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Abstrat. The paper is onerned with the suint axiomati-

zation and eÆient dedution of non-hange, within MCarthy

and Hayes' Situation Calulus. The idea behind the proposed

approah is this: suppose that in a room ontaining a man, a

robot and a at as the only potential agents, the only ation

taken by the man within a ertain time interval is to walk from

one plae to another, while the robot's only ations are to pik

up a box ontaining the (inative) at and arry it from its initial

plae to another. We wish to prove that a ertain objet (suh

as the at, or the doormat) did not hange olor. We reason that

the only way it ould have hanged olor is for the man or the

robot to have painted or dyed it. But sine these are not among

the ations whih atually ourred, the olor of the objet is

unhanged. Thus we need no frame axioms to the e�et that

walking and arrying leave olors unhanged (whih is in general

false in multi-agent worlds), and no default shema that proper-

ties hange only when we an prove they do (whih is in general

false in inompletely known worlds). Instead we use explanation-

losure axioms speifying all primitive ations whih an produe

a given type of hange within the setting of interest. A method

similar to this has been proposed by Andrew Haas for single-

agent, serial worlds. The ontribution of the present paper lies in
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showing (1) that suh methods do indeed enode non-hange su-

intly, (2) are independently motivated, (3) an be used to justify

highly eÆient methods of inferring non-hange, spei�ally the

\sleeping dog" strategy of STRIPS, and (4) an be extended to

simple multiagent worlds with onurrent ations. An ultimate

limitation may lie in the lak of a uniform strategy for deiding

what uents an be a�eted by what agents in a given domain.

In this respet probabilisti methods appear promising.

1 Introdution

\One feels that there should be some eonomial and prinipled

way of suintly saying what hanges an ation makes, without

having to expliitly list all the things it doesn't hange as well;

yet there doesn't seem to be any other way to do it. That is the

frame problem".

{ Pat Hayes (1987:125)

The frame problem originally surfaed within MCarthy's Situation Cal-

ulus (MCarthy 1968), when MCarthy and Hayes (1969) applied it to rea-

soning about goal ahievement. To illustrate their approah, they onsidered

the problem of initiating a telephone onversation. They began by writing

down plausible axioms whih seemed to haraterize the preonditions and

e�ets of looking up a person's telephone number and dialling that number.

However, they found that they were still unable to prove that the plan \look

up the number and dial it" would work, even if all the initial onditions

were right (i.e., that the aller had a telephone and a telephone book, that

the intended party was home, et.). For example, the axioms provided no

assurane that looking up the number would not make the aller's telephone

disappear, thus voiding a preondition for dialling.

At this point, MCarthy and Hayes made a move whih set the stage for

all subsequent disussions of the frame problem, and proposals to solve it:

they augmented their axiom for the e�ets of looking up a phone number,

so that it asserted that the ation does not make the aller's possessions

disappear, and does not hange the intended party's loation. These, of

ourse, are the sorts of axioms known as frame axioms.
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They apparently viewed their strategy of speifying the relationships not

hanged by an ation as the only one available within the Situation Calulus

proper, though they deplored both its ad ho harater and the proliferation

of axioms to whih it leads:

\If we had a number of ations to be performed in sequene we

would have quite a number of onditions to write down that er-

tain ations do not hange the values of ertain uents [properties

and relationships℄. In fat with n ations and m uents, we might

have to write down mn suh onditions."

One might add that these onditions are rather implausible in a world

with multiple agents (like the one we live in). For instane, there is no

assurane in real life that either the intended party, or all one's possessions

will stay put while one is onsulting a phone book.

Virtually all later disussions of the frame problem reiterate MCarthy

and Hayes' line of reasoning, without questioning the need for frame axioms

of the type suggested by them, at least within the Situation Calulus and

perhaps within any lassial logial framework. (See, for example, the prefae

and artiles in (Pylyshyn 1987) and (Brown 1987).)

Yet another sort of move is available, whih entirely avoids frame axioms.

This is to introdue axioms about what ations are required to produe given

types of hanges. This approah was proposed for a serial world by Andrew

Haas (1987). An example is the following axiom (where holding(R; x; s)

means that the robot is holding objet x in situation s, Result(a; s) is the sit-

uation resulting from arrying out ation a in situation s, and Putdown(R; x)

is the ation of R putting down x, regarded as an abstrat individual; as

usual, a \situation" is thought of as a possible \state of the universe"):

1

(8x; s; s

0

)[[holding(R; x; s) ^ :holding(R; x; s

0

) ^ s

0

= Result(a; s)℄

! a = Putdown(R; x)℄;

i.e., if the robot eases to hold an objet x between situations s and s

0

,

and situation s

0

was obtained from situation s by at a, then a must have

been the at of putting down x. (For a more versatile robot, the right-hand

1

I will onsistently use lower-ase identi�ers for prediates and variables, and apitalized

identi�ers for individual onstants and funtions.
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side of the axiom might have allowed a = Drop(R; x), and perhaps one or

two other ations, as an alternative to a = Putdown(R; x).) Thus, given

that in a ertain situation the robot holds some spei� objet B, and in

that situation performs some ation other than Putdown(R;B), we an infer

from the ontrapositive that the robot still holds B after that ation.

2

I will

give details and argue the suintness and other advantages of the approah

in setion 2.

Haas termed his axioms \domain-spei� frame axioms." I will instead

all axioms whih speify the ations needed to produe a given type of

hange explanation-losure axioms. This reets the fat that they supply

omplete sets of possible explanations for given types of hange. As suh (I

will suggest) they are important in other areas of AI, suh as story under-

standing. It is true that the ontrapositive of an axiom like the above predits

a non-hange, and in that sense resembles a \frame axiom." However, it does

so on the basis of the non-ourrene, rather than the ourrene, of ertain

spei� ations, and it is lear that this is not what MCarthy and Hayes,

or any of the many ommentators on the frame problem sine then, meant

by frame axioms. As I will try to show, explanation losure axioms have

important advantages over (traditional) frame axioms.

In setion 3, I will provide a more omplete illustration of how primitive

ations in a serial world an be axiomatized using explanation losure. I

will inlude an illustration that onfronts the problem of impliit e�ets. An

example of an impliit e�et is the hange in the loation of the topmost

objet in a stak, when the base of the stak is moved; though the e�et is

ausally diret, its detetion may require any number of inferene steps. I will

give examples of what an and annot be inferred in this world, ontrasting

this with the more usual approahes.

Despite the emphasis in the Hayes quote on suintness, omputational

2

Similar proposals have been made by Lansky (1987), George� (1987), and Morgenstern

(1988). George� proposes axioms of form, \If uent p is not independent of event e, then

e must be one of e

1

, e

2

, ..., e

n

". However, George�'s approah is non-funtional and less

diret than Haas', in its reliane on the notion of independene (whih remains somewhat

unlear). Morgenstern's persistene rules of form "If suh-and-suh ations did not our

at time j, then uent p is unhanged at time j + 1" also depend on a non-funtional view

of ation; further, she takes these rules as being derivable from a losed world assumption

about ausal rules (i.e., only hanges provably aused by known ations atually our),

and that is an assumption I wish to avoid.

4



eÆieny is of obvious importane in reasoning about hange and non-hange.

In setion 4, I will show that a default strategy whih is essentially the \sleep-

ing dog" strategy of STRIPS is dedutively sound when appropriately based

on explanation losure. This refutes a ommon assumption that monotoni

solutions to the frame problem are the slowest, and that the STRIPS strategy

lies somehow beyond the pale of ordinary logi.

