, where |s0| is the size of the the initial
state specification and |effects| is the size of all operator effects taken together). First we
compute the set Θ of the constants appearing in the specification of the initial state, and
we associate with each type-predicate the set of the constants appearing in the positive
instances of P .4 This set, indicated by ‖P‖, is the extension of P . If we have ‖P‖ = Θ,
then P is an universal type, while if ‖P‖ = ∅, then P is an empty type; if for some other
type-predicate Q, we have ‖P‖ ⊆ ‖Q‖, then P is a subtype of Q and Q is a supertype of
P , i.e., each object of type P must be of type Q; finally, if ‖P‖ ∩ ‖Q‖ = ∅, then P and Q
are incompatible types, i.e., no object in Θ can be both of type P and of type Q.

For example, suppose that the list of static predications appearing in the initial state
is: ((P a) (P b) (Q b) (R a) (S a) (S b) (S c) (T a b) (T b c)). The following infor-
mation is computed by Discoplan:

• Θ = {a, b, c}; Type-predicates: (P Q R S);

• ‖P‖ = {a,b}, ‖Q‖ = {b}, ‖R‖ = {a}, ‖S‖ = {a,b,c}
• Universal types: (S ?X); empty types: nil; super/sub-type relationships:

{(IMPLIES (Q ?X) (P ?X)) (IMPLIES (R ?X) (P ?X)) (IMPLIES (P ?X) (S ?X))

(IMPLIES (Q ?X) (S ?X)) (IMPLIES (R ?X) (S ?X))}
3We assume that all type predicates appear (positively) in the initial state. If there are no such in-

stances, then any negative type predication in an operator precondition is redundant, and any positive type
predication in an operator precondition invalidates the operator.

4Here we assume that all the objects (constant symbols) of the domain appear in the initial state as
terms of some positive literal. If this is not true in the original formalization, we can augment the initial
conditions with dummy predications (using dummy predicates not occurring elsewhere) introducing those
constants.
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Algorithm: Find-type-constraints(I)

I: an initial state (list of positive ground literals)

Output: lists of type-constraints and of universal types

1. Initialize set of constants Θ, type-preds, universal-types, and type-constraints to ∅;
2. for each positive predicate instance p in the initial state I

3. add the constants in p to ‖Pred(p)‖ and to Θ;

4. if Pred(p) is static and monadic then add Pred(p) to type-preds;

5. for each predicate name P in type-preds do

6. if ‖P‖ = Θ then add P to universal-types, and (P ?X) to type-constraints;

7. for each predicate name Q in type-preds s. t. P is lexically prior to Q do

8. meet := ‖P‖ ∩ ‖Q‖;
9. if meet = ∅ then add (IMPLIES (P ?X) (NOT (Q ?X))) to type-constraints;

10 if meet = ‖P‖ then add (IMPLIES (P ?X) (Q ?X)) to type-constraints;

11. if meet = ‖Q‖ then add (IMPLIES (Q ?X) (P ?X)) to type-constraints;

12. return type-constraints, universal-types

Figure 1: Algorithm for computing type-constraints. Pred(p) is the predicate name of p.

• Incompatible types: {(IMPLIES (Q ?X) (NOT (R ?X)))}.

Theorem 1 Find-type-constraints is sound and its complexity is O(|s0| + |Π|2|Θ|) (with
the static predicates precomputed), where Π and Θ are respectively the set of type predicates
and the set of constants in the planning domain.

The soundness of Find-type-constraints is easily verified from the way argument sets
of type predicates are extracted and compared; and |s0| in the complexity bound reflects
steps 1-4, while the second term comes from the nested pair of for-loops. Of course, the
sizes of Π and Θ are themselves bounded by the size of the initial state s0, so that a looser
bound is O(|s0|3).

The number of type constraints actually found in various domains varies greatly, de-
pending on the number of type predicates used in the domain models. For example, no
type constraints may be found in blocks worlds, where the “block” property typically has
no supertypes or subtypes, and the only object lacking the property is a unique table.
By contrast, various transportation domains may yield dozens of type constraints. A few
examples from a version of the “logistics” transportation world are

(IMPLIES (AIRPORT ?X) (LOCATION ?X)), (IMPLIES (AIRPORT ?X) (NOT (CITY ?X))),

(IMPLIES (AIRPLANE ?X) (NOT (TRUCK ?X))),

among a total of 15, found in a few milliseconds (on a low-end PC with a 800 MHz processor
and only 256 Mbyte RAM). Other benchmark domains have more type constraints, such as
Rovers for which 51 type constraints are still very quickly inferred. Since our purpose here
is not to reiterate previously reported results, we refer the reader to [21, 16] for details.

3 The Hypothesize-and-Test Paradigm

We now turn to our hypothesize-and-test paradigm for finding a variety of constraints
that can be guessed, and inductively verified, based on the precondition-effect structure
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of the operators. In general, the number of syntactically possible state constraints in a
planning domain is exponential in the number of literals allowed per formula; and, even if
the number of literals is small (say 3 or 4), the number of combinations of signed predicates
and constant or variable arguments can be very large – e.g., 108-1013 if there are several
(e.g., 3) 2-place predicates and 10-20 constants.5 Moreover, as we will elaborate, some
constraints cannot be verified in isolation but only in combination with other constraints.
Thus a pure enumerate-and-test approach seems unattractive, given that the goal is to find
constraints quickly as a prelude to planning, or as feedback to planning domain developers.
Instead, it is natural to seek guidance from the operators and initial conditions themselves
in hypothesizing constraints.

There are various ways to do this, but as already illustrated in our overview, our partic-
ular approach was inspired by a rather striking observation: Most of the state constraints
that intuitively characterize various planning domains, and that have played a role in the
planning literature, are “hinted at” by pairs of effects, or by a single effect together with a
persistent precondition (one that remains true when the operator is applied) in one of the
operators. Recall, for example, that the blocks-world constraint that if ?X is ON ?Y then ?Y

is not CLEAR is hinted at by the co-occurrence of effects (ON ?x ?y) and (NOT (CLEAR ?y))

in the Put operator. Furthermore, since these effects depend on the precondition (NEQ ?y

TABLE), we also have an indication that this may be a required supplementary condition.
There is a good logical reason why we should expect valid state constraints to be

“hinted at” by co-occurring effects (or effects and persistent preconditions): A state con-
straint holds in a given domain only if its truth is maintained by the operators. From
a proof-theoretic point of view, we will be able to establish the truth of an implicative
constraint only if we can show, by induction, that whenever an instance of the antecedent
becomes true, the corresponding instance of the consequent becomes or remains true as
well; and similarly for the contrapositive. In the blocks-world example at hand, we need
an assurance that whenever the antecedent (ON ?X ?Y) becomes true for some values of
?X and ?Y, the consequent (NOT (CLEAR ?Y)) becomes or remains true for those values (at
least when ?Y is not the TABLE), and similarly for the the contrapositive. Of course, this
must be so not only in the operator that suggested the constraint, but in all operators, for
all combinations of when-clauses whose preconditions might be simultaneously satisfied.
Where these verification conditions fail, it may be possible to add supplementary condi-
tions that are false whenever those failures occur, thus “rescuing” the constraint, albeit in
a weakened form.

A possibility we have neglected in the preceding remarks is that operators might main-
tain the truth of a constraint implicitly through other constraints, rather than directly.
For instance, it may be that whenever an operator has an effect matching the antecedent
of a certain implication, the persistent preconditions of the operator entail the truth of the
consequent in virtue of other tacit state constraints. Our strategy for discovering inter-
dependent constraints is a pragmatic one. Our goal is not necessarily completeness, but
rather to discover useful constraints (for planning and domain debugging) quickly. Thus
we have examined a variety of domains to determine what sorts of interdependent con-
straints are common in practice, what inductive verification conditions suffice to confirm

5In a domain containing m constants and ni predicates of arity i, i ≤ k, there are more than Σk
i=02nim

i

literals (there are more than that because arguments may be variables as well as constants). Thus there
are more than N l formulas with l literals, where N is the previous sum.
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such combinations of constraints, and hence also how such combined constraints can be
effectively hypothesized based on the precondition-effect structure of operators.

In particular, our observation has been that implicative constraints and sv-constraints
are often interdependent, and so a major goal has been to detect and verify such inter-
dependent constraints efficiently. The blocks-world example we have been using serves to
illustrate this point as well. Consider the contrapositive of the previous constraint, stat-
ing that whenever (CLEAR ?Y) holds, (NOT (ON ?X ?Y)) holds as well. Thus whenever an
operator has an effect matching (CLEAR ?Y), we need to be sure that (NOT (ON ?X ?Y))

will also be true in the resultant state. Since all variables in a constraint are universally
quantified, this means that no object ?X must be ON ?Y. But blocks-world operators in
the planning literature, like the Put operator given above, generally do not explicitly assert
such a universally quantified effect; rather, they typically assert an effect (NOT (ON ?x ?y))

for a particular ?x, i.e., for an input parameter that will be bound to a constant in any
instantiation of the operator. This is where the sv-constraint (indicated in context as (ON

?*X ?Y)) comes into play: If for a given value of ?Y, there can be at most one value of
?X for which (ON ?X ?Y) holds, then if an operator asserts effect (NOT (ON ?x ?y)) while
requiring (ON ?x ?y) as a precondition, we can be sure that in the resultant state (ON ?X

?y) no longer holds for any value of ?X, i.e., nothing is ON ?y, as required. It turns out that
the required sv-constraint also cannot be verified in isolation, i.e., it depends in turn on
the truth of the implicative constraint.

This example also provides a clue as to when sv-constraints will be needed jointly with
an implicative constraint we are trying to verify. The need for the sv-constraint arose from
the fact that the antecedent of the implication, (NOT (ON ?X ?Y)), contains a variable (?X)
not occurring in the consequent, (CLEAR ?Y), where instances of the latter can be rendered
false by some operator. (If (CLEAR ?Y) could not be rendered false – e.g., if CLEAR were
a static predicate – then we would not have to verify the contrapositive!) This led to
a universally quantified verification condition, which could only be indirectly confirmed
via the sv-constraint (ON ?*X ?Y). In general, then, we should expect to supplement an
implicative constraint with one sv-constraint for each variable that occurs in one fluent
literal but not in another fluent literal, where the latter can become false.

We have also developed other ways of expanding the range of constraints we can find,
beyond those that can be guessed and verified in isolation using only the precondition-
effect structure of operators. These ways include re-use of previously found constraints,
and employing the hypotheses themselves (as opposed to verified constraints) to expand the
preconditions of operators, allowing use of weaker verification conditions. These techniques
are presented and discussed in [16].

3.1 Generic Algorithm

We now outline how we have implemented the above methodology, in a way that allows
for multiple when-clauses in operators. We use several top-level programs to infer different
types of constraints from operator structure, but most of them adhere to the following
algorithmic structure. Note that Γ can be logically complex, for instance consisting of
both an implicative hypothesis and one or two sv-hypotheses.

(1) Hypothesize a constraint Γ based on co-occurrences of literals in a when-clause w
of an operator and in the corresponding primary when-clause w1 (if different). For
example, effects φ and ψ might lead to an implicative hypothesis (IMPLIES φ ψ),
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and possibly sv-hypotheses about the predicates involved. In general, the idea is
to choose the co-occurring literals and the corresponding hypothesis in such a way
that the co-occurrence of the literals will (locally) support the inductive proof of the
hypothesis.

(2) Add a set of candidate supplementary conditions {σ1, ..., σn}, consisting of the static
preconditions of w and w1 and if w 6= w1, the negations of static preconditions of
other when-clauses (except ones that unify with static preconditions of w or w1 or
their negations).

(3) Test hypothesis Γ relative to each when-clause of each operator, using the relevant
verification conditions; for each apparent violation of Γ find the corresponding possi-
ble “excuses” for the violation. An excuse is a set of provisos {σ′1, ..., σ′m}, chosen from
the candidate supplementary conditions, that weaken the hypothesis sufficiently to
maintain its truth. If a violation has no excuses, abandon the hypothesis Γ, otherwise
record the set of possible excuses of the violation on a global list.

(4) Find all minimal subsets (up to a given size, e.g., 3) of {σ1, ..., σn} that “cover” all
apparent violations of Γ; a subset of {σ1, ..., σn} covers an apparent violation of Γ if
it contains all elements of at least one “excuse” for that violation;

(5) Check hypothesis (Γ σ′1..., σ
′
m) (i.e., the original hypothesis together with added pro-

visos) for each of the minimal subsets {σ′1, ..., σ′m} of {σ1, ..., σn} found in the previous
step for truth in the initial conditions of the problem being solved; return the variant
hypotheses that pass this test as the verified hypotheses.

In preparation for an illustration of the generic algorithm, we need to clarify the mean-
ing of “persistent preconditions”. We previously said that persistent preconditions in an
operator are ones that remain true when the operator is applied. This will certainly be
true for preconditions (whether primary or belonging to a when-clause) that are not con-
tradicted by any effect of any when-clause of the operator (under the standard assumption
that operator effects include all falsified preconditions). However, this is an unnecessarily
strong requirement. Instead, our algorithms use the weaker notion of a w-persistent pre-
condition, for any when-clause w of an operator, merely requiring the condition not to be
unifiable with the negation of any effect of w or w1 (the primary when-clause of the oper-
ator. (This is restated separately as Definition 1) below when we present our verification
conditions formally.)

This raises the following question. Suppose that the ψ-part (consequent) of a hypothe-
sized simple implicative constraint is based on a precondition that is w-persistent but not
fully persistent, with respect to the operator o under consideration; i.e., operator o has
some when-clause other than w with an effect that falsifies ψ. Is it still possible that the
constraint holds? The answer is affirmative; in particular, the “offending” when-clause may
have preconditions that never hold when the preconditions of w hold and the hypothesis
being tested is true in the prior state; and even if the preconditions of the two when-clauses
may hold simultaneously, we may be able to add supplementary conditions which are false
whenever the preconditions of the “offending” when-clause are true.
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An illustration

To help with the intuitive understanding of the generic algorithm, we illustrate it with
an example from the blocks world, based on the Put operator shown in section 2. The
illustration is necessarily informal, since we have not yet spelled out any details of steps
(1-5), some of which depend on the particular type of constraint under consideration.
But those details will be more understandable in light of the illustration to follow. The
constraint whose discovery we outline is

((IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE)).

This was also mentioned in section 2, except that we have now strengthened it by requiring
on to be single-valued in its first argument, as indicated by the starred variable ?*X.

(1) All when-clauses of all operators (here just one) are searched for potential implicative
antecedents. For the (complex) type of constraint under consideration, these must be
positive effects containing at least one parameter. One such potential antecedent, (ON
?x ?y), is found in the final when-clause, which we will call w′′. (Another possibility
is (CLEAR ?z), and both literals are also encountered in the preceding when-clause w′,
but we restrict our attention to the observations most relevant to the illustration.) An
inner search loop then looks for a potential implicative consequent different from the
potential antecedent. This is required to be a nonstatic literal (one whose predicate
appears in some effect) meeting two conditions: (i) it is a persistent precondition or
effect of w′′ or of the “primary” when-clause w1 (which in this case consists of the 5
preconditions (ON ?x ?z), ..., (NEW ?x ?y), and no effects); and (ii) its parameters
are a subset of those in (ON ?x ?y). These requirements are met by the 3 precondi-
tions of w1 not involving ?z, by both preconditions of w′′, and by the last effect of w′′,
(NOT (CLEAR ?y)). We focus on this final option, so the corresponding implicative +
sv-hypothesis is

(IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y))).

Note that we have replaced operator parameters (lower case) by universal variables
(upper case), and have “starred” variables of the antecedent not occurring in the
consequent. (Without this additional assumption of single-valuedness, the inductive
correctness proof would not go through.)

(2) We add candidate supplementary conditions to the constraint. These include the
static preconditions of w1 and w′′ involving ?x or ?y only, i.e., (NEQ ?x TABLE), (NEQ

?x ?y), and (NEQ ?y TABLE). We also consider adding the negation of (EQ ?y TABLE),
a static precondition of the remaining when-clause w′, but this is precluded because
(NEQ ?y TABLE) unifies with (and in fact is the same as) a precondition of w′′. So at
this point the tentative constraint is

Γ = ((IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y)))

(NEQ ?X TABLE) (NEQ ?X ?Y) (NEQ ?Y TABLE)).

(3) We look at all the effects of all the operators, checking whether any of them pose
“threats” to the truth of Γ, assuming that it is true in the prior state. We use the
verification conditions for this type of constraint (an implicative + sv-constraint,
with subsumed variables in the consequent, discussed in detail later) to determine
whether an apparent threat is real, and if so, which supplementary conditions could
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be used to “excuse” the violation. Since the primary when-clause w1 has no effects, it
poses no threats to Γ. When-clause w′, however, poses some threats. First of all, the
effect (ON ?x ?y) threatens the sv-claim implicit in (ON ?*X ?Y), since it could lead
to multiple objects ?x being placed on another object ?y. At this point, we record
the fact that the candidate supplementary condition (NEQ ?Y TABLE) can excuse any
such violation, since it contradicts the precondition (EQ ?y TABLE) of w′ (under the
relevant binding ?x ↔ ?*X, ?y ↔ ?Y). The same effect (ON ?x ?y) also threatens the
implication itself, since it might make the antecedent (ON ?*X ?Y) true without at
the same time making (NOT (CLEAR ?Y)) true (since the latter is not an effect of w′).
Again, the supplementary condition (NEQ ?Y TABLE) is identified as a possible excuse
for the apparent violation.

The effect (CLEAR ?z) of w′ also appears to threaten Γ, since it contradicts the
consequent (NOT (CLEAR ?Y)) under the binding ?z ↔ ?Y). But this threat turns out
not to be real, since the primary precondition (ON ?x ?z) and w′-effect (NOT (ON ?x

?z)) together with the assumption that Γ holds in the prior state ensure that (ON

?*X ?z) is false for all possible values of ?*X (nothing is on ?z) in the resultant state,
preserving the truth of the implication. (We leave the details of this argument to the
proof of correctness of the verification conditions.)

Similarly when-clause w′′ appears to pose threats to Γ through its effects (ON ?x

?y) and (CLEAR ?z). However, none of the threats are real. The apparent threat by
(ON ?x ?y) to the sv-condition in (ON ?*X ?Y) is not real because the w′′-precondition
(CLEAR ?y) ensures, via the contrapositive of Γ, that ?x will be the only object on
?y. The apparent threat by (ON ?x ?y) to the implication is not real because of the
simultaneous effect (NOT (CLEAR ?y)), which assures truth of the consequent (this of
course was the basis for postulating Γ in the first place). And the apparent threat
by (CLEAR ?z) to the implication is not real for the same reason as in w′. So since
(NEQ ?Y TABLE) was the only candidate supplementary condition that was invoked as
a potential excuse for apparent violations of Γ, the hypothesized constraint is now

((IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE)).

(4) Finding minimal subsets of the supplementary conditions that cover all apparent
violations of Γ is trivial in this example. The only such subset is obviously the
singleton set containing (NEQ ?Y TABLE). So Γ remains as above.

(5) We now verify the truth of Γ in the initial state, by systematically looking for coun-
terexamples. A counterexample must have (ON C1 C2) and (CLEAR C2) true, where
C2 6= TABLE, for some pair of constants C1, C2 occurring in the initial state. So
we find all instances of form (ON C1 C2) where C2 6= TABLE, and if a corresponding
literal (CLEAR C2) is present as well, we have a counterexample. If there are no such
counterexamples, Γ is verified.

3.2 Finding Verification Conditions

As mentioned in our initial overview, formulation of verification conditions and of pro-
cedures that efficiently test them remains something of an art, in the absence of general
practical proof procedures for mathematical induction, applicable to dynamic worlds of the
sort considered in automated planning.
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However, the intuitive idea behind the formulation of verification conditions is quite
straightforward. Setting aside sv-conditions for the moment, imagine a constraint written
as a disjunctive clause φ1∨ ...∨φn, where the φi are positive or negative literals containing
constants or variables. Whenever a substitution instance (φi)u of a literal φi of the clause
is rendered false by the effects of an operator, we want to ensure that the clause as a whole
remains true (for all values of its variables), assuming that it was true (for all values of its
variables) in the state in which the operator was applied. For this it is sufficient (though
not necessary) that there be some other literal φj , such that (φj)u will be true for all values
of its variables (if any are not bound by substitution u), in the resultant state. If (φj)u
has no unbound variables (i.e., the variables of φj are a subset of those of φi), then it is
sufficient that (φj)u be a persistent precondition of the operator instance in question, or
that it be an effect of that operator instance. If (φj)u has unbound variables, then its
truth for all values of those variables may depend on additional assumptions about the
state space, in particular on sv-constraints; we postpone further details of this case. In any
event, we are led in this way to a set of verification conditions, separately motivated by
the possibility of each literal φi becoming false.

In the case of (added or stand-alone) sv-constraints, our verification conditions must
guard against both explicit and implicit violations of single-valuedness. An explicit vio-
lation of an sv-constraint (P ?*X ?Y) would occur if an operator instance could have two
effects matching (P ?X ?Y), with different bindings for ?X and the same binding for ?Y (and
similarly when there are additional “starred” and “unstarred” variables). So our verifi-
cation conditions must rule out such concurrent effects. But even in the absence of such
explicit violations, we need to guard against implicit violations whenever an operator has
an effect matching (P ?X ?Y). For if the operator has an effect (P A B) when applied in
a state where (P A’ B) already holds, with A’ distinct from A, then P is multi-valued in
its first argument for second argument B. To be sure that this cannot occur, we therefore
need to verify either that (a) no instance of (P ?X B) could have been true in the prior
state, or that (b) there is a “compensating” change, i.e., the effect (P A B) will be offset
by a change from a precondition (P A’ B) to a resultant condition (effect) (NOT (P A’ B)).
Condition (a) is the more problematic one, since it cannot be verified independently of ad-
ditional knowledge about state constraints. Thus, just as the verification of certain clausal
constraints depends on simultaneous verification of certain sv-constraints (as noted above),
the converse is also true. Thus there are clausal (implicative) and sv-constraints that can
only be verified jointly.

This discussion indicates that there are just a few distinct types of verification conditions
that will be needed to deal with a rather broad range of (separate or simultaneous) clausal
and sv-constraints. We can enumerate these as follows.

(i) Forbidden multiple effects: we preclude the occurrence of multiple effects of the same
type (e.g., in testing (ON ?*X ?Y), we want to guard against multiple effects such as
(ON ?u ?w), (ON ?v ?w));

(ii) Concomitant effects: we require the co-occurrence of a certain type of effect with
another (e.g, in testing an implicative constraint, whenever an effect instantiates the
antecedent, another effect should instantiate the consequent; and similarly for the
contrapositive of the implication);
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(iii) Concomitant changes: we require a change (a certain type of precondition and a
related effect) whenever a given type of effect is present (e.g., this is needed whenever
Γ involves sv-constraints);

(iv) Compensating changes: we require that a positive effect (asserting an instance of a
single-valued predicate) be compensated by a change from a positive instance to a
negative instance of the same predicate; (for several types of sv-hypotheses posited
in isolation or in combination with an implicative hypothesis, this check can be ac-
complished just by looking for appropriate concomitant changes; however, for testing
single-valuedness of the predicate in the antecedent of an implicative hypothesis,
where the variables of that predicate subsume those in the consequent, we can use
a more subtle method that avoids checking for a compensating change whenever the
assumed truth of the implicative hypothesis prior to application of an operator makes
this unnecessary;) and

(v) Unwanted concurrent effects: we preclude the co-occurrence of certain effects with
certain other effects (e.g., this is needed in testing exclusion hypotheses, stating that
the truth of one predication implies the falsity of another).

3.3 Collecting ‘Excuses’

Procedurally, the most complex aspect of the hypothesize-and-test paradigm in section 3.1
is the collection of possible “excuses” (sets of candidate supplementary conditions) in step
3, when verification conditions for Γ are violated. Our programs for testing hypotheses
and collecting “excuses” are organized around 5 subroutines corresponding to the 5 types
of verification conditions we have enumerated.

The “excuses” themselves are essentially of two types. One type of excuse ensures that
a particular when-clause of an operator is rendered irrelevant to a hypothesis. In this case
the excuse is a singleton {σ} (chosen from the candidate supplementary conditions) whose
falsity is entailed by the preconditions of that when-clause (or by the preconditions of the
corresponding primary when-clause, if different). This type of excuse is considered when-
ever a when-clause generates an effect that should not co-occur with another given effect, or
whenever it generates an effect whose co-occurrence requirements are not (provably) met.
The second type of excuse ensures that the effects of a particular secondary when-clause
are realized. In this case the excuse may contain multiple elements of {σ1, ..., σn}, which
together entail the preconditions of that when-clause. This type of excuse is considered
whenever a required co-occurring effect is not guaranteed in the when-clause under consid-
eration, but can be guaranteed via the effects of another when-clause, if the preconditions
of that other when-clause are true.

The 5 basic routines for collecting excuses for violations of hypothesized constraints,
corresponding to the 5 types of verification conditions, are the following: (1) test-sv-
effect, (2) test-concomitant-effect, (3) test-concomitant-change, (4) test-compensating-
change, and (5) test-unwanted-effect. We will allude to some of these routines in our
discussion of verification conditions for various types of constraints, but leave further details
to a technical report [16].
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3.4 Finding Minimal Sets of Supplementary Conditions

As indicated in the 4th step of the generic hypothesize-and-test algorithm, once “excuses”
have been collected for all apparent failures of a hypothesis, we try to select irredundant
sets of supplementary conditions, up to a certain size, where each such set suffices to
excuse all apparent failures. Since there may be multiple alternative excuses for any given
failure, the goal is to ensure that the set of supplementary conditions covers the candidate
supplementary conditions of at least one excuse for each failure. (Recall that in cases where
an excuse serves to ensure that a required effect provably occurs, the excuse may contain
multiple candidate supplementary conditions.)

Since this problem subsumes the set covering problem (e.g., [11]),6 it is NP-hard in
terms of the sum, over the candidate supplementary conditions, of the number of violations
that a candidate supplementary condition can excuse. For this reason we originally used
a polynomial-time greedy algorithm for finding a small (not necessarily minimal) set of
supplementary conditions. While this worked well, giving minimal sets in all cases we
tried, the fact that in principle there can be multiple minimal sets – and each of these
leads to a distinct state constraint – motivated us to switch to a complete algorithm,
delivering all minimal sets up to a certain size. In all domains we have tested so far, no
more than two supplementary conditions were ever needed (no new constraints were found
if up to 5 supplementary conditions were allowed); consequently, the algorithm for finding
minimal sets of supplementary conditions, though exponential in principle, has not been a
major factor in the overall time complexity of Discoplan. The complete algorithm and
relative complexity analysis are detailed in [16].

3.5 Filtering Constraints through the Initial State

Each possible state constraint, including an irredundant set of supplementary conditions, is
tested in step 5 of the generic hypothesize-and-test algorithm against the initial conditions.
This is done by attempting to find a counterexample, as outlined for the case of implicative
constraints in Figure 2. Before the test is applied, all EQ/NEQ-literals other than unsigned
NEQ-literals in the antecedent are eliminated. The elimination of other EQ/NEQ-literals can
be understood by imagining all such literals to be first moved into the antecedent of an
implicative constraint (with a change in sign if coming from the consequent). Suppose that
negated NEQ-literals are rewritten in terms of EQ, and vice versa. Then antecedent literals
of form (EQ c c) or (NEQ c c′) are clearly redundant and can be dropped (for distinct
constants c, c′); ones of form (EQ c c′) or (NEQ c c) render the constraint trivially true
and thus of no further interest; and ones of form (EQ u v) where at least one of u, v is a
variable can be dropped after substituting the second (possibly nonvariable) term for the
variable term in all other literals. This leaves us with unsigned NEQ-literals only. These
could be transferred as disjoined EQ-literals to the consequent.