In setion 5, I will briey explore the potential of the Situation Calulus,

and the present approah to the frame problem, with respet to external

events, ontinuous hange, ation omposition using sequening, onditionals

and iteration, and most of all, onurreny. Note that the earlier inferene

about persistene of holding depended on the assumption that ations annot

be onurrent, so that performane of one ation annot produe hanges

that require other ations. Extensions to worlds with onurrent ations are

possible using parallel omposition of ations, along with a modi�ed form

of Haas' axioms and general axioms about the primitive parts of omplex

ations.

An example of a omposite ation is (Costart(Walk(R,L

0

,L

1

), Walk(H,L

2

,

L

3

)) whih represents onurrent walks by R and H starting simultaneously

and �nishing whenever both walks are done (not neessarily simultaneously).

Just as in the serial ase, the Result funtion is interpreted as yielding the

unique new state whih results if only the ation spei�ed by its �rst argu-

ment takes plae. By maintaining this funtional view of ations, we preserve

an important property of the original Situation Calulus (exploited by C.

Green, 1969): plans are terms, and an be extrated dedutively from exis-

tene proofs. On the other hand, the approah may not be systematially

extensible to ases where reasoning about a given situation ours against

the bakdrop of a large world knowledge base. The diÆulty lies in the lak

of uniform priniples for identifying the relevant agents and the \boundaries"

of the given situation in a way that will make a funtional view of ation,

and explanation losure, onsistent with the bakground knowledge.
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2 Explanation losure: a simple illustration and pre-

liminary assessment

\A weapon has been used to rush a man's skull and it is not

found at the sene of the rime. The only alternative is that it

has been arried away."

{ Isaa Asimov, The Naked Sun

Let us begin by going through the earlier example, adapted from Haas

(1987), in more detail. We are assuming a robot's world in whih the

robot an walk about, paint or dye objets, pik them up and put them

down or drop them, et. He annot perform any of these primitive ations

simultaneously.

3

The immediate onsequenes of ations are expressed by

e�et axioms suh as

A1. (8x; y; s; s

0

)[[at(R; x; s) ^ s

0

= Result(Walk(R; x; y); s)℄

! at(R; y; s

0

)℄

Note that the uent literal at(R; x; s) funtions as a (suÆient) preondition

for the suess of Walk.

We assume that in the initial situation S

0

, the robot is at loation L

0

holding an objet B:

at(R;L

0

; S

0

), holding(R;B; S

0

)

We are interested in the situation S

1

resulting from R's walking from L

0

to

L

1

:

S

1

= Result(Walk(R;L

0

; L

1

); S

0

)

Spei�ally, we wish to show that R is still holding B in S

1

:

G1. holding(R;B; S

1

)

The possible explanations for essation of holding are that the robot put

down or dropped the objet:

3

Primitive ations are immediately exeutable, requiring no further elaboration or de-

omposition into lower-level ations (though they may require exeution monitoring to see

whether, in fat, they run their ourse as expeted). All pratial planning systems seem

to reognize suh a level of primitive ations, even though the hoie of where to \draw

the line" is rather arbitrary.
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A2. (8a; x; s; s

0

)[[holding(R; x; s) ^ :holding(R; x; s

0

) ^ s

0

= Result(a; s)℄

! a 2 fPutdown(R; x); Drop(R; x)g℄;

where a 2 fa

1

; � � � ; a

n

g abbreviates a = a

1

_ � � � _ a = a

n

. To prove G1, we

assume its negation

:holding(R;B; S

1

),

and use (A2) along with the initial onditions and the de�nition of S

1

to

obtain

Walk(R;L

0

; L

1

) 2 fPutdown(R;B); Drop(R;B)g.

But syntatially distint primitive ations are not the same:

A3 (Inequality shemas). If � and � are distint m-plae and n-plae fun-

tion symbols (m;n � 1) representing primitive ations, then

(8x

1

; � � � ; x

m

; y

1

; � � � ; y

n

) �(x

1

; � � � ; x

m

) 6= �(y

1

; � � � ; y

n

); and

(8x

1

; � � � ; x

m

; y

1

; � � � ; y

n

)[�(x

1

; � � � ; x

m

) 6= �(y

1

; � � � ; y

m

) _

(x

1

= y

1

^ � � � ^ x

m

= y

m

)℄.

Appropriate instanes of these shemas deny that aWalk is identi�able with a

Putdown or a Drop, and this ontradition establishes the desired onlusion

G1.

Note that the traditional approah would have used a set of frame axioms

inluding

(8a; x; y; z; s; s

0

)[[holding(R; x; s) ^ s

0

= Result(Walk(R; x; z); s)℄

! holding(R; x; s

0

)℄

and similar ones for every other ation whih does not a�et holding, in plae

of (A2). Explanation losure axioms are more suint than sets of suh frame

axioms beause there are typially few ations that hange a given uent, but

many uents that are una�eted by a given ation.

4

Besides, (as suggested

earlier) frame axioms do not generalize to worlds with onurrent ations.

For example, in a world in whih a robot an simultaneously walk and drop

an objet, there is no guarantee that an objet held at the beginning of a

walk is still held at the end.

4

However, as Kowalski (1979: 135) showed, sets of frame axioms speifying all uents

una�eted by a given ation an be ollapsed by reifying uents and quantifying over them.
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The preeding suintness laim for explanation losure axioms is quite

vague. It is unlikely that it an be made fully preise, sine it amounts to

a laim about the struture of \natural" theories of ation for real-world

domains. A \natural" theory should be intuitively understandable, extensi-

ble, and e�etively usable for inferene. But suh desiderata are hard, if not

impossible, to redue to syntati onstraints.

Nevertheless, the laim an be made rather plausible, if formulated rela-

tive to the omplexity of the axiomatization of e�ets. The following argu-

ment is an intuitive and empirial one, in its tait appeal to the form whih

e�et axioms \naturally" take (in the sorts of axiomatizations familiar to AI

researhers). It assumes a primitive, serial world with \expliit e�ets". In

the next setion, I will attempt a slight generalization.

Suintness Claim 1 (for explanation losure in a primitive, se-

rial world with expliit e�ets). In a natural axiomatization of a world

in terms of a set of uents and a set of nononurrent primitive ations,

where the axioms speifying the e�ets of an ation expliitly state whih

uents beome true and whih ones beome false, it is possible to axiomatize

non-hange using explanation losure axioms whose overall omplexity is of

the same order as that of the e�et axioms.

Argument. To see the intuition behind the laim, think of the e�et ax-

ioms as onditionals of form \uent p hanges if ation a

1

; or a

2

; � � � ; or a

k

ours" (this may require some slight syntati rearrangements); e.g.,

{ an objet hanges olor if it is painted or dyed (with a new olor);

(note that this statement may ollapse two axioms, one for the e�et

of painting and one for the e�et of dyeing);

{ an objet eases to be on another if the robot piks it up;

{ the robot hanges loation if he takes a walk or pushes an objet; (this

might again orrespond to two e�et axioms); et.

Now, roughly speaking, the addition of explanation losure axioms is just a

matter of hanging all the \if"s to \if and only if"s. At least this is so if

eah of the e�et axioms states all uent hanges engendered by the ations.

8



The addition of the \only if" axioms learly will not inrease the overall

omplexity by more than a onstant fator.

I hasten to add that this is an oversimpli�ation. Explanation losure

does, in general, di�er from a strit \bionditionalization" of the e�et ax-

ioms { indeed, I am about to argue that this is an advantage it has over

irumsriptive or nonmonotoni approahes. Nevertheless, an explanation

losure axiom in a world with expliit e�ets typially supplies those ations

as alternative explanations of a hange whih produe that hange aording

to the e�et axioms. 2

One ould further argue that suh relative suintness assures a storage

omplexity well below O(mn), sine the omplexity of the e�et axioms pre-

sumably lies below this. (If it did not, MCarthy and Hayes would hardly

have had grounds for omplaining about the potential o(mn) omplexity of

frame axioms!) Note also that if e�et axioms do not involve unboundedly

many uents for eah ation, their omplexity should be O(n), and if a uent

is not referened in unboundedly many e�et axioms, it should be O(m).