The algorithm rests on the following observations. Consider an implicative constraint
of form ((φ1∧...∧φm)⇒ (ψ1∨...∨ψn)), where all literals φi and ψj (including, possibly, EQ-

6Essentially, finding a minimal set of supplementary conditions, for the case where excuses are singleton
sets of supplementary conditions, is the dual of the set covering problem. More precisely, the translation
to the set covering problem is obtained by interpreting the relation “{x} is one of the excuses in the set of
alternative excuses y (for a particular violation)” as “y ∈ x” (where x is one of the sets available as part of
the covering we are seeking). The equivalence is most easily seen by drawing the x-elements and y-elements
as vertices of a graph, connected by edges corresponding to the stated binary relations.
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Algorithm: Initially-refute-state-constraint(SC, inits)

SC: an implicative state constraint ((IMPLIES φ ψ) σ1...σk); the σi are generally static literals
(though this is not required);

inits: a list of initial conditions (with absence interpreted as negation);

Output: If the constraint is refuted, a counterexample ((and φu ¬ψu) (σ1)u...(σk)u) is given,
for some ground substitution u for the variables of φ. If the constraint is verified, the output
is nil.

1. Let φ1, ....φm be the positive literals among φ, ψ, σ1, ..., σk;

2. Let ψ1, ..., ψn be the complements of the negative literals among φ, ψ, σ1, ..., σk;
/* We assume there may be EQ-literals among the ψj , while other EQ/NEQ-literals have been
eliminated; */

3. Let U be the list of all unifiers (bindings of all variables occurring in φ1, ..., φm to constants
occurring in inits) such that for u ∈ U , {(φ1)u, ..., (φm)u} is a subset of inits;
/* if m = 0, U = (T), where T is the trivial unifier; and if there are no unifiers, U = nil;*/

4. if U = nil then return nil /* no counterexample exists */;

5. for each u in U do

(a) Let v be a “missing binding” for (ψ1)u, ..., (ψn)u relative to inits, if one exists; i.e., v
binds the variables occurring in (ψ1)u, ..., (ψn)u (if any) to constants occurring in inits
in such a way that none of (ψ1)uv, ..., (ψn)uv occur in inits or are of form (EQ c c);
{if n = 0, v = T, and if there is no “missing binding”, v = nil;}

(b) if v 6= nil then return ((and φuv ¬ψuv) (σ1)uv...(σk)uv)
else continue with next binding u in U ;

6. /* No counterexample exists - The implicative constraint has been verified */
return nil.

Figure 2: Algorithm for refuting an implicative constraint in the initial state.

literals among the ψj) are unnegated and all variables are treated as wide-scope universals.
Any constraints we consider can be written in this form. To verify the constraint in the
initial conditions, we must be able to verify that for every (simultaneous) substitution
instance of {φ1, ..., φm} that occurs in the initial conditions, (ψ1 ∨ ...∨ψn) is also verifiable
in the initial conditions, for all values of its remaining unbound variables. So the algorithm
first finds all unifiers (bindings of variables to constants) u such that {(φ1)u, ..., (φm)u} is a
subset of the initial conditions. For each unifier u it then tries to verify ((ψ1)u∨ ...∨ (ψn)u)
for all possible bindings of the remaining variables (if any), returning a counterexample if
it finds one. If ((ψ1)u ∨ ... ∨ (ψn)u) has no unbound variables (i.e., the variables in the φi
include those in the ψj), then it is verified if one of the disjuncts is a literal (EQ c c), or
occurs in the initial conditions. If u does not bind all variables in the ψj , then we need to
verify that for every way of binding the remaining variables to constants occurring in the
initial conditions, one of the disjuncts is a literal (EQ c c) or occurs in the initial conditions.
If for some binding none of the disjuncts have this property, we have a counterexample.

In step (3) of the algorithm, the complexity of the search for all bindings of the φi is
O(l2cninit), where lc is the size (number of symbols) of the hypothetical constraint and ninit
is the number of initial conditions. If the φi contain all variables occurring in the ψj , then
the “missing binding” search in step (5a) is just a check whether some (ψj)u is of form (EQ
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c c) or occurs in inits, which is O(lcninit) (if we simply use a list for inits). If there are
additional variables in the (ψj)u, then the “missing binding” search is O(lcn

nvar
init ), where

nvar is the maximum number of variables any one of the (ψj)u can have (i.e., after binding
of all variables occurring in the φi). Thus the overall complexity is O(lcn

nvar
init + l2cninit) or

O(l2cninit), depending on whether or not the ψj contain variables occurring in the φi.
There is also an algorithm called Initially-refute-sv-constraint that carries out an anal-

ogous refutation attempt for an sv-hypothesis with supplementary conditions, written as
(φ∗ σ1...σk), where φ∗ is a positive predication containing *-variables, indicating that it
is true for at most one tuple of values of those variables for any given values of the re-
maining variables, whenever the supplementary conditions σ1...σk (with the corresponding
substitutions) hold. The algorithm is straightforward and we will omit details. In essence,
the refutation attempt consists of (1) finding all unifiers of φ∗ with predications in the
initial conditions, (2) filtering out unifiers for which the corresponding instances of σ1...σk
do not hold in the initial conditions, and (3) for the remaining unifiers, searching for pairs
that assign distinct values to some *-variables while assigning the same values to other
variables. The complexity of the algorithm, as we have implemented it, is O(lcn

2
init), where

lc is again the length of the sv-constraint being tested. This could be improved, to secure
maximal efficiency for large sets of initial conditions, to O(lcninit) on average, by suitable
hash-coding of formulas (using predicates and non-starred argument positions as keys).

For concreteness, we conclude this section with a few examples of constraints found by
the above methods for the “logistics” transportation domain (with supplementary condi-
tions incorporated into the antecedent of implications):

(IMPLIES (AND (AT ?X ?Y) (AIRPLANE ?Y)) (AIRPORT ?Y))

(IMPLIES (AND (AT ?X ?Y) (OBJECT ?Y)) (NOT (IN ?X ?Y)))

(IMPLIES (AND (AT ?X ?Y) (AT ?X ?V0) (TRUCK ?Y)) (EQ ?Y ?V0)).

These are respectively an implicative constraint, an exclusive state constraint (previously
mentioned), and an sv-constraint. A total of 30 constraints (including the 15 type con-
straints mentioned earlier) were obtained in this version of the logistics domain in 56
milliseconds. As before, more specifics can be found in [21, 16].

3.6 Remarks on the Utility of Bootstrapping in Hypothesis Testing

In testing new hypotheses, it would seem natural to augment operator preconditions with
(a) consequences of the constraints already verified, and (b) consequences of the hypotheses
being tested. Note that (b) is legitimate since we are verifying whether operators maintain
the truth of constraints given that the constraints hold in the antecedent state; and such
augmentation could improve our chances of successfully confirming constraints, because
the added consequences may provide persistent preconditions needed for the verification.

In [16], we provide a careful discussion of the trade-offs in this kind of bootstrapping,
and describe the bootstrapping methods implemented in Discoplan. Concerning (a), most
of the constraints of interest that depend on the truth of other constraints are implicative
constraints dependent on sv-constraints, and our algorithms for such combinations find
these quite effectively. Concerning (b), if consequences of yet-to-be-verified hypotheses are
added to operator preconditions, many different expanded versions of those preconditions
may need to be tried, corresponding to various ways of “rescuing” a hypothetical invariant
by adding supplementary conditions. Also, we show that isolated testing of a hypothesis,
using just its own consequences to augment operator preconditions, is unlikely to be helpful,
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except in certain special cases. (The “walking and taking a cab” example in section 4.3.1
is such a case.)

However, we have found three bootstrapping methods to be somewhat useful: The first
of these methods is aimed specifically at antisymmetry constraints. For these we expand
operator preconditions using invariants found in the first stage, and also expand effects in
a way that is designed to lead to contradiction if the antisymmetry hypothesis is false. The
second bootstrap method simply runs the basic discovery techniques iteratively, adding
consequences of previously verified constraints to operator preconditions at each cycle.
The third method applies the basic verification methods “in parallel” to (small) sets of
hypotheses that have not yet been verified, always using operators whose preconditions have
been augmented with the consequences of those same hypotheses, as well as of previously
confirmed hypotheses. These methods are close in spirit to those of Rintanen [36]. (The
main difference is our very selective way of formulating hypotheses, and collecting and
choosing sets of static supplementary conditions).

Our basic methods yield the majority of constraints and do so very quickly. The
bootstrap methods are more time-consuming, but occasionally yield additional constraints.
This paper focuses on the basic methods, which are powerful enough in practice to discover
the majority of state constraints that the full version of Discoplan infers for a large class
of benchmark domains [16].

4 Basic Hypothesize-and-Test Techniques

In the next three subsections, we describe our basic instantiations of the hypothesize-
and-test paradigm. The first two subsections consider implicative and sv-constraints in
isolation. While many constraints can be found in this way, many others require combined
consideration of implicative and sv-constraints, as described in the third subsection.

4.1 Simple Implicative Constraints

Simple implicative constraints are constraints of form

((φ⇒ ψ) σ1...σk),

where φ, ψ, and σ1, ..., σk are function-free literals, i.e., negated or unnegated atomic for-
mulas whose arguments are constants or variables. In keeping with our earlier remarks,
such constraints are to be interpreted as saying “In every state, for all values of the vari-
ables, if φ then ψ, provided that σ1, ..., and σk”. We assume that the variables occurring
in φ include all those occurring in ψ and in the supplementary conditions σ1, ..., σk. The
predicate in φ is a fluent predicate (as defined in section 3.1), while ψ may be fluent or
static. However, if φ contains variables that do not occur in ψ, then ψ is required to be
“upward monotonic”, in the sense that no instances of it can become false (¬ψ does not
unify with effect of any operator; this is certainly true if ψ is static). Finally, we require
σ1, ..., σk to be static.

We ensure that these requirements are met in step (1) of the hypothesize-and-test
paradigm by choosing φ to correspond to some effect of some when-clause w of some
operator o (so that φ will be a fluent literal); and choosing ψ to correspond to an effect
or persistent precondition of when-clause w or of the primary when-clause w1 of o (if
distinct), where φ contains all the variables occurring in ψ, and if φ contains variables not

20



occurring in ψ, then ψ is upward monotonic. We make one exception to the above method
of hypothesizing simple implicative constraints, in the interest of minimizing unproductive
effort: When the chosen effect φ is a negative literal and ψ is a static literal (chosen
from the preconditions of o) whose variables are a proper subset of those of ψ, we do not
further pursue the corresponding hypothesis ((φ ⇒ ψ)...). This is based on the empirical
observation that hypotheses that posit a static constraint on a subset of the variables
of a negated fluent predicate are far less likely to hold than for the unnegated predicate.
(For example, blocks-world operators may suggest both (IMPLIES (NOT (ON ?X ?Y)) (BLOCK

?X)) and (IMPLIES (ON ?X ?Y) (BLOCK ?X)) as simple implicative hypotheses, but unless
everything, including the table, is considered a block, only the latter will turn out to
hold.) Note that if the above method of forming simple implicative hypotheses is applied
systematically to all effects (as φ-candidates) in combination with all eligible preconditions
and effects (as ψ-candidates), then if φ and ψ both correspond to effects and contain
the same sets of variables, both ((φ ⇒ ψ)...) and its converse ((ψ ⇒ φ)...) will be tried
as simple implicative hypotheses. (The dots indicate that supplementary conditions are
indeterminate at this point in the hypothesis formation process.)

As anticipated in the discussion in section 4.2, the above syntactic constraints on φ
and ψ, and the way φ and ψ are chosen, are motivated by the verification conditions
for an implicative constraint. Recall in particular that if the constraint is to be verified
independently of any sv-constraints, the consequent ψ should either contain all the variables
occurring in φ (so that we will not require a simultaneous sv-constraint on φ), or should
never be falsified by an operator effect (so that the truth of the contrapositive of the
implication is trivially maintained). It is in virtue of their independent verifiability that
such constraints are termed “simple”.

Apart from notational preliminaries, we are now ready to state the verification condi-
tions of a simple implicative constraint formally, and to prove that these conditions guar-
antee the truth of the constraint. First we formally restate the definition of w-persistent
preconditions, where the symbol w1 denotes the primary when-clause corresponding to a
when-clause w of an operator o (where w1 = w if w is itself primary), and preconds(w)
denotes the set of preconditions (including EQ/NEQ-conditions) of when-clause w:

Definition 1 (w-persistent condition) A precondition ψ belonging to preconds(w) of
operator o is w-persistent if and only if ¬ψ is not unifiable with any effect of w or w1.

We will also write preconds+(w) for the combined preconditions of when-clauses w and
w1. Also φ stands for the complement (negation) of a literal φ. Unification (or informally,
matching) of two literals φ and φ′ is in general constrained by the EQ/NEQ-preconditions
of a particular when-clause w and the primary when-clause w1 of a particular operator o.
Variables occurring in φ and φ′ may either be “external” universal variables (belonging
to a hypothesis that we are testing), or parameters of operator o. Successful unification
requires that the literals have the same polarity and predicate, and allows for (i) trivial
unification (with unifier T) of identical terms and of terms belonging to the same EQ-set of
w in combination with w1 (where these sets are precomputed in standardized operators);
(ii) substitution of a constant, parameter, or variable for a variable; (iii) substitution of
a constant or parameter κ for a parameter α, provided that w and w1 do not have a
NEQ-precondition relating α to κ, or relating α to a member of the EQ-set of κ. Note that
substitution of variables for parameters is precluded.
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In the verification conditions that follow (as well as in the verification conditions for
other types of constraints), we will use equivalence symbols, entailment symbols, and equal-
ity signs subscripted with the names of one or more when-clauses, in statements such as
ψ′u ≡w ψu, preconds+(w2)uu′ |=w ¬(σi)uu′ , and Xu =w,w2 Xv. The subscripted name of a
when-clause indicates that the EQ/NEQ-preconditions of the when-clause, along with those
of the primary when-clause w1, may be used in establishing the equivalence, consequence
relation, or equality in question. However, the intention is that these EQ/NEQ-preconditions
first be particularized using the substitutions appearing as subscripts on both sides of the
relation. This slightly loose notation (avoiding additional subscripting) should cause no
confusion and will be used often hereafter. As an illustration of some theoretically possible
subtleties in the process of unifying literals of a hypothesis with literals occurring in an
operator, and subsequently establishing an equivalence, consequence or equality relation,
suppose that we unify a hypothesis literal (P ?X ?X ?Y) with an effect literal (P a ?x ?y)

of some when-clause w of some operator o. Thus the unifier will be
u = (a/?X)(a/?x)(?y/?Y),

assuming that there are no EQ/NEQ-preconditions in w that affect this unification. Suppose
that subsequently we unify the same hypothesis literal (P ?X ?X ?Y) with a precondition
(P ?r ?s ?z) of w, obtaining unifier

v = (?r/?X)(?r/?s)(?z/?Y),
again assuming no interference from EQ/NEQ-preconditions. (Such a second unification
would be performed if, for instance, we were trying to establish that P is single-valued
in its third argument whenever the first two arguments are the same – see the “dedicated”
method for discovering sv-constraints in the next subsection.) Now suppose that the only
EQ-precondition in w is

(EQ ?x ?s),
and the verification conditions we are checking require that the two matches of the hypoth-
esis literal (P ?X ?X ?Y) against the two operator literals should yield identical values for
the first two arguments, given the relevant EQ-preconditions; i.e.,
〈?X,?X〉u =w 〈?X,?X〉v.

Then this is indeed true, but this becomes clear only when we take proper account of the
assumed EQ-precondition. Without that precondition the equation is
〈a,a〉 = 〈?r,?r〉.

Even the EQ-precondition (EQ ?x ?s) taken at face value does not immediately confirm the
desired identity. Only when we particularize the EQ-literal to

(EQ ?x ?s)uv = (EQ a ?r)

does the correctness of the identity come to light. Another point we should mention is
that equivalences and identities with one or more subscripted when-clause names may also
appear in negated form. Their meaning should be clear by analogy with the unnegated
case. For example, ?Yu 6=w ?Yv means that the left-hand side cannot be identical with the
right-hand side, given the EQ/NEQ-preconditions of w, where these have been particularized
using substitutions u and v. (In particular, this would be true for the above values of u
and v, if w had a precondition (NEQ ?y ?z).)

As a final preliminary, we emphasize that the equivalence and entailment relations we
employ could be interpreted in a way that makes use not only of the EQ/NEQ-preconditions
of the indicated when-clauses, but of other relevant knowledge, such as type constraints.
In fact, our implementation of contradiction tests between operator preconditions and a
supplementary condition of a hypothesis, such as
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preconds+(w2)uu′ |=w ¬(σi)uu′ ,
makes uniform use of a ‘contradicts’ function that employs not only EQ/NEQ-preconditions
but also type constraints to detect a contradiction. In particular, it detects not only
whether one of two predications π, σ is the negation of the other, but also, when both are
monadic, whether the two predicates are known to be incompatible, or whether one is the
negation of a known supertype of the other.

Definition 2 (Verification conditions for a simple implicative constraint) Let Γ =
((φ⇒ ψ) σ1...σk). Discoplan’s verification conditions for Γ are:

(1) Γ is true initially, for all substitutions of constants in the planning domain (i.e.,
occurring in the initial conditions – recall footnote 4) for variables in Γ.

(2) If a when-clause w of an operator o has an effect φ′ matching φ with unifier u, then
one of the following holds:

(a) (Concomitant effect, same when-clause) w or w1 has an effect ψ′ such that
ψ′u ≡w ψu; or

(b) (Persistent precondition) w or w1 has a w-persistent precondition ψ′ such that

ψ′u ≡w ψu, and for every when-clause w2 ( 6= w,w1), if w2 has an effect ψ
′′

matching ψu with unifier u′, then preconds+(w2)uu′ |=w ¬(σi)uu′, for some i
(1 ≤ i ≤ k); or

(c) (Concomitant effect, different when-clause) o has a when-clause w2 ( 6= w,w1)
such that (σ1)u, ..., (σk)u |=w preconds(w2)u and w2 has an effect ψ′ such that
ψ′u ≡w,w2 ψu; or

(d) (False supplementary condition) preconds+(w)u |= ¬(σi)u, for some i (1 ≤ i ≤
k).

(3) If a when-clause w of an operator o has an effect ψ
′

matching ψ with unifier u, then
one of the following holds (these alternatives correspond closely to (a-d) above):7

(a) w or w1 has an effect φ
′

such that φ
′
u ≡w φu; or

(b) w or w1 has a w-persistent precondition φ
′

such that φ
′
u ≡w φu, and for every

when-clause w2 ( 6= w,w1), if w2 has an effect φ′′ matching φu with unifier u′,
then preconds+(w2)uu′ |=w ¬(σi)uu′, for some i (1 ≤ i ≤ k); or

(c) o has a when-clause w2 ( 6= w,w1) such that (σ1)u, ..., (σk)u |=w preconds(w2)u
and w2 has an effect φ

′
such that φ

′
u ≡w,w2 φu; or

(d) preconds+(w)u |= ¬(σi)u, for some i (1 ≤ i ≤ k).

Example. In the blocks-world formalization with the Put operator introduced in section
1.2, the hypothesis Γ = ((IMPLIES (ON ?X ?Y) (NEQ ?X TABLE))) satisfies verification condition
(2.b) of Definition 2. Moreover, condition (3) of Definition 2 is also satisfied, because
Put has no when-clause matching (NOT (NEQ ?X TABLE)) (or (EQ ?X TABLE)). Thus, if Γ is true
initially, i.e., condition (1) of Definition 2 holds, then Γ is a valid state constraint.

7Given the definition of simple implicative constraints, the variables of ψ must be the same as those of
φ at this point. (However, since some arguments may be constants, φ and ψ need not have the same sets
of arguments.)
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Our procedures do not directly implement the stated verification conditions. Recall
that we test hypotheses ((φ ⇒ ψ) σ1...σn) wherein σ1...σn are candidate supplementary
conditions, from which minimally adequate subsets are to be selected (see steps (2-5) of
the hypothesize-and-test algorithm). So in practice, we search for cases where verification
conditions (2) or (3) are relevant, and identify two types of apparent failures: cases where
there is neither an accompanying effect as specified in (a) nor a w-persistent precondition
as specified in (b); and cases where there is a w-persistent precondition as specified in (b),
but this is potentially subverted by an additional effect in another when-clause negating
the w-persistent precondition. We then identify possible alternative “excuses” for all such
failures. For failures of the first type, excuses are singleton supplementary conditions
as specified in (d) (making the effect φ′ specified in (2) or the effect ψ

′
specified in (3)

irrelevant), or sets of supplementary conditions as specified in (c) (supplying the desired

effect accompanying φ′ or ψ
′

via another when-clause). For failures of the second type, an
excuse can again be a singleton as per (d), or a singleton as per the second part of (b)
(making the “subversive effect” irrelevant), or a set of supplementary conditions as per (c)
(ensuring through an effect of another when-clause that the desired condition persists after
all, despite its apparent subversion in (b)).

The proofs of the following theorems are given in Appendix A.

Theorem 2 If a simple implicative constraint Γ meets the verification conditions of Def-
inition 2 in a planning domain, then it holds in all states reachable from the initial state.
(Hence simple implicative constraints found by Discoplan are correct.)

Theorem 3 The computation of simple implicative constraints in accordance with the
hypothesize-and-test scheme is completed in polynomial time for any bound max on the
allowable number of supplementary conditions, specifically in

O

(∑
o∈O

[
l3o

(
Σ
o′∈O

l2o′ + max
lo
· Σ
o′∈O

lmax+2
o′ + loninit

)])
steps, where O is the set of planning operators, lo is the size of operator o, and ninit is the
number of initial conditions.

4.2 Single-Valuedness Constraints: “Dedicated” Search

An example of an sv-constraint that can be inferred in isolation is the blocks-world con-
straint ((ON ?X ?*Y)), i.e., any object can be ON at most one other object; or, in unabbre-
viated fol,

∀x, y, z.(ON (x, y) ∧ON (x, z))⇒ y = z.

As an example involving a supplementary condition (from the Logistics world), we have
((AT ?X ?*Y) (AIRPLANE ?X)), i.e., an airplane can be AT no more than one place.

Our “dedicated” method of finding sv-constraints of this type starts by forming hy-
potheses based on the occurrence within a when-clause and the corresponding primary
when-clause of an effect (P t1...tn) together with a change from a P -precondition to a
corresponding ¬P -effect that appears to maintains single-valuedness. The verification con-
ditions ensure that there are no multiple effects that could violate single-valuedness (see
clause (2)), and that for any P -effect there is a concomitant change capable of keeping P
single-valued (see clause (3)).
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Definition 3 (Verification conditions for an sv-constraint) Let Γ = (φ∗ σ1...σk) be
an sv-constraint where φ∗ is a positive literal containing 0 or more “unstarred” variables X
and 1 or more “starred” variables ∗Y (and possibly constants), and σ1, ..., σk may contain
variables of X and ∗Y . Discoplan’s verification conditions for Γ are:

(1) The sv-constraint is true initially, for all substitutions of constants in the planning
domain for variables of the constraint.

(2) (No simultaneous multiple effects) If an operator o has when-clauses w and w2 (pos-
sibly identical) such that w has an effect φ matching φ∗ with unifier u, and w2 has
another effect φ′ such that φ′u matches φ∗ with unifier v, where we cannot disprove
Xu = Xv (i.e., their constrained unifier exists, given the EQ/NEQ-preconditions of w,
w1 and w2) and cannot prove ∗Y u = ∗Y v (i.e., they are not identical even when we
appeal to the EQ-preconditions of w, w1 and w2), then one of the following must hold:

(a) preconds+(w)u |= ¬(σi)u for some i (1 ≤ i ≤ k); or

(b) preconds+(w2)v |= ¬(σi)v for some (1 ≤ i ≤ k).

(3) (No cumulative multiple effects) If an operator o has a when-clause w such that w
has an effect φ matching φ∗ with unifier u, then one of the following must hold:

(a) (Concomitant change) w or w1 has a precondition φ′ where φ′u matches φ∗ with
unifier v such that Xv =w Xu and ∗Y v 6=w ∗Y u;8 and either

i. w or w1 has an effect φ
′′

where φ
′′
uv matches φ

∗
with unifier v′ such that

Xv =w Xv′ and ∗Y v =w ∗Y v′; or

ii. some secondary when-clause w2 other than w has an effect φ
′′

where φ
′′
uv

matches φ
∗

with unifier v′ such that Xv =w,w2 Xv′ and ∗Y v =w,w2 ∗Y v′

and furthermore w2 has static preconditions that are jointly entailed by the
supplementary conditions, i.e., (σ1)v′ , ..., (σk)v′ |=w preconds(w2)v′; or

(b) (False supplementary conditions) preconds+(w)u |= ¬(σi)u for some i (1 ≤ i ≤
k).

Example. In the blocks-world formalization introduced in section 1.2, the hypothesis Γ =
(ON ?X ?*Y) obviously satisfies verification condition (2) of Definition 3 (no simultaneous
multiple effects), because the two (secondary) when-clauses of Put have only one ON-effect
with the same pair of parameters. Moreover, condition (3.a.i) holds for both such effects,
because w1 (the primary when-clause of Put) has preconditions (ON ?x ?z) and (NEQ ?y ?z),
and (NOT (ON ?x ?z)) is an effect of both the secondary when-clauses of Put. Thus, if Γ also
satisfies condition (1) of Definition 3, Γ is a valid state constraint.

As in the case of implicative constraints, these verification conditions are not used
directly, but rather, we start with a set of candidate supplementary conditions and then
use violations of criteria (2) and (3a(i)) to identify possible excuses for those violations in
accord with clauses (2a,b), (3a(ii)) and (3b).9

8We include the inequality for clarity here, but it is redundant as long as operators are assumed not to
produce contradictory effects.

9See [16] for discussion of the subroutines on which testing of sv-constraints depends. For criterion (1)
the relevant routine is initially-refute-sv-constraint. For (2) it is test-sv-effect and for (3)
it is test-concomitant-change.
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As usual the proofs of the following correctness and complexity theorems are given in
Appendix A.

Theorem 4 If the verification conditions of Definition 3 for sv-constraints hold for an
sv-constraint (φ∗ σ1...σk), then the constraint holds in all reachable states for all values
of its variables. (Hence sv-constraints found by Discoplan’s “dedicated” method for such
constraints are correct.)

Theorem 5 The “dedicated” computation of sv-constraints in accordance with the hypothesize-
and-test scheme is completed in polynomial time for any bound max on the allowable num-
ber of supplementary conditions, specifically in

O

(∑
o∈O

l4o

[
Σ
o′∈O

l3o′ + max
lo
· Σ
o′∈O

lmax+2
o′ + n2init

])
steps, where O is the set of planning operators, lo is the size of operator o, and ninit is the
number of initial conditions.

4.3 Implicative Constraints + Single-Valuedness Constraints

We now successively relax two of the syntactic requirements defining a simple implicative
constraints ((φ ⇒ ψ)σ1...σn): first, we drop the requirement that if φ contains variables
not occurring in ψ, then ψ must be upward monotonic; then we drop the requirement that
the variables of φ must include all those occurring in ψ. As explained earlier, these more
general constraints require simultaneous confirmation of certain sv-constraints.

4.3.1 The Case of Subsumed Variables

In the introduction, we mentioned the blocks-world constraint

((IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE))

as an example of a combined implicative and sv-constraint obtainable by Discoplan.
In general, the implicative constraints we are considering here have as their antecedent a
positive literal that contains at least one “starred” variable not occurring in the consequent,
and zero or more “unstarred” variables occurring in the consequent. The stars indicate
that for all values of the unstarred variables, the antecedent holds for at most one tuple of
values of the starred variables, whenever the supplementary conditions hold.

Potential antecedent-consequent pairs are hypothesized based on co-occurrence of a
positive effect literal φ with another effect or persistent precondition ψ whose variables are
a proper subset of those of φ. The complement of the signed predicate of ψ must occur as
an effect of some operator (otherwise simultaneous inference of an sv-constraint would be
unnecessary), and φ and ψ must belong to the pooled effects and persistent preconditions
of some when-clause w and the corresponding primary when-clause w1.