5

Being suint, the explanation losure approah o�ers a viable alterna-

tive to nonmonotoni and irumsriptive approahes. Unlike nonmonotoni

approahes, it does not jeopardize e�etive provability. Unlike irumsrip-

tion, it does not reate subtle problems about what to irumsribe. As

Hanks and MDermott (1987) remark, �nding the \right" irumsriptive

theory invariably hinges on already knowing the preferred model it should

deliver. I would suggest that explanation losure axioms are a natural way

to express our preferenes diretly, at least in simple worlds. (I argue below

for their naturalness).

Another ruial advantage of the approah is that it avoids overly strong

persistene inferenes. This point was made briey by Haas (1987), but

5

It would be nie to be able to replae suh tentative arguments with a hard-and-fast

theoretial argument to the e�et that (a) the logial struture of ausation is suh that

for the \right" hoie of formal terminology (i.e., the \right" uents and ations), e�et

axioms will not involve more than a few uents on average; and perhaps even that (b)

there is an e�etive proedure allowing an agent interating with the world to onverge

toward suh a \right" hoie of terminology. Fodor (1987) seems to demand all this and

more of any genuine solution to the frame problem; however, most AI researhers take a

more pratial view.
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deserves detailed reiteration. Suppose, for example, that we want to allow for

the possibility that when the robot drops an objet it might break, without

insisting that this will be the outome. A natural way to approximate this

situation is to make the outome dependent on how fragile the objet is,

without assuming that we know whether it is fragile enough to break. So

the e�et axiom might be:

A4. (8x; s; s

0

)[[holding(R; x; s) ^ s

0

= Result(Drop((R; x); s)℄

! [:holding(R; x; s

0

) ^ [fragile(x; s)! broken(x; s

0

)℄℄℄

Although we won't be able to infer breakage without knowledge of fragility,

we still want to assert that if an objet breaks, it was dropped. This an be

straightforwardly expressed by the explanation losure axiom

A5. (8a; x; s; s

0

)[[:broken(x; s) ^ broken(x; s

0

) ^ s

0

= Result(a; s)℄

! a = Drop(R; x)℄

Note that here (A5) annot be derived from the orresponding e�et axiom

(A4) by some systemati \bionditionalization", or any other general prin-

iple. It is essentially a domain fat. (In a more realisti world, we would

allow for some additional ways of breaking, suh as being struk or rushed.)

So, given the partiulars

:broken(C; S

0

), holding(R;C; S

0

) and S

1

= Result(Drop(R;C); S

0

),

we an infer neither broken(C; S

1

) nor :broken(C; S

1

), and that is as it

should be.

By ontrast, a irumsriptive approah that minimizes the amount of

\abnormality" engendered by an ation (MCarthy 1984), or its ausal eÆ-

ay (Lifshitz 1987), would predit :broken(C; S

1

) and hene :fragile(C; S

0

).

Similarly nonmonotoni methods (Reiter 1980) would santion this unwar-

ranted inferene. Moreover, if we are given the partiulars

:broken(C; S

0

), broken(C; S

1

), and S = Result(A; S

0

),

the explanation losure approah yields the reasonable onlusionA=Drop(R,

C), whereas irumsriptive and nonmonotoni approahes are silent about

A (given axiom (A4) but not (A5)).

Areas of unertainty or ignorane like that onerning breakage are hard

to avoid in domain theories of pratial magnitude. A familiar instane

of this is the \next-to" problem: it is hard to provide e�et axioms whih
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will supply all hanges in next-to relations (without appeal to some overly

preise geometrial representation). Yet irumsriptive and nonmonotoni

approahes will treat the axioms as if they supplied all suh hanges, and

as a result santion unwarranted persistene inferenes. I will return to the

next-to problem in the next setion, whih ontains a more elaborate \robot's

world."

Finally, I laim that enoding non-hange via explanation losure axioms

is prinipled and natural, in the sense that there are reasons independent

of the frame problem for invoking them. One suh reason is the observa-

tion that people an ome up with small sets of plausible explanations for

hanges of state almost instantaneously, at least in familiar domains. For

example, if the grass got wet, perhaps it rained, or the sprinkler was on, or

dew formed overnight, or some snow melted { and that just about overs

the most likely explanations. (Similarly onsider, \How did the wall ome

to be blue?", \Why is the sun no longer shining?", \How did John's loa-

tion get hanged from the ground oor to the 17th oor of his apartment

building?", \How did John learn about the earthquake in Italy while having

breakfast alone in his New York apartment?", \How did John gain possession

of the hamburger he is eating?", \What is ausing John's nose to be runny?",

et.) Endowing mahines with omparable abilities would seem to require

some quite diret enoding of the onnetion between various phenomena

and their immediate auses. Furthermore, researh in natural language un-

derstanding has shown that the ability to infer ations that aomplish given

state hanges is extremely important, and has led to postulation of knowledge

strutures very similar to explanation-losure axioms. For example, Shank

and Abelson (1977:75) suggest that state hanges deliberately brought about

by human agents are assoiated with sets of possible ations (in their terms,

sets of \plan boxes") that ahieve those state hanges. They assume that if

a story leads to the inferene that an agent will try to aomplish a state

hange, the further inferene is warranted that he will attempt one of the

assoiated ations. Clearly this involves a tait losure assumption that a

deliberately aused state hange is normally brought about by one of a �xed
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set of ations.

6

To be sure, examples of \real-world" explanation losure are generally

subtler than (A2) or (A5). They vary in level of detail (sale or \grain

size") and level of abstration (see setion 5), and most importantly, are

\defeasible" { the standard explanations oasionally do fail. However, my

primary onern here is with ausally insulated, preditable worlds, free of

booby-trapped boxes and meteor strikes. Everything of interest that ours

will be attributable to known agents. In suh a setting, (non-defeasible)

explanation losure works remarkably well.

3 Explanation losure in a world with impliit e�ets

In ase of holding, the essation of this relation an be diretly attributed to

a Putdown or Drop. Based on suh examples, the \expliit e�ets" assump-

tion required diret axiomati onnetions from ations to all a�eted uents.

This requirement is hard to enfore in nontrivial worlds. For instane, sup-

pose that a robot is regarded as \arrying" its own integral parts, anything

\riding" in or on it, and anything those \riders", in turn, are arrying (f.

the \assemblies" of Haas, 1987). This is a useful notion, beause an objet

\arried" by another hanges loation with it. Now in axiomatizing ations

like Walk or Pikup, we do not want to expliitly speify all e�ets on ob-

jets arried (and left behind). Rather, we want these hanges to follow from

axiomati onnetions between holding, in, on, et., and arrying.

The following partial theory of a world with impliit e�ets serves sev-

eral purposes. First, it shows that the explanation losure approah to the

frame problem extends readily to suh worlds. (The new losure axioms are

(A16-A20).) Seond, it provides a nontrivial setting for illustrating inferene

based on explanation losure. Finally, it provides the bakground for further

disussion of the suintness laim and the \next-to" problem.

A6. An objet \arries" its integral parts, its riders, anything arried by

6

The more reent work of Kautz and Allen(1986) also involves an idea that seems

losely related to explanation losure: observed, reported or inferred ations are explained

in terms of a set of a set of alternative, jointly exhaustive higher-level ations (plans).

After several observations, it is often possible to dedue a unique top-level plan.
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its riders, and nothing else.

7

(8x; y; s)[arries(x; y; s)$ [integral-part(y; x) _ rider(y; x; s)_

(9z)[rider(z; x; s) ^ arries(z; y; s)℄℄℄

A7. \Carries" is irreexive (so that by A6 and A9, integral-part, rider, in,

on and holding are also irreexive).

(8x; y; s)[arries(x; y; s)! :arries(y; x; s)℄

A8. An objet arried by another is at the same plae as its arrier.

(8x; y; z; s)[[arries(x; y; s) ^ at(x; z; s)℄! at(y; z; s)℄

A9. An objet is a rider on another i� it is in, on, or held by it.

(8x; y; s)[rider(y; x; s)$ [in(y; x; s) _ on(y; x; s) _ holding(x; y; s)℄℄

A10. \in" orresponds to one or more nested in

0

's.

(8x; z; s)[in(x; z; s)$ [in

0

(x; z; s) _ (9y)[in(x; y; s) ^ in

0

(y; z; s)℄℄℄

A11. Paint has the expeted e�et, if the robot is next to a paintbrush,

paint of the right hue, and the objet to be painted, and isn't holding

anything.

(8x; b; ; p; s; s

0

)[[next-to(R; x; s) ^ next-to(R; b; s) ^ next-to(R; p; s)^

brush(b) ^ paint(p) ^ hue(p; )^ :(9y)holding(R; y; s)^

s

0

= Result(Paint(R; x; ); s)℄ ! olor(x; ; s

0

)℄

A12. Dye has the expeted e�et { muh like (A11).

A13. Putdown has the expeted e�et, if the robot is holding the objet.

(To illustrate less diret e�ets, e�ets on in and on are also inluded.)

7

Nonintegral parts, suh as a omputer remotely ontrolling a robot, need not be arried

by it.
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(8x; y; s; s

0

)[[holding(R; x; s) ^ s

0

= Result(Putdown(R; x); x)℄

!:holding(R; x; s

0

) ^ [above(x; y; s)!

[[ontainer(y) ^ smaller(x; y)! in(x; y; s

0

)℄ ^

[:ontainer(y) _ :smaller(x; y)! on(x; y; s

0

)℄℄℄℄

A14. Pikup has the expeted e�et on holding, if the robot is next to the

objet and the objet is liftable.

8

(8x; s; s

0

)[[next-to(R; x; s) ^ liftable(x) ^ :(9z)holding(R; z; s)^

s

0

= Result(Pikup(R; x); s)℄! holding(R; x; s

0

)℄

A15. As in the ase of (A13), we might have inluded additional e�ets of

Pikup in (A14). Alternatively, we an state additional e�ets sepa-

rately, as in the following axiom about (suessful) Pikups being able

to undo arries relations:

(8x; y; s; s

0

)[[next-to(R; x; s) ^ liftable(x) ^ :(9z)holding(R; z; s)^

s

0

= Result(Pikup(R; x); s)℄

! [[arries(y; x; s) ^ :arries(y; R; s)℄! :arries(y; x; s

0

)℄℄

A16. If an objet eases to be of some olor y, it was painted or dyed with

some olor z.

(8a; x; y; s; s

0

)[[olor(x; y; s) ^ :olor(x; y; s

0

) ^ s

0

= Result(a; s)℄

! (9z)a 2 fPaint(R; x; z); Dye(R; x; z)g℄

A17. A hange from not holding an objet to holding it requires a Pikup

ation.

(8a; x; y; s; s

0

)[[:holding(x; y; s) ^ holding(x; y; s

0

) ^ s

0

= Result(a; s)℄

! a = Pikup(x; y)℄

A18. If an objet eases to be in a ontainer, then the robot must have

piked up the objet, or piked up something in the ontainer arrying

the objet.

8

liftable is here treated as independent of the agent and the given situation (e.g.,

whether there are \riders" on the objet), but ould easily be made dependent on them.

14



(8a; x; y; s; s

0

)[[in(x; y; s) ^ :in(x; y; s

0

) ^ s

0

= Result(a; s)℄

! [a = Pikup(R; x)_

(9z)[a = Pikup(R; z) ^ in(z; y; s) ^ arry(z; x; s)℄℄℄

A19. If an objet x omes to be in a ontainer, then the robot must have

put down or dropped an objet z it was holding above the ontainer,

where z is smaller than the ontainer, and either is x or was arrying

it:

(8a; x; y; s; s

0

)[[:in(x; y; s) ^ in(x; y; s

0

) ^ s

0

= Result(a; s)℄

! (9z)[[z = x _ arries(z; x; s)℄ ^ holding(R; z; s) ^

above(z; y; s) ^ smaller(z; y) ^

[a = Putdown(R; z) _ a = Drop(R; z)℄℄℄

A20. If an objet eases to be at a loation, then the robot took a Walk

to some plae, and either the robot is that objet, or was arrying that

objet.

(8a; x; y; s; s

0

)[[at(x; y; s) ^ :at(x; y; s

0

) ^ s

0

= Result(a; s)℄

! (9z)[a = Walk(R; y; z) ^ [R = x _ arries(R; x; s)℄℄

This partial axiomatization laks axioms for on and next-to, explanations

for olor or at beoming true, et. While further axioms would be needed

in any pratial appliation, it is signi�ant that even a partial axiomatiza-

tion allows many reasonable onlusions about hange and non-hange to be

drawn, as the following examples show (see also setion 4). The problem of

unwarranted persistene inferenes, whih attends irumsriptive and non-

monotoni losure of inomplete theories, does not arise (at least not within

settings with fully spei�ed ations; limitations are disussed in setion 5).

The following example desribes initial onditions in the robot's world in

whih the robot is at loation L

0

, and is next to a blue box B ontaining

a up C (and perhaps other objets). In addition, there is a doormat D at

loation L

1

, whih is distint from L

0

. The problem is to show that if the

robot piks up the box and walks to a loation L

2

, the loation of the up is

hanged but not the olor of the box or the loation of the doormat. (The

desriptions \box", \up", and \doormat" are not atually enoded in the

premises, but are used for mnemoni reasons.)
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Proposition 1. Given axioms (A1-A20), along with initial on-

ditions

at(R;L

0

; S

0

); next-to(R;B; S

0

); in

0

(C;B; S

0

); liftable(B);

olor(B;Blue; S

0

); at(D;L

1

; S

0

); L

1

6= L

0

;

:(9z)holding(R; z; S

0

)

and plan

S

1

= Result(Pikup(R;B); S

0

);

S

2

= Result(Walk(R;L

0

; L

2

); S

1

)

then

(a) olor(B;Blue; S

2

), (b) at(D;L

1

; S

2

), () at(C;L

2

; S

2

).

Proof sketh.

(a): If the olor of box B were not blue in situation S

1

, then by (A16) the

Pikup ation whih led to the situation would have had to equal a Paint or

Dye ation, whih is impossible by (A3). Similarly we infer the persistene

of B's olor through the Walk.

(b): We assume that the doormat does not stay at L

1

. Then by explanation

losure for essation of at (A20), the robot walked from L

1

to some loation

and either is D or arried D. But this is impossible, beause the Pikup was

no Walk, and the Walk was from L

0

, whih di�ers from L

1

. (Besides, the

robot is not D, and didn't arry D, beause the loations of D and the robot

in situation S

0

are distint.)

(): To prove the up ends up at L

2

, we �rst show that the robot ends up

there, by (A1). Next, we show he ends up holding the box B, sine the

Pikup in the �rst step sueeds by (A14) and the holding persists through

the Walk (by explanation axiom (A2) for essation of holding, and the in-

equality shemas). Hene, we dedue by (A8) that the box ends up at L

2

(via

the rider and arries relations, (A5) and (A6)). Next we infer by (A10) that

sine up C is in

0

the box, it is in it, and that this relation persists through

the Pikup and theWalk, using explanation axiom (A18) for essation of in.

(The former inferene requires use of irreexivity for in (A6, A7, A9), to rule

out the possibility that in piking up the box, the robot lifted the up out of

the box along with the box!) Finally, with the box at L

2

and the up in it,

we infer by (A8) that the up is at L

2

(via the rider and arries relations). 2

So non-hange, as well as hange, an be straightforwardly dedued in

16



our robot's world, without appeal to nonstandard methods. As well, it is

relevant to onsider what sorts of things annot be inferred in this world.