For the special case of an antecedent (P ?X ?*Y), consequent (Q ?X), and supplementary
condition (S ?X), the verification conditions are the following. These are readily general-
ized to allow for multiple shared and starred variables and for constants; (S ?X) can then
be reinterpreted as a conjunction of multiple (positive or negative) supplementary condi-
tions on multiple unstarred variables occurring in the implication.10 Also the implicative

10Allowing for starred variables in supplementary conditions would require a special postprocessing step
in constraint verification; however, though we allow for supplementary conditions involving starred variables
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consequent may be negated. The when-clause variable w is understood to range over all
when-clauses of all operators.

Definition 4 (Verification conditions for an implicative + sv-constraint) Let Γ =
((IMPLIES (P ?X ?*Y) (Q ?X)) (S ?X)). Discoplan’s verification conditions for Γ are:

(1) The implicative constraint is true initially, for all substitutions of constants in the
planning domain for variables of the constraint.

(2) (No simultaneous multiple effects) There must not be multiple effects matching (P ?X

?*Y) that could directly violate the sv-constraint. The details are as in condition (2)
for “dedicated” sv-testing.

(3) If w contains an effect (P x y) for some parameters or constants x and y, then either

(a) (i) (Concomitant effect or persistent precondition) there is an effect or persistent
precondition (Q x′) where x′ =w x; and (ii) (No cumulative multiple effects)
there is either a precondition (NOT (Q x′)) where x′ =w x, or a change that
“compensates” for the effect (P x y), i.e., a precondition (P x′ z) and an effect
(NOT (P x′′ z′)), with x′′ =w,w2 x

′ =w x and z′ =w,w2 z, and if w2 6= w,w1 then
(S x) |=w preconds(w2);

11 or else

(b) preconds+(w) |= (NOT (S x)).

(4) If w contains an effect (NOT (Q x)) for some x, then either

(a) (Concomitant change) there is a precondition (P x′ y) in preconds+(w), and an
effect (NOT (P x′′ y′)) in some when-clause w2, where x′′ =w,w2 x

′ and y =w,w2

y′, and if w2 6= w,w1 then (S x′) |=w preconds(w2); or else

(b) preconds+(w) |= (NOT (S x)) y.

We take the last condition to mean that (S x) (or, in the generalized case, one of the
several conditions this may stand for) is contradicted (via EQ/NEQ-preconditions of w and
w1 and possibly type constraints) by some element of preconds+(w).

Example. In the blocks-world formalization introduced in section 1.2, the hypothesis Γ =
((IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE)) satisfies verification condition (2) of
Definition 4 (no simultaneous multiple effects), because the second arguments of effect
(ON ?x ?y) in the first (secondary) when-clause w of Put and effect (ON ?x ?y) in the other
secondary when-clause w2 are constrained to be different by the EQ/NEQ-preconditions of w
and w2 (see condition 2 of Definition 3, for which we disprove that the unstarred variable
(ON ?*X ?Y) can be bound to the same object when unified with the two ON-effects of w and
w2).

Moreover, Γ satisfies condition (3) of Definition 4 because, for the effect (ON ?x ?y) of
w condition (3.b) holds (i.e., preconds+(w) |= (EQ ?y TABLE)), while for the same effect of
w2 condition (3.a) holds (because (NOT (CLEAR ?y)) is an effect of w2). Finally, Γ satisfies
condition (4.a) of Definition 4 because, for the effect (CLEAR ?z) appearing in both w and
w2, both preconds+(w) and preconds+(w2) contain (ON ?x ?z), and (NOT (ON ?x ?z)) is an

in forming hypotheses, we have not come across significant constraints with such supplementary conditions
in our experimentation in a variety of planning domains.

11Part (ii) involves use of test-compensating-change, detailed in [16].
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effect of both w and w2. Thus, if condition (1) of Definition 4 holds as well, then Γ is a
valid state constraint.

The motivation for conditions (1) and (2) should be fairly self-evident. In condition
3(a)(ii), however, the reason for checking whether (NOT (Q x′)) (with x′ = x) holds in
the preconditions may not be entirely obvious. The reasoning is that such a condition
implies universal falsity of (P x z) for all values of z in the prior state, assuming that the
implicative constraint holds in that state; this in turn ensures that the assumed effect (P x

y) does not subvert single-valuedness of P in its second argument. The second alternative in
3(a)(ii) ensures that if universal falsity of (P x z) in the prior state cannot be established,
then there is a change from a true instance to a false instance of P that compensates for
the sv-threatening effect (P x y). (3b) is an “escape clause”, allowing violation of the
implicative and sv-parts of the constraint for values of the variables that do not satisfy
the supplementary conditions. In (4), the reason for requiring an effect (NOT (P x′′ y′))

(under the equality x′′ = x) is to maintain the truth of the implication. Its truth needs
to be maintained for all values of y′, and this is assured if (P x′ y) (with x′ = x′′, y = y′)
holds in the prior state, assuming single-valuedness of P in its second argument in the prior
state.

The following simple example serves both to illustrate the role of verification conditions
3(a) and 4(a), and the way in which a hypothesis being tested may enter inductively into
the verification process. The available operators describe two ways of getting from one
place to another – walking and taking a cab:

(action walk (action take-cab

:parameters (?x ?y) :parameters (?x ?y)

:precondition (and (at ?x) (neq ?x ?y)) :precondition (and (at-cab ?x) (neq ?x ?y))

:effect (and (at ?y) (not (at ?x))) :effect (and (at-cab ?y) (not (at-cab ?x)))

(action get-in (action get-out

:parameters (?x) :parameters (?x)

:precondition (and (at-cab ?x) (at ?x)) :precondition (and (at-cab ?x) (in-cab))

:effect (and (not (at ?x)) (in-cab)) :effect (and (at ?x) (not (in-cab)))

A law that holds in this domain, whenever it holds initially, is

(IMPLIES (AT ?*X) (NOT (IN-CAB))).

This is an implicative + sv-constraint, with no new variables (in fact, no variables at all)
in the consequent. Consider first the Get-out operator, whose effect (AT ?x) brings into
play verification condition 3(a). Part (i) is satisfied because of the effect (NOT (IN-CAB)),
maintaining the truth of the implication. Part (ii) is satisfied because of the precondi-
tion (IN-CAB), which ensures falsity of the AT-predicate for all arguments, in the prior
state. Next, consider the Get-in operator, whose effect IN-CAB brings into play verification
condition 4(a) (since IN-CAB negates the consequent of the implication). The condition
is evidently met because of the concomitant change from (AT ?x) to (NOT (AT ?x)). Fi-
nally, the Walk operator has an effect (AT ?y), again bringing into play condition 3(a).
Part (ii) is met because of the compensating change from (AT ?x) to (NOT (AT ?x)), main-
taining single-valuedness of AT. But for part (i), we appear to lack an effect or persistent
precondition (NOT (IN-CAB)), needed to maintain the truth of the implication. Thus the
verification conditions, applied directly to the operators as we have defined them, do not
suffice to confirm the invariant.
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One rather unsatisfactory remedy would be to add (NOT (IN-CAB)) manually as a pre-
condition of Walk. This is justifiable in principle since (NOT (IN-CAB)) is a consequence of
precondition (AT ?x) and the invariant under consideration. But we constructed this ex-
ample specifically to show that automatically augmenting preconditions with consequences
of the hypothesis being tested can be useful in certain cases. Our full set of methods, which
include the bootstrapping methods mentioned earlier, actually discover the invariant, albeit
relatively slowly.

Theorem 6 An implicative state constraint ((IMPLIES (P ?X ?*Y) (Q ?X)) (S ?X)) (or gen-
eralizations allowing for more variables, a negated consequent, and multiple supplementary
conditions) produced by Discoplan is correct.

The proof, and indications of how we generalize to allow for multiple starred and
unstarred variables, are given in Appendix A.

4.3.2 The Case of Non-Subsumed Variables: Exclusive State Constraints

In the implicative constraints considered in the preceding subsection, the antecedent vari-
ables were required to subsume the consequent variables. Here we assume instead that both
antecedent and consequent contain variables not contained in the other. All such variables
are “starred”, while the shared variables are unstarred. We will consider the special case
of constraints of form

((IMPLIES (P ?X ?*Y) (NOT (Q ?X ?*Z))) (S ?X)).

Again, this is readily generalized to cases where ?X and ?*Y stand for multiple unstarred
and starred variables, constants as well as variables may occur in (P ...) and (Q ...),
and (S ?X) may consist of multiple static constraints on unstarred variables. An example
is the following constraint from the Logistics world:

((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X)).

This is an exclusive state constraint, i.e., it states that no object can simultaneously be
AT something and IN something (and in addition an object can be AT no more that one
thing, and IN no more than one thing). The discovery of such constraints proceeds much
as in the case of implicative constraints with subsumed variables (previous subsection),
and we will only point out the main differences. Hypothesis formation relies on literal
co-occurrences as before, except that both the antecedent and consequent are based on
effects (with no consideration of persistent preconditions), and that restrictions relevant to
exclusive state constraints are placed on signs and variables (i.e., the antecedent is positive,
the consequent is negative, and each contains variables not occurring in the other). There
are six verification conditions, which run as follows.

Definition 5 (Verification conditions for an exclusive state constraint) Let Γ =
((IMPLIES (P ?X ?*Y) (NOT (Q ?X ?*Z))) (S ?X)). Discoplan’s verification conditions of Γ are:

(1) The exclusive state constraint (including the sv-constraints) is true initially, for all
substitutions of constants in the planning domain for variables of the constraint.

(2) (No simultaneous multiple P-effects) There must not be multiple effects matching
(P ?X ?*Y) that could directly violate the sv-constraint, or else some supplementary
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condition (one of those symbolized by (S ?X)) must be demonstrably false. The details
are as in condition (2) for “dedicated” sv-testing.

(3) (No simultaneous multiple Q-effects) Similarly, there must not be multiple effects
matching (Q ?X ?*Z) that could directly violate the sv-constraint, or else some sup-
plementary condition must be demonstrably false.

(4) If an operator o has a when-clause w with an effect (P x y) for some x, y, then either

(a) (Concomitant change) there is a precondition (Q x′ z) in preconds+(w), and
an effect (NOT (Q x′′ z′)) in some when-clause w2 of o where x′′ =w,w2 x

′ =w x
and z =w,w2 z

′, and if w2 6= w,w1, then (S x) |=w preconds(w2); or

(b) (False supplementary conditions) preconds+(w) |= (NOT (S x)).

(5) This is the analogue of the previous condition, with P and Q and y and z interchanged.

(6) If an operator o has a when-clause w with an effect (P x y) for some x, y, and
some (not necessarily different) when-clause w2 of o has an effect (Q x′ z) where the
EQ/NEQ-preconditions of w, w1 and w2 do not entail x 6= x′, then either

(a) preconds+(w) |= (NOT (S x)); or (b) preconds+(w2) |= (NOT (S x′)).

The motivation for conditions (1-3) is again self-evident. Condition (4a) calls for a
change from (roughly) (Q x z) to (NOT (Q x z)), concomitant with the given effect (P

x y). This condition corresponds to condition 3(a) in the verification conditions for the
subsumed-variable case in the previous subsection. The reader may wonder, however,
why the two subconditions previously labeled (i) and (ii) collapse to a single “concomitant
change” condition. The reason is as follows (simplifying a little by using identical names for
terms that might require EQ-preconditions to be unified). Subcondition (i), in the present
case, would be that there is an effect or persistent precondition (NOT (Q y z)), preserving
the truth of the implication. However, this effect or persistent precondition must be assured
for all substitutions of constants for z, since the variables of the implicative hypothesis are
universally quantified. Now, the only way a persistent precondition (NOT (Q y z)) could
provide this guarantee is if z were universally quantified in the preconditions; but we are
not allowing for universally quantified preconditions here, so this is not a viable alternative.
The remaining alternative is that there is an effect (NOT (Q y z)). But in this case as well,
we need to be sure that in the resultant state the formula holds for all substitutions for
z. This can be assured if (Q y z) held in the preconditions, for then, by the induction
assumption, (Q y z) held only for z (some particular constant, for any given instance of
the operator), and so when this becomes false because of effect (NOT (Q y z)), it becomes
false for all substitutions for z. But then we are positing a concomitant change from (Q

y z) to (NOT (Q y z)) – just as the present condition 4(a) does. Furthermore, part (ii)
then becomes redundant, since the truth of (Q y z) in the preconditions ensures by the
induction assumption that (P x′ y) is false in the prior state for all substitutions for x′,
so that the effect (P x y) (at which condition 4(a) is aimed) will not invalidate the single-
valuedness of P in its first argument (as long as there are no simultaneous multiple effects,
as per condition 2).

Condition (6) guards against co-occurrence of an effect (P x y) in one when-clause
with an effect (Q x′ z) in the same or in another when-clause, where x = x′ cannot be
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ruled out by EQ/NEQ-preconditions. One way to understand this condition is to think of an
exclusive state constraint as a disjunction of two negative literals, and to recognize that if
both literals become false for the same shared argument and some values of the non-shared
arguments, then the disjunction cannot remain true for all values of the three variables.
Put a little differently, the effect (P x y) needs to be offset by (NOT (Q x v) becoming true
for all v (as condition (4a) tries to ensure), but this would be subverted by any effect of
form (Q x z).

Theorem 7 Any exclusive state constraint ((IMPLIES (P ?X ?*Y) (NOT (Q ?X ?*Z))) (S ?X))

produced by Discoplan is correct.

Again, the proof and indications of how we generalize to allow for multiple starred and
unstarred variables, constant arguments, and multiple supplementary conditions are given
in Appendix A, where we also prove the following complexity result:

Theorem 8 The computation of exclusive state constraints in accordance with the hypothesize-
and-test scheme is completed in polynomial time for any bound max on the allowable num-
ber of supplementary conditions.

5 Conclusions

We have provided for the first time full details of the essential concepts and algorithms
underlying the well-known Discoplan system for constraint (domain invariant) discovery,
including theorems (with proofs) concerning the soundness of the algorithms and their
complexity analysis. In doing so we have focused on the basic types of state constraints
supported by Discoplan, likely the most useful for planning (both historically and in
future), namely type constraints, implicative constraints, single-valued constraints and
exclusiveness constraints. In the fast-paced world of AI, detailed algorithms and their
certification are often omitted. But we believe that it was essential to provide these in
the case of Discoplan, because of its exceptionally broad coverage of constraint types
and unusual ability to deal directly with conditional effects, and because the requisite
variants of the inductive hypothesize-and-test paradigm may appear so complex as to be
untrustworthy, or of prohibitive computational complexity.