Suppose, for instane, we add an assumption that there is a video amera at

the robot's loation at the outset, i.e., at(V C; L

0

; S

0

). We an dedue neither

at(V C; L

0

; S

2

) nor its negation, and that is as we would want. After all, the

amera may or may not be attahed to (or arried by) the robot.

Is the suintness laim still tenable in suh worlds with impliit e�ets?

I submit that it is, although the evidene, even more than before, must be

sought in examples (suh as the one just presented) and in our intuitions

about \natural" axiomati theories.

Suintness Claim 2 (for explanation losure in a primitive, serial

world with impliit e�ets). In a natural axiomatization of an intuitively

omprehensible dynami world in terms of a set of situational uents and

a set of (nononurrent) primitive ations, it is possible to axiomatize non-

hange using explanation losure axioms whose overall omplexity is of the

same order as that of the e�et axioms plus the axioms relating primary

uents (those expliitly onneted to ations) to seondary ones.

Argument. In this ase, \bionditionalizing" e�et axioms of form \uent

p hanges if ation a

1

, or a

2

; � � � ; or a

k

ours" will provide explanation lo-

sure axioms for the primary uents only (in approximate form). Do we also

need losure axioms for seondary uents? The preeding example suggests

that seondary uents will often have de�nitions in terms of primary ones

(see arries and rider in (A6) and (A9)). Changes in suh uents are fully

determined by { as well as explained by { hanges in the relevant primary

uents. For example, if an objet eases to be a rider on another, we an

infer from (A9) that if it was previously in, on or held by the other objet,

that relationship eased; hene we an infer what ation (or possible ations)

must have ourred. So it appears that separate losure axioms will often be

redundant for seondary uents.

But even where suh axioms turn out to be neessary or onvenient, the

overall omplexity of losure should not exeed that of other axioms. After

all, for eah seondary uent at least one axiom must already be present

whih introdues that uent and relates it to others. As long as explanation

losure axioms do not get arbitrarily more ompliated than these relational
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ones, the suintness laim remains true.

Examples suggest they will not get arbitrarily more ompliated. For

instane, although explanation losure axioms are theoretially redundant

for the arries and rider uents of our illustration, it is onvenient to have

them. For explaining how a arries relation omes about for the robot and

an objet x, and how it eases, we might say:

A21. (8a; x; s; s

0

)[[:arries(R; x; s) ^ arries(R; x; s

0

) ^ s

0

= Result(a; s)℄

! (9y)[[y = x _ arries(y; x)℄ ^ a = Pikup(R; y)℄℄

A22. (8a; x; s; s

0

)[[arries(R; x; s) ^ :arries(R; x; s

0

) ^ s

0

= Result(a; s)℄

! (9y)[[y = x _ arries(y; x)℄^

[a = Putdown(R; y) _ a = Drop(R; y)℄℄℄

These are no more ompliated than the losure axioms suggested for primary

uents like holding and in.

Indeed, it seems unlikely that a natural set of onepts for desribing an

intuitively omprehensible domain would inlude uents whose hanges, even

under ordinary onditions, annot be explained (at any level) in terms of a

few simple alternative auses. In other words, it seems to me that having

simple explanation and predition rules for a dynami world is what makes

it intuitively omprehensible. 2

Finally, let us return to the next-to problem, whose relevane to pratial

robot problem solving makes it a touhstone for putative solutions to the

frame problem. Essentially the problem is that neither persistene nor hange

of next-to relations an be reliably inferred for all pairs of objets. For

example, suppose that our robot's world ontains two adjaent windows W

1

,

W

2

and (for whatever reason) the robot is interested in the goal

(9s)next-to(R;W

1

; s) ^ :next-to(R;W

2

; s).

Suppose also that the robot has a Go-next-to ation, whih is apable of

taking him next to either window. (Assume for this disussion that Go-next-

to replaes Walk, though it wouldn't be hard to allow for both.) But if he

walks next toW

1

, will he be next toW

2

? Perhaps so, if the exeution routines

hoose a plae between the windows, and perhaps not, if they hoose a plae

next to W

1

but on the far side from W

2

. In suh a ase we do not want the
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robot to think he an ahieve the above goal by starting at a plae not next

to W

2

, and going next to W

1

, with the onvition that :next-to(R;W

2

; S

0

)

will persist. Rather, he might deide the problem is not amenable to reliable

solution, or he might know some fats whih will allow him to overome the

problem (e.g., he might just happen to know that if he goes next to the left

portion of a window's frame, he will be next to the window but not next to

any windows or doors to its right).

9

Similarly, it would be risky to assume (as STRIPS-style robots typially

do) that when the robot walks, it eases to be next-to whatever stationary

objets it was next-to at the start. After all, it may only have travelled a

short distane, or along a trajetory parallel to an objet (e.g., alongside a

table).

One possible way of dealing with the next-to problem is to rely on an

exat geometrial model (e.g., one whih divides up the oor spae into tiles,

and dedues next-to or :next-to from whih tiles are oupied). For this

to permit the onstrution of reliable plans involving next-to, however, we

have to insist that all ations available to the robot preisely and preditably

determine his loation. But this is just not a tenable assumption in a realisti,

reasonably omplex world.

Now the hallenge is this: how do we avoid unsound persistene and

hange inferenes, suh as those above, while still obtaining those that are

sound? For instane, we do want to infer that the robot's next-to relations

don't hange, say when he piks up, puts down, or paints an objet (un-

der a \horizontal" interpretation of next-to); and we do want to infer that

nonmoving objets maintain their next-to and :next-to relations.

This hallenge, ostensibly a very serious one for nonmonotoni and ir-

umsriptive approahes, is easily met by explanation losure. For instane,

we an state that next-to(R; x; s

0

) beomes true only if the robot goes next-to

an objet y (possibly x itself) whih is not remote from x (where, say, remote

means beyond four times the maximum distane for being next-to):

A23. (8a; x; s; s

0

)[[:next-to(R; x; s) ^ next-to(R; x; s

0

) ^ s

0

= Result(a; s)℄

! (9y)[a = Go-next-to(R; y) ^ :remote(x; y; s)℄℄

9

Anyone inlined to think the robot ought to just make some default assumption, suh

as that he'll not be next to W

2

, should imagine a situation in whih W

1

has its blinds

drawn but W

2

does not, and the robot is aware of a sniper aross the street, bent on his

destrution!
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This does not require exhaustive knowledge of what's remote from what, but

if we do happen to know that the objet the robot went to is remote from x,

we an exlude x from the set of objets the robot may now be next to. Note

that the axiom also permits inferene of persistene of :next-to(R; x; s) if the

robot did something other than a Go-next-to. Similarly we an add losure

axioms for next-to(R; x; s) beoming false, and for next-to(x; y; s) beoming

true or false for objets x, y other than the robot. (They will be muh like

the at-losure axiom, (A20).) These will apture just the persistenes that

are intuitively warranted by our oneption of next-to.

The next setion desribes a pratial and dedutively sound way in whih

explanation losure axioms an be translated into eÆient, STRIPS-like per-

sistene inferene methods.

4 STRIPS revisited: explanation losure meets the

sleeping dog

The pratial problem of eÆiently inferring hange and non-hange has been

disussed by many writers on the frame problem (B. Raphael, 1971, being an

early example). Ideally, we would like to math the onstant-time inferene of

non-hange ahieved by STRIPS-like systems (Fikes & Nilsson 1971). These

employ the \sleeping dog" strategy: uents referened by the add-lists and

delete-lists of operators are updated, and the rest are assumed to remain

unhanged.