An experimental analysis presented in [16] and additional tests with recent domains
(Termes and Nurikabe) show that known benchmark domains have from a few to several
dozens of irredundant invariants of the basic types considered in this paper, that Dis-
coplan correctly infers (e.g., 5 in blocks-world with conditional effects, 7 in Hanoi, 8 in
Termes, 13 in Nurikabe, 19 in Satellite, 24 in Logistics, 85 in Rovers, 107 in Airport).

The utility of invariant discovery in planning domains has never been in question –
we previously noted their early use in deductive planning [15] – and has been verified
many times; and a hypothesize-and-test paradigm, with “testing” consisting of proofs by
mathematical induction, is certainly a natural one. In the context of “strong AI”, our
particular methods – which were seen to be quite dependent on the structure and semantics
of operators and on the forms of invariants sought – pose an interesting meta-challenge for
future work: How can reasoning about dynamic worlds, ones that are changed by deliberate
goal-directed actions be (efficiently) automated in a uniform logical way? Humans not only
are quick to detect regularities in puzzles, games, and real-world domains, but also see their
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truth as “obvious”. For example, someone presented with the Towers of Hanoi puzzle easily
recognizes that, given the stipulated constraints on actions, disks on any peg will always
be ordered by size. A rare voice pointing out the remarkable facility of human “cognitive
judgements” that appear to require mathematical induction was that of David McAllester
[31].

As noted at the outset, the approach and techniques described in this paper are the
essential basis for further techniques implemented in Discoplan, allowing discovery of
additional invariants, including several types that no other existing system infers. (Some
of the further techniques are outlined in [21].) Details of these techniques will be the
subject of a separate paper, currently available as a technical report [16].
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6 Appendix A: Proofs of Theorems

As a preliminary to the proofs of the theorems, we provide a formalization of the notion of
reachable states, and of the notions on which this depends. We will use the term ground
atom in the sense of a predication whose arguments are constants (i.e., we do not consider
functional terms), and correspondingly a ground literal is an unnegated or negated ground
atom.

Definition 6 (Planning domain) A planning domain consists of a finite set of PDDL
operators each of which represents a STRIPS operator possibly augmented with negated
preconditions, EQ/NEQ-constraints, typed parameters, and conditional effects (as described
and illustrated in section 1.2).

Recall that operators have a primary when-clause and possibly one or more secondary
when-clauses (representing conditional effects), each with its own preconditions and ef-
fects, and these preconditions may include EQ/NEQ-constraints. All preconditions and ef-
fects are function-free literals over constants and parameters of the operator, and EQ/NEQ-
preconditions use only the positive forms of EQ and NEQ.

Definition 7 (Planning domain states) A state of a planning domain is any finite set
of ground atoms. The reserved predicates EQ/NEQ do not appear explicitly in states.
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Note that EQ(c, c) (i.e., c = c) and NEQ(c, c′) (i.e., c 6= c′) are regarded as tacitly present
in every state for every constant c and every constant c′ distinct from c. Also note that in
principle we allow states to contain predicates that do not appear in any operator – these
will simply remain invariant under any sequence of operator applications.

Definition 8 (Operator instance) Let o be a planning domain operator with m parame-
ters r = r1, ..., rm and let d = d1, ..., dm be an m-tuple of constants such that the substitution
d/r for the parameters of o yields no primary preconditions of form NEQ(c, c) or EQ(c, c′)
for distinct constants c, c′. Then the result of that substitution, written o(d), is an instance
of operator o. Note that all preconditions and effects of o(d) are ground literals.

The non-violation of EQ/NEQ-preconditions required by definition 8 removes from con-
sideration operator “instances” that are not applicable in any state,

Definition 9 (Satisfaction of preconditions) Let preconds(w)u be a set of ground lit-
erals obtained by applying ground substitution u = d/r to the preconditions of when-clause
w of an operator with parameters r. Then preconds(w)u are satisfied by a state s iff every
unnegated, non-EQ/NEQ literal of preconds(w)u is in s, no complement (unnegated version)
of a negated literal of preconds(w)u is in s, and preconds(w)u contains no literals NEQ(c, c)
or EQ(c, c′) for any distinct constants c, c′.

Definition 10 (Operator application and resulting state) Let s be a state and let
o(d) be an operator instance obtained from o via substitution u = d/r, where the primary
preconditions of o(d) are satisfied by s. Then o (and o(d)) is applicable in state s and
the result of its application, written o(d)(s), is given by the following additions to, and
deletions from, s:

1. For the primary when-clause w1 of o(d),

(a) add the positive effects of w1 to s, and

(b) delete the predications from s whose negations appear as effects of w1;

2. For each secondary when-clause w of o(d) such that preconds(w)u are satisfied by (the
original) s,

(a) add the positive effects of w to s, and

(b) delete from s the predications whose negations appear as effects of w.

There is the usual problem here that some “additions” and “deletions” might be in
conflict, adding and taking away the same atom. We could assume that deletions are
performed before additions, i.e., additions win over deletions. But we generally make the
stronger assumption that operators are designed to entirely avoid such inconsistent effects.
Obviously, our definition implements the familiar STRIPS assumption, that the only effects
of an operator are those it explicitly asserts. We are now able to define reachable states:

Definition 11 (Reachable states) A state s is reachable from a given initial state s0 in
a given planning domain O iff there is a sequence of operator instances o1(d

(1)), ..., ok(d(k)),
where {o1, ..., ok} ⊆ O, and a corresponding sequence of states s0, ..., sk, such that s = sk,
and for i = 1, ..., k, oi is applicable in si−1 and oi(d

(i))(si−1) = si.
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We now turn to the proofs of the theorems. (Theorem 1 concerning Find-type-constraints
was established in the main text.)

The following lemma establishes a relationship between unifiers obtained by matching hy-
pothesis literals to operator effects or preconditions and the corresponding unifiers obtained
by matching those literals to ground instances of the effects or preconditions. The lemma
will facilitate the proof of correctness of the verification conditions for several types of
constraints found by the hypothesize-and-test method. Where we speak of constrained
unifiers, we refer tacitly to some given set of EQ/NEQ-constraints, relating the parameters
occurring in an effect to each other or to constants. A constrained unifier must not equate
two terms (directly, or through a chain of unifications) if either (i) these terms belong
to two equality sets E1, E2 (as determined by the EQ-constraints) where for some τ1 ∈ E1
and τ2 ∈ E2, there is a NEQ-constraint between τ1 and τ2; or (ii) one of these terms is a
constant, and the other equals another constant via EQ-constraints. (Of course, if the terms
are distinct constants, then even the unconstrained unification fails.)

Unification Lemma. Let X be an m-tuple of variables and constants, x be an m-tuple
of parameters and constants, and b be an m-tuple of constants.

Suppose x and b have constrained unifier v, and X and b have unifier v′. Then X and
x have constrained unifier u, the composition uv is also a constrained unifier, Xuv = Xv′

= b, and xuv = xv = b.

Remarks. We can interpret a unifier u as a set |u| of equivalence classes of size > 1,
where each u-equivalence class contains a set of directly or indirectly equated (unified)
terms, distinct from the terms in other equivalence classes. Note that such an equivalence
class may contain at most one constant, and any number of parameters and variables.12

The composition uv of two unifiers can be thought of as the union of equations comprising
u and v. Correspondingly, |uv| is obtained by repeatedly merging non-disjoint equivalence
classes from |u| and |v| until we again have a set of (one or more) disjoint classes. However,
if any of the resulting equivalence classes contain multiple constants, we say that uv does
not exist (more accurately, is inconsistent). Note that a set of EQ-constraints also induces a
set of equivalence classes on the equated terms, and so we can regard a unifier u constrained
by a set C of EQ/NEQ-constraints as tacitly composed with the given EQ-constraints. But in
this case consistency (existence) requires not only that each equivalence class of |u| contain
at most one constant, but also that no two terms of an equivalence class be related by a
NEQ-constraint. We will refer to such unifiers as C-consistent.

In these terms, the lemma states that whenever v and v′ are C-consistent, so are u
and uv; furthermore any variable X occurring in X will be in the uv-equivalence class of a
constant b occurring in b just in case it is in the v′-equivalence class of b; and any parameter
x occurring in x will be in the uv-equivalence class of a constant b occurring in b just in
case it is in the v-equivalence class of b.

12However, for the unifiers u, v, v′ of the lemma an equivalence class cannot consist entirely of variables
or entirely of parameters. The former is the case because in our asymmetric form of unification, where
a parameter can be substituted for a variable but not vice versa, and where variables can occur only in
the hypothesis literal, variables can become equated only by having the same constants or parameters
substituted for them. The latter is the case because parameters occur only in x, so that two parameters
can become equal only via equality to a constant or variable occurring in X or b.
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Proof. Suppose that v and v′ exist (are C-consistent). Consider vv′. We claim this is
C-consistent, since it merely adds certain variables of X to the v-equivalence classes of
certain constants; specifically, if Xi is a variable, then it is added to the v-equivalence class
of bi (since Xi and bi are in the same v′-equivalence class). It is not possible that the
same variable is added to the equivalence classes of two different constants (thus forcing a
merger of two v-equivalence classes) because this could only happen if the v′-equivalence
class of that variable contained two constants, which is impossible by the consistency of v′.
So, since furthermore EQ/NEQ-constraints don’t involve any variables, vv′ is C-consistent.

We now claim further that |uv| = |vv′|. This is because for each i (1 ≤ i ≤ m), uv
contains just the equations Xi = xi and xi = bi while vv′ contains just the equations xi = bi
and Xi = bi, and this obviously leads to the same equivalence classes for uv and vv′. From
this the C-consistency of uv and the consistency of u follow (since |u| is a refinement, in a
set-partitioning sense, of |uv|); it also follows that uv equates variables of X to the same
constants as v′; and finally it follows that uv equates parameters of x to the same constants
as v (for the latter the C-consistency of uv suffices). 2

Corollary 1. Let the premises be as in the Unification Lemma. Then for any sequence
X ′ whose components are variables of X and constants,

X ′uv = X ′v′ ,
and for any x′ whose components are parameters of x and constants,

x′uv = x′v.

Proof. Immediate from the Unification Lemma. 2

The following corollary slightly strengthens the Unification Lemma.

Corollary 2. Let X, x and b be as in the Unification Lemma. Suppose that v is a
constrained unifier such that xv = b, where v may involve parameters other than those
occurring in x (but no variables), and v′ is a unifier such that Xv′ = b, where v′ may
involve variables other than those occurring in X (but no parameters). Then X and x
have a constrained unifier u, the composition uv is also a constrained unifier, and Xuv =
Xv′ = xuv = xv = b.

Proof. Let v1 be the result of reducing v to a substitution of constants for the parameters
of x. (In terms of equivalence classes, we delete parameters occurring in v but not in x
from their equivalence classes in |v|, and then extract the substitutions of constants for the
remaining parameters.) Similarly let v′1 be the result of reducing v′ to a substitution of
constants for the variables of X. Clearly v1 is still a constrained unifier and xv = b, and
v′1 is still a unifier and Xv′1

= b.

But then X, x, b, v1, and v′1 satisfy the conditions of the Lemma and so Xuv1 = Xv′1
= xuv1 = xv1 = b. Since v differs from v1 only in (potentially) involving parameters that
do not occur in x, and since Xu cannot involve parameters other than those occurring in
x, Xuv1 = Xuv. Also, since xu cannot involve parameters that do not occur in x, xuv1 =
xuv; and for similar reasons it is easy to see that Xv′1

= Xv′ and xv1 = xv. The conclusion
follows. 2

Preliminary remarks about correctness proofs. In the following correctness proof
for the discovery of simple implicative constraints by Discoplan, we show in detail the
role of the Unification Lemma and its corollaries. We will not normally go into this much
detail, as there is a trade-off between intuitive transparency of the reasoning and the level
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of detail. Typically, our correctness arguments are structured in the following way. We
consider an instance of an operator o applied in a particular state, where in that state
the constraint Γ under consideration holds. We then consider the various specific ways in
which the constraint might be violated in the result state. In each case, we argue that
the violation would have to be produced by an effect or multiple effects of the operator
instance, and that the verification conditions for Γ rule out such a violation.

These case-by-case arguments are intuitively quite clear, if one thinks about the in-
stance of o under consideration as if the verification conditions applied directly to operator
instances. But in fact, verification conditions apply to parametrized operators, and this
leads to some hidden subtleties in this mode of argumentation. Strictly, we have to argue
that the occurrence of certain ground literals as effects of an operator instance, applied in a
state satisfying certain conditions, entails the existence of certain parametric precondition
and effect literals in the operator; further, these precondition and effect literals will unify
with certain literals of Γ, and hence specific verification conditions will come into play,
and impose requirements on various unification instances of the preconditions and effects
of o; and these unification instances in turn must be shown to reduce to ground literals
relevant to the operator instance, allowing completion of the reductio argument. It is the
“ascent” from specific ground literals to parametric operator literals, and the “descent”
from unification instances of the latter back down to the ground level, that the Unification
Lemma is designed to facilitate. These moves are nontrivial because of the subtleties of
unification involving both Γ-variables and operator parameters, and EQ/NEQ-preconditions
constraining the latter. Still, as mentioned, such details can be distracting and we will gen-
erally suppress them, except in the case of simple implicative constraints, sv-constraints
discovered by the “dedicated” method, and n-ary disjunctive + sv-constraints. In the last
of these constraint types, the complexity of the details is such as to motivate a Verification
Lemma (for the particular verification conditions concerned) showing that we can in fact
argue as if the verification conditions applied directly to operator instances.

Theorem 2 If a simple implicative constraint Γ holds initially, and the verification con-
ditions of Definition 2 for such constraints are met, then Γ holds in all reachable states.
(Hence simple implicative constraints found by Discoplan are correct.)

Proof. Assume for induction that Γ holds prior to the application of an instance o(d) of
an operator o(r), where r is the list of parameters of o. We will show that Γ still holds
after application of o(d). For clarity in the use of the Unification Lemma, we abbreviate
the substitution d/r as v. Note that v necessarily satisfies the EQ/NEQ-constraints of the
primary when-clause w1 of o, and of every other when-clause w whose preconditions are
met when o(d) is applied. In other words, v is a constrained unifier relative to those
EQ/NEQ-constraints.