The idea in the following is to emulate STRIPS within the Situation

Calulus by working out ertain e�ets of plan steps, and inferring persistene

via default rules. The default rules treat the \most reent" values of uents

as still orret in the urrent situation. One novelty is that explanation

losure axioms are used to guard against overly strong persistene inferenes

(by agging ertain uents as \questionable"). The default inferenes are

dedutively sound (and in speial ases, omplete) relative to a domain theory

whih inludes the explanation losure axioms.

I will �rst illustrate these tehniques for a spei� set of uents in a slightly

urtailed version of the previous \robot's world." In this ase no agging of

uents is needed, and the rules are not only sound, but also omplete for

uents of form (:)holding(R; �; �), relative to any \erti�able" plan { one
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whose steps have provably true preonditions. Further, they permit onstant-

time persistene inferene when suitably implemented.

I will then abstrat from this example, and provide a general method for

using explanation losure axioms as \sentries" whih wath for ations that

may hange a given uent. This enables agging uents so as to pave the

way for sound (but not in general omplete) default inferenes.

In order to look up the \most reent" value of a uent one needs to have

worked out the relevant values at eah step of a plan. Consequently, any

formal laims about suh strategies must rely on some formalized notion of

the updating proess.

In the holding example, this is aomplished by de�ning an initial \world"

(theory) D

0

and a suession of augmented worlds D

1

, D

2

; � � �, where eah

D

i

inorporates D

i�1

, a new plan step, and some logial onsequenes of the

step. In pratie, one would expet eah D

i

to be derived by some \forward

inferene" proess from D

i�1

and the ith plan step. In the example, the

forward inferenes have been judiiously hosen to provide expliit preon-

ditions for any subsequent Pikup, Putdown, or Drop step, and formulas of

the right sort for making sound and omplete persistene inferenes.

Our domain axioms will essentially be (A2) - (A19). By leaving out the

Walk-axiom (A1) and explanation axiom for hanges in at, (A20), we have

hanged the robot from a rover to a stationary manipulator. This allows us

to avoid next-to reasoning; in fat, we an drop the situation argument from

next-to, so that next-to(R; x) is permanently true, or permanently false, for

any objet x.

As another pratial measure we invoke the \unique names assumption";

i.e., all onstants of our theory are drawn from a set Names, where these

are interpreted (muh as in the ase of ation names) as having distint

denotations. This ould be expressed by axiom shema � 6= �, where �; �

are distint names.

An initial world desriptionD

0

onsists of (A2)-(A19) (with next-to hanged

as disussed) along with :(9x)holding(R; x; S

0

), any number of additional

formulas whih an be onsistently added, and all instanes of liftable(�)

and next-to(R; �) entailed by the rest of D

0

for onstants � ourring in D

0

.

A plan is a set of formulas

S

i

= Result(�; S

i�1

) ; i = 1; � � � ; N ,
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where eah � 2 fPikup(R; �); Putdown(R; �); Drop(R; �); Paint(R; �; );

Dye(R; �; )g for some � 2 Names and S

1

; � � � ; S

N

are onstants distint

from eah other and from all onstants ourring in D

0

. The augmented

desriptions relative to suh a plan are given (for 1 � i � N) by

1. for S

i

= Result(Pikup(R; �); S

i�1

); � 2 Names, and

fnext-to(R; �), liftable(�), :(9z)holding(R; z; S

i�1

)g � D

i�1

,

let D

i

=D

i�1

[ fS

i

= Result(Pikup(R; �); S

i�1

); holding(R; �; S

i

)g;

2. for S

i

= Result(Putdown(R; �); S

i�1

); � 2 Names, and

holding(R; �; S

i�1

) 2 D

i�1

,

let D

i

=D

i�1

[ fS

i

= Result(Putdown(R; �); S

i�1

);:holding(R; �; S

i

);

:(9z)holding(R; z; S

i

)g;

3. same as (2), with Drop replaing Putdown;

4. for � a Paint or Dye ation (whose e�ets an be left impliit, sine

only holding relations are to be inferred by default),

let D

i

=D

i�1

[ fS

i

= Result(�; S

i�1

)g.

Note that in essene, eah of (1) - (3) \heks" the preonditions of the

ation, and adds appropriate postonditions (e�ets). These follow logially

fromD

i�1

together with the new step. For instane in (2), :holding(R; �; S

i

)

is added as a logial onsequene of the e�et axiom (A13) for Putdown.

:(9z)holding(R; z; S

i

) is also a onsequene, though not an obvious one: it

follows from the presene of :(9z)holding(R; z; S

0

) inD

0

(and hene D

i

) and

from the explanation axiom (A17) for holding beoming true (an indutive

proof is required). It would not ordinarily be found by forward inferene,

but is inluded to seure ompleteness in the \sleeping-dog" proposition to

follow.

Evidently, D

i

does not exist if the preonditions of some step aren't prov-

able. However, D

i

exists whenever the preonditions for Pikup, Putdown,

or Drop ations are provable (beause (4) is indi�erent to the preonditions

of Paint and Dye steps). I will term suh plans erti�able (relative to D

0

).

As a �nal preliminary we note the following way of applying explanation

losure axioms to multistep plans (expressed as Result-equations):
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Serial Plan Lemma. Given an explanation losure axiom

(8a; x

1

; � � � ; x

k

; s; s

0

)[[�(x

1

; � � � ; x

k

; s) ^ �(x

1

; � � � ; x

k

; s

0

) ^

s

0

= Result(a; s)℄ ! '(a)℄,

where � is a negated or unnegated prediate and � its omplement and '(a)

a formula ontaining a, and a plan

S

i

= Result(�

i

; S

i�1

); i = 1; � � � ; N ,

suh that �(�

1

; � � � ; �

k

; S

0

) and �(�

1

; � � � ; �

k

; S

N

) hold (where �

1

; � � � ; �

k

are

terms), we an onlude that for some i (1 � i � N); '(�

i

).

Proof. Obviously �(�

1

; � � � ; �

k

; S

i�1

) and �(�

1

; � � � ; �

k

; S

i

) must hold for some

i, allowing appliation of the losure axiom. 2

Sleeping-dog proposition for holding. Let D

N

be a theory (i.e., domain

theory and erti�able plan) as de�ned above. Then the following default

rules are sound and omplete for onlusions of form holding(R; �; S

k

) and

:holding(R; �; S

k

), where � 2 Names and 0 < k � N :

holding(R; �; S

i

) :holding(R; �; S

i

) :(9z)holding(R; z; S

i

)

holding(R; �; S

k

)

,

:holding(R; �; S

k

)

,

:holding(R; �; S

k

)

where i is the largest integer � k suh that at least one of holding(R; �; S

i

),

:holding(R; �; S

i

), and :(9z)holding(R; z; S

i

) 2 D

k

.

Proof.

Soundness: We need to show that if i (as de�ned) exists for a given � 2

Names, then D

k

entails whihever onlusions are given by the default rules.

Suppose otherwise, i.e., there are �; i satisfying the premises for whih a

default rule gives a onlusion whose negation follows from D

k

, or neither

the onlusion nor its negation follows from D

k

. Consider the ase where

holding(R; �; S

i

) 2 D

k

and D

k

` :holding(R; �; S

k

). Then by (A2) (expla-

nation for holding beoming false) and the Serial Plan Lemma, there was

a step S

j

= Result(�; S

j�1

) with � 2 fPutdown(R; �); Drop(R; �)g and

i < j � k. By the unique-names assumption and inequality shemas (A3),

this step must appear in D

k

in preisely this form, i.e., as jth step of the
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plan. But then by (2) and (3), :holding(R; �; S

j

) 2 D

k

, ontrary to the

de�nition of i. Next onsider the ase where :holding(R; �; S

j

) 2 D

k

and

D

k

` holding(R; �; S

k

). Then a ontradition is derived just as before, using

(A17) (explanation for holding beoming true) and (1). Third, onsider the

ase where :(9z)holding(R; z; S

i

) 2 D

k

and D

k

` holding(R; �; S

k

). Then

the ontradition follows just as in the previous ase, exept for use of the

fat that :(9z)holding(R; z; S

i

) ` :holding(R; �; S

i

).

Now suppose �; i are suh that neither the onlusion of the appliable

default rule, nor its negation, follows from D

k

. Consider the ase where

holding(R; �; S

i

) 2 D

k

. Sine D

k

6` holding(R; �; S

k

), we an onsistently

form D

0

k

= D

k

[f:holding(R; �; S

k

)g. Then in this theory we an prove that

there was a step S

j

= Result(�; S

j�1

) with � 2 fPutdown(R; �); Drop(R; �)g

and i < j � k, and that this step must appear expliitly in D

0

k

, and hene

in D

k

, by exatly the same line of argument as before (i.e., using the Serial

Plan Lemma, unique names, and (A3)); thus we arrive at a ontradition

as before. We an derive ontraditions from the remaining two ases (for

:holding(R; �; S

i

) or :(9z)holding(R; z; S

i

) 2 D

k

) in an exatly analogous

manner.

Completeness: Assume �rst thatD

k

` holding(R; �; S

k

) for some � 2 Names.

We need to show that i exists as de�ned and holding(R; �; S

i

) 2 D

k

(so

that default inferene yields holding(R; �; S

k

)).

10

By the premises of the

proposition, :(9z)holding(R; z; S

0

) 2 D

0

, so i ertainly exists. Now suppose

holding(R; �; S

i

) 62 D

i

. Then (by the de�nition of i) either :holding(R; �; S

i

)

2 D

i

or :(9z)holding(R; z; S

i

) 2 D

i

. In either ase, by (A17) there is a step

S

j

= Result(Pikup(R; �); S

j�1

) for some j (i < j � k) and this must be

expliitly in D

k

by the unique-names assumption and inequality shemas.

By (1), applied to D

j

, this ontradits the de�nition of i. Seond, assume

that D

k

` :holding(R; �; S

i

) for some � 2 Names; we show i exists as de-

�ned and either :holding(R; �; S

i

) 2 D

k

or :(9z)holding(R; z; S

i

) 2 D

k

(so

that default inferene yields :holding(R; �; S

k

)). The denial of this disjun-

tion leads to holding(R; �; S

i

) 2 D

k

, and a ontradition follows as before. 2

These default rules learly give us a fast method of inferring non-hange

for holding (or :holding), when we are working out the e�ets of a plan

10

Of ourse, if i happens to be k, the "default inferene" gives nothing new.
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step-by-step. In fat, we an ensure the inferenes will be made in onstant

time (on average). We store the initial and inferred instanes of literals of

form holding(R; �; �), :holding(R; �; �), :(9z)holding(R; z; �), where �; �

2 Names, in a ommon hash table with omplex key (holding; �). (We

inlude holding as part of the key for generality, i.e., for ases where other

uents are \traked" as well.) Note that � (the situation onstant) is ignored

in the key, so that as we progress through the plan, a list of entries will be

formed for eah key in hronologial order. The literal needed for default

inferene will always be at the front of the list, allowing onstant-time aess.

So this provides a detailed and onrete example of eÆient, STRIPS-

like inferene in the Situation Calulus, with the additional advantage of

soundness and ompleteness (for a ertain lass of formulas) relative to the

underlying domain theory. Moreover, the struture of the soundness and

ompleteness proofs suggests that suh proofs will be possible for many u-

ents in many appliations.

Nevertheless, suh default propositions are not entirely trivial to formu-

late (in partiular, with regard to what \e�et inferenes" should be inluded

in theD

i

) and to prove. We would muh prefer to have a generalmethodology

for exploiting losure axioms for STRIPS-like default inferenes.

Now it turns out that the main soure of diÆulty in formulating and

proving sleeping-dog propositions is the goal of ompleteness, i.e., having

the default rules over all persistene inferenes of a ertain form. But it is

aeptable, and ultimately neessary, to relax this onstraint. It is aept-

able beause losing a few of the fast persistene inferenes need not seriously

degrade average performane. It is ultimately neessary in an unrestrited

�rst-order theory beause the forward inferenes (from ations to resultant

hanges) needed to support subsequent default inferenes may beome arbi-

trarily hard. Clearly deduing hange by forward inferening is worthwhile

only to the extent that its osts do not exeed the resultant savings in de-

duing non-hange. It is unlear how to trade these o� in general, so I will

leave the issue open in the following, onentrating instead on the issue of

soundness.

As soon as we onsider inomplete inferene of hange, the risk of overly

strong persistene inferene arises: if at some point a hange in a uent

ourred, but we failed to infer and register it, our default rules might mis-

takenly give us the old, outdated value as the urrent one. Fortunately,
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explanation losure axioms an be used to safeguard against suh errors.

Roughly the idea is to set them up as \sentries" on uents, and \trigger"

them when an ation that may aount for a hange in those uents ours.

Brief attempts to prove hange or non-hange are then made, and where

both fail, the uent is agged as \questionable." This agging bloks un-

sound default inferenes. Sine the agging is essentially on�ned to \old"

uent literals referened by explanation losure axioms and not subsequently

updated using e�et axioms, the total omputational e�ort arguably remains

modest.

In more detail, we begin with an initial world desription D

0

, inluding

uent formulas desribing initial situation S

0

. I will write an unspei�ed

uent formula for a partiular situation S

i

resulting from the ith step of a

plan as '(S

i

). S

i

is understood to be the only onstant situational argument

ourring in '(S

i

). '(S

k

) is the result of uniformly substituting S

k

for S

i

.

'(S

i

) is the negation of '(S

i

) (with double negations eliminated). ?'(S

i

) is

'(S

i

) pre�xed with \?", after removal of the negation, if any. We also de�ne

the essential uents as some algorithmially reognizable lass of uent for-

mulas for whose hanges we have explanation losure axioms. For instane,

these might be all formulas of form (:)�(�

1

; � � � ; �

k

; S

i

), where � is a primary

uent prediate (used in the axiomatization of the diret e�ets of ations),

and �

1

; � � � ; �

k

are onstants. We now apply the following proedure. (The

role of explanation losure axioms as \sentries" in step (4) is left impliit for

the moment.)

Plan Traking Proedure. We take aount of the steps of a given plan

S

k

= Result(�

k

; S

k�1

), k = 1; � � � ; N , expanding D

k�1

to D

k

for eah k as

follows. Note that for k > 1, D

k�1

may ontain \questioned" uents.

1. Initialize D

k

to D

k�1

2. Add S

k

= Result(�

k

; S

k�1

) to D

k

3. Apply e�et axioms to this plan step in an algorithmially bounded

way, adding new uents '(S

k

) to D

k

. Some impliit e�ets may be

dedued as well, as long as the omputation is guaranteed to terminate.

Preonditions of e�et axioms at situation S

k�1

may be veri�ed in part

by default rules, to be desribed.
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4. Determine a subset V of the \visible" essential uents. A uent formula

'(S

i

) (0 � i � k) is visible if none of '(S

j

), '(S

j

), ?'(S

j

) are present

for any j > i (these would \oneal" '(S

i

)). V must inlude any

visible, essential '(S

i

) for whih '(S

k

) is not provable (i.e., for whih

D

0

[ fS

j

= Result(�

j

; S

j�1

) j j = 1; � � � ; kg 6` '(S

k

)). (Note that we

must have i < k.) In other words, it must inlude the essential uents

whose persistene has not been proved, or annot be proved. (This an

be guaranteed by inluding all visible essential uents, but this would

defeat our purposes; more on this later.)