Since Γ holds prior to application of o, therefore for every substitution v′ of constants
(in the planning domain) for variables of Γ, at least one of φv′ , ψv′ , (σ1)v′ , ..., (σk)v′ holds
in the prior state. We show for each case in turn that Γv′ holds in the resultant state.

Case 1: φv′ holds in the prior state. If φv′ still holds in the resultant state, then Γv′ still
holds as well. So assume φv′ is false in the resultant state, i.e., φv′ is true in it. Then by the
semantics of operators, there must be some when-clause w of o such that preconds+(w)v
hold in the prior state and which has an effect φ′ such that φ′v = φv′ . Then with X
= argument list of φ and x = argument list of φ′, Corollary 2 of the Unification Lemma
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applies, so that φ′ must be unifiable with φ with some unifier u (constrained by the EQ/NEQ-
conditions of w and w1) such that φ′uv = φ′v = φv′ , where uv is also a constrained unifier.
Hence by verification condition (2) one of the following holds: w or w1 has (a) an effect
or (b) a w-persistent precondition ψ′ such that ψ′u ≡w1,w ψu; or (c) o has a when-clause
w2 ( 6= w,w1) such that (σ1)u, ..., (σk)u |= preconds(w2)u and w2 has an effect ψ′ such that
ψ′u ≡w1,w2 ψu; or (d) preconds+(w)u |= ¬(σi)u, for some i (1 ≤ i ≤ k). But then each of (a-
d) maintains the truth of Γv′ . In particular the effect ψ′ posited by (a) satisfies ψ′uv = ψuv,
since all (ground) instances of two constrained-equivalent formulas are identical. But by
Corollary 1 of the Unification Lemma ψ′uv = ψ′v and ψuv = ψv′ , so that for the instance
o(d) of o, the effect ψ′v is identical with ψv′ . This assures the truth of Γv′ in the resultant
state. For (b) the argument is similar, except that we also need to address the case where

the persistence of ψ′v is threatened by an effect ψ
′′

of some other secondary when-clause w2,
whose preconditions also happen to hold, and where ψ′′v = ψv′ . As already noted, ψv′ = ψuv,
so ψ′′v = ψuv; hence applying Corollary 2 of the Unification Lemma to the argument lists of
ψ′′ and ψu (with v viewed as the unifier of both of those lists with the resulting identical
lists of constants), we know that ψ′′ and ψu are unifiable, with some unifier u′ (which also
entails that uu′ is a unifier constrained by the EQ/NEQ conditions of w and w2); furthermore,
u′v is a unifier constrained by the EQ/NEQ conditions of w and w2 (keeping in mind that v is
a unifier constrained by the EQ/NEQ conditions of w), ψ′′u′v = ψ′′v , and ψuu′v = ψuv = ψv′ . So
by the details of verification condition 2(b), preconds+(w2)uu′ |= ¬(σi)uu′ , for some i (1 ≤
i ≤ k). Hence preconds+(w2)uu′v |= ¬(σi)uu′v. But preconds+(w2)uu′v = preconds+(w2)uv =
preconds+(w2)v (by two applications of Corollary 1 of the Unification Lemma, first with the
arguments of preconds+(w2)u in the role of x′, then with the arguments of preconds+(w2)
in that role) and ¬(σi)uu′v = ¬(σi)v′ (again by two applications of Corollary 1). Then
preconds+(w2)v |= ¬(σi)v′ , so that Γv′ is again true in the resultant state. If (c) holds, we
can argue much as for (a), except that we also need to ascertain that (σ1)v′ , ..., (σk)v′ |=
preconds(w2)v. This is so since in this case (σ1)u, ..., (σk)u |= preconds(w2)u, and (σi)uv
= (σi)v′ (1 ≤ i ≤ k) (by Corollary 1, with the arguments of σi in the role of X ′) and
preconds(w2)uv = preconds(w2)v (by Corollary 1, with the arguments of preconds(w2) in
the role of x′). If (d) holds, then preconds+(w)u |= ¬(σi)u for some i; hence preconds+(w)v
|= ¬(σi)v′ , using preconds+(w)uv = preconds+(w)v and (σi)uv = (σi)uv′ , by uses of Corollary
1 much as in (b) and (c). So with ¬(σi)v′ true, Γv′ again holds in the resultant state.

Case 2: ψv′ holds in the prior state. The argument for the truth of Γv′ in the resultant
state is completely analogous to that for case 1, using the verification conditions (3a-c)
(which mirror those of (2a-c)).

Case 3: (σi)v′ holds in the prior state for some i (1 ≤ i ≤ k). Then since σi is a static
condition, (σi)v′ still holds in the resultant state. 2

Theorem 3 The computation of simple implicative constraints in accordance with the
hypothesize-and-test scheme is completed in polynomial time for any bound max on the
allowable number of supplementary conditions, specifically in

O

(∑
o∈O

[
l3o

(
Σ
o′∈O

l2o′ + max
lo
· Σ
o′∈O

lmax+2
o′ + loninit

)])
steps, where O is the set of planning operators, lo is the size of operator o, and ninit is the
number of initial conditions.
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Proof. The outer summation of the above complexity bound, and a part l2o of the factor
l3o, corresponds to the iteration over all effect-effect (or effect-precondition) combinations
of all operators in the formation of hypotheses. The first inner summation reflects the
checking of a hypothesis against all preconditions and effects (contributing lo′) and the
collection of excuses for every apparent violation. The latter phase contributes a factor
lolo′ per violation. This collapses (i) a factor lolo′ for singleton excuses that relate an op-
erator precondition to the negation of a candidate supplementary condition, keeping in
mind that candidate supplementary conditions originated in operator o; and (ii) a similar
term (lolo′ + lo′) for collection of groups of candidate supplementary conditions that entail
the preconditions of a when-clause and thereby ensure the generation of a “missing ef-
fect”. (The lolo′-part comes from the pairwise matching of preconditions to supplementary
conditions, and the lo′-part from the scan of effects for the “missing effect”.) The second
inner summation comes from the search for minimal sets of supplementary conditions (see
footnote 6) and the third element of the sum reflects the verification of the hypothesis in
the initial conditions (see the discussion of the algorithm in Figure 2, and note that lc is
bounded by lo). 2

Theorem 4 If the verification conditions of Definition 3 for sv-constraints hold for an
sv-constraint (φ∗ σ1...σk), then the constraint holds in all reachable states for all values of
its variables. (Hence sv-constraints found by Discoplan by the “dedicated” method are
correct.)

Proof. For clarity we consider the special case where (φ∗ σ1...σk) is
((P ?X ?*Y) (S1 ?X ?*Y) ... (Sk ?X ?*Y)).

The generalization to multiple “unstarred” and “starred” variables (and possibly constants)
is fairly straightforward (think of ?X, ?*Y as sets of arguments); the remarks following the
proof will provide some relevant specifics. The supplementary conditions (Si ?X ?*Y) of
course need not depend on both ?X and ?*Y, but they may. In the absence of supplementary
conditions, the notation (P ?X ?*Y) means that

∀x, y, z.P (x, y) ∧ P (x, z) ⇒ y = z (in all reachable states).
Let us abbreviate S1(x, y) ∧ ... ∧ Sk(x, y) as S(x, y). Then the sv-constraint including
supplementary conditions states that
∀x, y, z.S(x, y) ∧ S(x, z) ∧ P (x, y) ∧ P (x, z)⇒ y = z (in all reachable states).13

We can take the sv-constraint to be true in the initial state, since Discoplan straightfor-
wardly verifies this, as per verification condition (1). Given any instance of any operator
o, and a prior state sprior in which the preconditions of the primary when-clause w1 of that
operator instance are true, we assume for induction that the constraint holds in sprior . We
want to show that it also holds in the resultant state sresult . Assume otherwise, i.e., for
some constants a, b, c, where b 6= c, we have

(C1) S(a, b), S(a, c), P (a, b), P (a, c) true in sresult .
Since S is static, we also had

(C2) S(a, b), S(a, c) true in sprior .
But by the induction assumption, at least one of the literals in (C1) must have been false
in sprior , and so

13Although we will not make use of this, note that another way of writing this in our Discoplan notation
would be as (P’ ?X ?*Y), where by definition ∀x, y.P ′(x, y) ⇔ S(x, y) ∧ P (x, y). In other words, we
are asserting the (nonstrict) sv-ness of P ′, which is P conjunctively augmented with the supplementary
conditions.
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(C3) either P (a, b) or P (a, c) was false in sprior .
We consider the case where P (a, b) was false (and P (a, c) was true or false). The case
where P (a, c) was false is completely symmetrical and need not be separately considered.
If P (a, b) was false in sprior , then its truth in sresult must be due to some effect P (h, k) of
some when-clause w of o, where h, k were respectively instantiated to a, b (if not already
equal to them) and where the preconditions of w are true for the operator instance under
consideration. (We have already assumed the preconditions of the primary when-clause
w1 to be true.) We now show three things for the operator instance under consideration:
(i) there is no additional effect P (a, c) of the operator instance, with c 6= b; (ii) w or
w1 has a precondition P (q, r), which was true for q = a, r = d for some d 6= b for the
operator instance, and (iii) w1, w, or some other secondary when-clause w2 generated an
effect ¬P (a, d), for the operator instance.

Concerning (i), if there were an effect P (a, c), there would be an effect literal P (q, r) of
o in w or some other when-clause w2 (which could be w1 or a secondary when-clause) where
we cannot prove that q 6= h, or cannot prove that r = k. (Keep in mind we are assuming
a w-effect P (h, k) instantiated as P (a, b).) But then in view of the way Discoplan tests
(P ?X ?*Y) and adds supplementary conditions (i.e., by the contrapositive of verification
conditions (2a,b)), there would be a supplementary condition which entails the falsity of
a precondition of w, w1, or w2. (We will provide a more detailed version of this argument
in the supplementary remarks following the proof.) But since we have assumed those
preconditions to be true for the operator instance under consideration, S(a, b) or S(a, c)
must be false in sprior , contrary to (C2). So there is no effect P (a, c).

Concerning (ii), suppose neither w nor w1 has such a precondition. Then they have
no precondition of form P (q, r) at all, or if they do, it is not provable that q 6= r, or it is
not provable that r = k. Then again from the way Discoplan tests (P ?X ?*Y) and adds
supplementary conditions (i.e., by the contrapositive of verification condition (3b)), there
is a supplementary condition that entails the falsity of a precondition of w or w1, and since
these preconditions are true for the instance in question, S(a, b) or S(a, c) must be false in
sprior , contrary to (C2). So there is a precondition P (q, r) as specified in (ii).

Concerning (iii), suppose there is no such effect of w or w1. Then there is no effect
of w or w1 of form ¬P (q′, r′) at all or for any such effect it is not provable that q′ = q
or it is not provable that r′ = r (with q, r determined by (ii)). Then from verification
condition (3a(ii)) (i.e., from the way Discoplan tests (P ?X ?*Y) and adds supplementary
conditions to assure a “concomitant change”) and from (C2) (which precludes alternative
verification condition (3b)), there is a subset of the supplementary conditions that entails
the preconditions of some when-clause w2 other than w or w1, where that when-clause has
an effect ¬P (q′, r′), and provably q′ = q and r′ = r. But then (iii) is true.

Having established the truth of (i-iii), we note that from (i) and (C1) it follows that
P (a, c) was true in sprior . Hence by the induction assumption P (a, y) was false for all
y 6= c in sprior . Hence the constant d referred to in (ii) and (iii) is the same as c; so by
(iii), ¬P (a, c) holds in sresult , contrary to (C1). 2

Supplementary remarks concerning the proof of Theorem 5:

In part (i) of the preceding proof, the appeal to verification condition (2) to infer the falsity
of a precondition of w, w1, or w2 may seem clear enough. However, this is one of the places
where some subtle details dependent on the Unification Lemma have been suppressed. It
is instructive to take a closer look at this part of the argument, as an illustration of how
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such suppressed details may be filled in. Strictly, the existence of effect literals P (h, k)
and P (q, r), where we cannot prove q 6= h or cannot prove r = k, is insufficient to support
the argument based on verification condition (2). This condition also requires that each
of P (h, k) and P (q, r) be (constrained-) unifiable with (P ?X ?*Y), say with unifiers u and
u′ respectively, and the particularized relations qu′ 6= hu, ru′ = ku (rather than q 6= h,
r = k) should not both be provable. Now, the existence of unifiers u and u′ is obvious
for the special case of φ∗ assumed in the proof, but note that both EQ/NEQ-preconditions
and generalization of the proof to predicates with more than 2 arguments can complicate
matters. For example, unification of (P ?X ?X ?*Y) with an effect (P ?h ?k ?r) would fail
if there is a precondition (NEQ ?h ?k). Of course, an instance of this effect, such as (P a

b c), would then not create a threat to single-valuedness of (P ?X ?X ?*Y) in ?*Y. So only
those instances of the effects of o that unify with φ∗ create a threat to single-valuedness,
and it suffices to ensure that the verification conditions apply to those instances. And
that is precisely where the Unification Lemma helps out. Corollary 2 guarantees that if
an effect literal P (r) yields ground instance P (b) under unifier v (where v instantiates the
parameters of o), and at the same time hypothesis literal φ∗ is unifiable with P (b), with
unifier v′, then the unifier u of φ∗ with P (r) also exists; this guarantees that verification
condition (2) applies to all relevant effect literals. Furthermore, Corollary 2 also assures us
that we can compose u with v, and (returning to the special case considered in the proof)
that huv = hv; and similarly we have qu′v = qv for the second effect literal P (q, r). So,
since hv = qv = a, it follows that the relation hu 6= qu′ cannot be provable. Similarly we
can argue that the relation ku = ru′ cannot be provable. At this point we have established
incontrovertibly that (a) or (b) in verification condition (2) must hold. But it takes one
more application of Corollary 2 to establish that a relevant instance of (a) or (b) holds.
In the case of (a), i.e., if the truth of (σi)u entails falsity of preconds+(w)u, then (σi)v′ (a
ground instance of σi) entails falsity of the preconditions preconds+(w)v of the instance of o
under consideration, in virtue of the equivalence of (σi)uv with (σi)v′ and of preconds+(w)uv
with preconds+(w)v′ . Similarly for case (b).

Parts (ii) and (iii) of the proof can be elaborated in the same way, but we will not belabor
the matter further. Only in the correctness proof for n-ary disjunctive + sv-constraints
(Theorem 12) will we again spell out some of the details involving the Unification Lemma.

Theorem 5 The “dedicated” computation of sv-constraints in accordance with the hypothesize-
and-test scheme is completed in polynomial time for any bound max on the allowable num-
ber of supplementary conditions, specifically in

O

(∑
o∈O

l4o

[
Σ
o′∈O

l3o′ + max
lo
· Σ
o′∈O

lmax+2
o′ + n2init

])
steps, where O is the set of planning operators, lo is the size of operator o, and ninit is the
number of initial conditions.

Proof. The stated complexity bound is a simplification of

O

(∑
o∈O

l3o

[
Σ
o′∈O

lol
3
o′ + Σ

o′∈O
lo′ [lo′(lo′ + lolo′ + lo′) + lolo′ ] + max · Σ

o′∈O
lmax+2
o′ + lon

2
init

])
.

As in the proof of Theorem 3, the outer summation corresponds to the iteration over
operators in the formation of hypotheses. The overall factor l3o derives from the iteration
over an operator’s effects and concomitant changes (preconditions and effects) on which
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hypothesis formation is based. The first inner sum corresponds to verification condition (2),
and reflects the iteration over pairs of effects threatening single-valuedness (factor l2o′) and
if appropriate the search for singleton excuses as per verification conditions (2a,b) (factor
lolo′). In the second inner sum, corresponding to verification condition (3), the overall
multiplier lo′ comes from the iteration over effects. The term lo′(lo′+lolo′+lo′) reflects (3a),
with a multiplier lo′ from the search for an appropriate precondition, and an embedded sum
of three terms where the first, lo′ , corresponds to the search for a complementary effect (as
per (3a(i))), and the second and third, lo′ lo+ lo′ , correspond to the search for a when-clause
whose preconditions are entailed by a subset of the candidate supplementary conditions,
and the search for a complementary effect in such a when-clause (as per (3a(ii))). The
remaining term lolo′ derives from the search for a singleton excuse (verification condition
(3b)) when verification condition (3a) fails. The inner sum max·Σ

o′∈O
lo′max+2 corresponds

to the selection of irredundant sets of up to max supplementary conditions. (This relies
on set-cover complexity, as in Theorem 3.) The final term lon

2
init reflects the check of the

hypothesis in the initial conditions; as discussed at the end of section 3.5, this could be
improved to loninit. 2

Theorem 6 Any implicative + sv-constraint

((IMPLIES (P ?X ?*Y) (NOT (Q ?X))) (S1 ?X)...(Sk ?X))

(i.e., with the consequent variables subsumed by the antecedent variables) produced by
Discoplan is correct.

The notation (Si ?X) as before means that the ith supplementary condition may (but
need not) involve ?X. The theorem and its proof are easily generalized to the case where
P and Q have several unstarred shared arguments, and P has several starred variables not
occurring in the other. (Again, think of ?X, ?*Y as two sets of arguments.)

Remark: We use (S ?X) for the conjunction of all supplementary conditions. Then the
simultaneous constraints of the theorem, including supplementary conditions, state that in
all reachable states,

(C1) ∀x, y, y′.S(x) ∧ P (x, y) ∧ P (x, y′) ⇒ y = y′,

(C2) ∀x, y.S(x) ∧ P (x, y) ⇒ ¬Q(x).

Proof. As in Theorems 3 and 5 the correctness proof is based on the sufficiency of the
relevant verification conditions (as stated in subsection 4.3.1). We can take both constraints
to be true in the initial state, since Discoplan straightforwardly verifies them (verification
condition 1). Given any instance of any operator o, and a prior state sprior in which the
preconditions of the primary when-clause w1 of that operator instance are true, we assume
for induction that the 2 constraints hold in sprior . We want to show that they also hold in
the resultant state sresult . Assume otherwise, i.e., assume that

(C3) for some constants a, b, c, where b 6= c, S(a), P (a, b), and P (a, c) hold in sresult ; or

(C4) for some constants a, b, c, S(a), P (a, b), and ¬Q(a) hold in sresult .

We derive a contradiction for each of the two cases. First consider case (C3). Since S is
static, we also had

(C5) S(a) true in sprior .
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But by induction assumption (C1), at least one of the literals in (C3) must have been false
in sprior , and so

(C6) P (a, b) or P (a, c) was false in sprior .

We now argue as follows. (A few details are added below.) (i) Since according to (C3)
P (a, b) and P (a, c) are both true in sresult while according to (C6) one of them was false in
sprior , by the semantics of operators there must be an effect literal that was instantiated
to P (a, b) or P (a, c). (ii) At least one of P (a, b), P (a, c) was true in sprior , otherwise there
would need to be multiple effects P (a, b), P (a, c) to render (C3) true, and this is ruled
out by verification condition 2 (according to which a precondition of o would entail ¬S(a),
contrary to (C3)). (Details can be filled in as in subargument (i) in the proof of Theorem
5.) (iii) Since there was an effect P (a, b) or P (a, c) by (i), verification condition 3(a) or
(b) applies. 3(b) entails that ¬S(a) held in sprior , contrary to assumption (C3); so 3(a)
applies. Now by 3(a)(ii) we have a precondition ¬Q(a) or a change from P (a, d) to ¬P (a, d)
for some value of d, compensating for effect P (a, b) or P (a, c). If the former were true,
S(a)∧P (a, y) would be false for all values of y in sprior , by the induction assumption. But
S(a) is true so P (a, b) and P (a, c) would be false in sprior , contrary to (ii). So we are left
with the possibility of a compensating change from P (a, d) to ¬P (a, d) for some d 6= b or
6= c depending on whether we have an effect P (a, b) or P (a, c). But if P (a, d) held in sprior ,
then by induction assumption (C1) P (a, b) and P (a, c) were false in sprior , contrary to (ii).

Now consider case (C4). We begin much as before by noting that since S is static, (C5)
holds, and that by (C5) and induction assumption (C2),

(C7) either P (a, b) or ¬Q(a) was false in sprior .

We argue that there is an effect literal that was instantiated to P (a, b) or ¬Q(a) (by (C4)
and (C7) and the semantics of operators). For the possibility that P (a, b) was generated,
verification condition 3(a) or 3(b) applies, but (b) implies ¬S(a), which cannot be true by
(C5); so 3(a) applies. By 3(a)(i) there should then be an effect or persistent precondition
Q(a), but this is contradicted by the assumption in (C4) that ¬Q(a) holds in sresult . This
eliminates the possibility that P (a, b) was generated, so that

(C8) P (a, b) was true in sprior ,

and we are left with the possibility that ¬Q(a) was generated, and Q(a) was true in sprior .
This brings into play verification condition 4. Now 4(b) entails ¬S(a), contrary to (C5),
leaving us with 4(a), requiring a concomitant change from P (a, d) to ¬P (a, d) for some d.
But then by (C8) and induction assumption (C1), either S(a) was false in the prior state
or d = b. The former is again ruled out by (C5); so with d = b, we have a concomitant
change from P (a, b) to ¬P (a, b). But this contradicts (C4). 2

Theorem 7 Any exclusive state constraint

((IMPLIES (P ?X ?*Y) (NOT (Q ?X ?*Z))) (S1 ?X)...(Sk ?X))

produced by Discoplan is correct.

The notation (Si ?X) as before means that the ith supplementary condition may (but
need not) involve ?X. The theorem and its proof are easily generalized to the case where
P and Q have several unstarred shared arguments, and each has several starred arguments
not occurring in the other. (Again, think of ?X, ?*Y, ?*Z as sets of arguments.)
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Remark: We use (S ?X) for the conjunction of all supplementary conditions. Then the
simultaneous constraints of the theorem, including supplementary conditions, state that in
all reachable states,

(C1) ∀x, y, y′.S(x) ∧ P (x, y) ∧ P (x, y′) ⇒ y = y′,

(C2) ∀x, z, z′.S(x) ∧Q(x, z) ∧Q(x, z′) ⇒ z = z′, and

(C3) ∀x, y, z.S(x) ∧ P (x, y) ⇒ ¬Q(x, z).

Proof. As in Theorems 3, 5 and 7 the correctness proof is based on the sufficiency of the
relevant verification conditions (as stated in subsection 4.3.2). Much as in the previous
proofs we can take all three constraints to be true in the initial state, since Discoplan
straightforwardly verifies them (verification condition 1). Given any instance of any oper-
ator o, and a prior state in which the preconditions of the primary when-clause w1 of that
operator instance are true, we assume for induction that the 3 constraints hold in that
prior state. We want to show that they also hold in the resultant state. Assume otherwise,
i.e., assume that

(C4) for some constants a, b, c, where b 6= c, S(a), P (a, b), and P (a, c) hold in the
resultant state; or

(C5) for some constants a, b, c, where b 6= c, S(a), Q(a, b), and Q(a, c) hold in the
resultant state; or

(C6) for some constants a, b, c, S(a), P (a, b), and Q(a, c) hold in the resultant state.

We derive a contradiction for each of the three cases. First consider case (C4). Since S is
static, we also had

(C7) S(a) true in the prior state.

But by the induction assumption, at least one of the literals in (C4) must have been false
in the prior state, and so

(C8) P (a, b) or P (a, c) was false in the prior state.
We now argue, much as in the proof of Theorem 7, that (i) there is an effect literal

that was instantiated to P (a, b) or P (a, c); (ii) at least one of P (a, b), P (a, c) was true
in the prior state; (iii) by (i), and the way hypotheses are tested and augmented with
supplementary conditions (verification condition 4a,b), Q(a, d) was true for some d in the
prior state; (iv) so, by the induction assumption (C3) and by (C7), P (a, y) was false for
all y in the prior state, contrary to (ii).

The details for steps (i) and (ii) of the argument are just as in the proof of Theorem
7, and we will not repeat them. Proceeding to (iii), we note that in testing the exclu-
sion hypothesis under consideration, we ensure that whenever an effect of form P (x, y) is
present, a precondition of form Q(x′, z) is present in the corresponding when-clause or pri-
mary when-clause with x, x′ provably equal (verification condition 4a), or else we introduce
a supplementary condition that is false whenever the preconditions of effect P (x, y) hold
(verification conditions 4b). But by (i) such an effect is indeed present, namely P (r, s), so
either there is a precondition Q(r′, z) of w or w1, with r, r′ provably equal, or else S(r)
is false whenever the preconditions of w and w1 hold. The latter is ruled out by (C7)
(the truth of S(a)) and the presumed truth of the preconditions of w and w1 in the prior
state. Thus Q(a, d) holds for some d in the prior state. But then from induction assump-
tion (C3) in the prior state, we have ∀y.¬S(a) ∨ ¬P (a, y) in the prior state; in particular,
¬S(a) ∨ ¬P (a, b) and ¬S(a) ∨ ¬P (a, c), but at least one of these is false by (C7) and (ii).
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The derivation of a contradiction from (C5) is completely analogous to the previous
argument for (C4) (with P and Q interchanged), so we proceed to (C6). We begin as
before by noting that (C7) holds, and that by (C7) and the induction assumption,

(C9) either P (a, b) or Q(a, c) was false in the prior state.

We argue that (i) there is an effect literal that was instantiated to P (a, b) or Q(a, c); for
the case where P (a, b) was generated, we argue further that (ii) Q(a, d) was verified as a
precondition and ¬Q(a, d) was generated as an effect for some d, and (iii) consequently
¬Q(a, z) holds for all z in the resultant state, contrary to (C6); and (iv) an analogous
argument holds for the case where Q(a, c) was generated.

(i) is immediate from (C6) and (C9). So assume that the effect P (a, b) was generated
by an effect literal P (r, s) of some when-clause w (possibly w1). Concerning (ii), in virtue
of verification conditions (4a,b), either there exists a precondition Q(r′, z) of w or w1

where r and r′ are provably identical, or else there is a supplementary condition among
the conjuncts in S(r) whose falsity is entailed by the preconditions of w or w1. The latter
is impossible by the presumed truth of the preconditions of w and w1 and by (C7) for the
operator instance under consideration. So precondition Q(a, d) is verified in the prior state.
Verification conditions (4a,b) further guarantee that either there is an effect ¬Q(r′′, z′) of
w or w1, where r′, r′′ are provably equal and z, z′ are provably equal, or else there is such an
effect of some other when-clause w2, where the supplementary conditions of the hypothesis
entail the truth of the preconditions of w2. So in view of (C7), we do indeed have an effect
¬Q(a, d) for the operator instance in question. Concerning (iii), by induction assumption
(C2) in the prior state, by (C7), and by the truth of Q(a, d) in the prior state we have
∀z.Q(a, z) ⇒ z = d in the prior state. But since we have an effect ¬Q(a, d), we will have
∀z.¬Q(a, z) in the resultant state, unless there is some additional effect of form Q(u, v) of
some when-clause w3 (not necessarily distinct from w, w1, or w2) with true preconditions
and with u instantiated to a. But this latter possibility is ruled out by verification condition
(6), i.e., if there were such an effect (given that there is an effect P (r, s)) there would be a
supplementary condition whose falsity is entailed by the preconditions of w, w1, or w3. So
since ∀z.¬Q(a, z) contradicts (C6) in the resultant state, we have established (iii). Finally
the analogous argument for (iv) essentially just interchanges the roles of P and Q and of
b and c. 2

Theorem 8 The computation of exclusive state constraints in accordance with the hypothesize-
and-test scheme is completed in polynomial time for any bound max on the allowable num-
ber of supplementary conditions.

Proof sketch. We omit details. The analysis here is very much as in Theorems 3 and
5. Verification conditions (1-6) for exclusive state constraints closely resemble those for
simple implicative constraints and for (independently verifiable) sv-constraints, and lead
to similar time bounds, polynomial in the sizes lo of operators and the number ninit of initial
conditions, for any fixed upper bound max on the number of supplementary conditions. 2
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