5. For eah '(S

j

) 2 V, initiate onurrent proof attempts for '(S

k

) and

'(S

k

), basing the former on relevant explanation losure axioms and

the latter on relevant e�et axioms. Again, onditions at situation

S

k�1

may be established with the aid of default rules. Terminate the

omputations by some algorithmi bound T ('(S

k

); D

k

). If the proof

of '(S

k

) sueeded, proeed to the next element of V (i.e., '(S

i

) need

not be onealed). If the proof '(S

k

) sueeded, add '(S

k

) to D

k

. If

both attempts failed, add ?'(S

k

) to D

k

.

Having traked a plan to step N , we would attempt to prove the goals

of the plan, in the same manner as we prove preonditions in step (3). Of

ourse, in a bounded proof attempt in unrestrited Situation Calulus, step

(3) and the goal proof attempt may both terminate before a target formula

is on�rmed, even though it may be provable in priniple. However, in the

event of failed preondition or goal proofs we might well use some systemati

way of inreasing the omputational e�ort in steps (3) and (5) (and the �nal

goal proof). If our underlying proof proedures are omplete, this will ensure

that we will eventually prove the preonditions and goals, if indeed they are

provable.

All this presupposes that the proedure as stated is dedutively sound.

This hinges entirely on the soundness of the default rules employed in steps

(3) and (5). We now turn to these.

Default Lemma. For eah k 2 fi; � � � ; Ng, at the end of step (5) of the
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Plan Traking Proedure, the following default rule

'(S

i

)

'(S

k

)

is sound for any essential uent formula '(S

i

) visible in D

k

, i.e., D

0

[

fS

j

= Result(�

j

; S

j�1

) j j = 1; � � � ; kg ` '(S

k

).

Proof. By indution on k. The proposition is true for k = 0, sine then

all visible formulas are 2 D

0

. Assume it is true for all k � k

0

� 1 (k

0

> 0).

Then the �rst k

0

�1 yles through steps (1)-(5) learly add only logial on-

sequenes of D

0

[ fS

j

= Result(�

j

; S

j�1

) j j = 1; � � � ; k

0

� 1g to D

k

0

�1

(aside

from questioned uents). At the k

0

th yle, the use of default rules in steps

(3) and (5) to derive essential uents '(S

k

0

�1

) is also sound by hypothesis. In

step (5), by the de�nition of V every essential uent '(S

i

) suh that '(S

k

0

) is

not deduible is onealed. Hene no suh '(S

k

0

) an be unsoundly obtained

by default rules after step (4). 2

Soundness is a minimal requirement if the plan traking proedure is

to provide an interesting alternative to STRIPS-like or other nonmonotoni

methods. The other requirement is eÆieny. How does the eÆieny of the

proedure ompare to that of STRIPS-like methods? And does the use of the

default rule provide gains over ordinary proofs based on explanation losure,

like that of Proposition 1?

I don't think either of these impreise questions an be made preise with-

out on�ning oneself to some spei� domain. That is an exerise we have

already gone through (in the sleeping-dog proposition for holding), so my an-

swers will not aspire to theoremhood. It appears that plan traking an be

roughly onstant-time per plan step in STRIPS. This assumes that true pre-

onditions an be on�rmed in onstant time on average (i.e., preonditions

do not depend on \deeply impliit" e�ets), and that the uents mathed by

add-list and delete-list patterns do not beome arbitrarily numerous. How

lose does the plan traking proedure ome to this level of eÆieny?

Steps (1)-(3) losely resemble preondition and e�et omputations for

STRIPS operators, and so an reasonably be expeted to be of omparably

low omplexity. This assumes that essential uents orrespond losely to

uents that would be referened in STRIPS operators. It also assumes that

default determination of preondition uents will usually sueed in step (3)

when it sueeds via the STRIPS (persistene) assumption; and that depends
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on steps (4) and (5), so let us turn to these.

The key question is whether in step (4), V is an easily found, small subset

of the visible, essential uents. If V does not beome arbitrarily large (even

when the number of essential uents \traked" beomes arbitrarily large) or

arbitrarily hard to �nd, then step (5) will also have bounded omplexity {

provided that the bound T is suÆiently tight. Furthermore, if V remains

small, then there will be few failures in step (3) to infer essential preondition

uents by default.

The �rst observation about the size of V is that it is sometimes 0. That

was the point of the sleeping-dog proposition for holding. Essentially this

was made possible by the bionditional nature of the ombined e�et and ex-

planation axioms: holding begins i� the robot (suessfully) piks something

up, and eases i� he (suessfully) puts down or drops something.

But exploiting this fat required a de�nition of D

1

; D

2

; � � � tailored to the

domain. How is D to be determined in general? The answer is to be sought

in the explanation losure axioms. V onsists of essential uents whih may

have hanged as a result of the last plan step, but have not been proved to do

so. But if we have an explanation losure axiom for suh a uent, we know

that the only way it ould have hanged is through the ourrene of one of

the ations spei�ed in the explanation. This immediately rules out all the

essential uents for whih the known types of explanations for hange do not

math the ation whih ourred. This should eliminate the great majority

of andidates.

Knowing that only a fration of the visible essential uents are andidates

for V is no immediate guarantee that we an avoid sifting through them all.

however, if we aept the ation inequality shemas (3) and the unique-names

assumption (so that \ation instanes that don't look the same denote dis-

tint ations"), we an use the following sort of indexing sheme to ompile

V e�ortlessly. (i) We store (names of) explanation losure axioms in a stati

table with the type of uent whose hange they explain as key. (ii) We also

store them in another stati table with the types of ations they invoke as

explanations as keys (with separate storage under eah alternative explana-

tion). (iii) Finally, we maintain a dynami table whih for eah explanation

losure axiom ontains a list of those visible, essential uents whose hange, if

it ours, would be explained by the axiom. (These are the uents for whih

the axiom serves as \sentry".) When a new essential uent is asserted, we
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delete any uent in table (iii) onealed by the new uent (using bak point-

ers from the uents to the table). We look up the losure axiom relevant to

the uent in table (i), and hene store the uent in table (iii). We an then

implement step (4) of the plan traking proedure by indexing into table (ii)

for the new ation �

k

; we thus �nd the relevant \sentries" (losure axioms

involving explanations whih the new ation instantiates), and hene retrieve

the visible essential uents potentially a�eted by the ation from table (iii)

(where we an restrit attention to those '(S

i

) with i < k, as indiated in

step (4)). This makes plausible the laim that STRIPS-like eÆieny an be

ahieved, while retaining soundness.

A brief return to the next-to problem may help to larify the di�erenes

between the inferenes made by a STRIPS-like approah and those made

by the present proedure. Let us treat uents of form (:)next-to(R; �; �)

(where � and � are onstants) as essential. We already have (A23) as possible

explanation losure axiom for next-to beoming true, to whih we might add:

A24. (8a; x; s; s

0

)[[next-to(R; x; s) ^ :next-to(R; x; s

0

) ^ s

0

= Result(a; s)℄

! (9y)[a = Go-next-to(R; y) ^ :next-to(x; y; s)℄℄

Also, the e�et axiom is

A25. (8a; x; s; s

0

)[[:next-to(R; x; s) ^ s

0

= Result(Go-next-to(R; x); s)℄

! next-to(R; x; s

0

)℄

We take (A3) and (A23) - (A25) as our only general axioms here, and assume

initial situation S

0

suh that

:next-to(R;W

1

; S

0

); :next-to(R;W

2

; S

0

); remote(Door;W

1

; S

0

);

:next-to(R;Door; S

0

); next-to(W

1

;W

2

; S

0

)

Now we trak the e�et of \plan" S

1

= Result(Go-next-to(R;W

1

); S

0

):

Applying e�et axiom (A25):

next-to(R;W

1

; S

1

)

At this point, next-to(R;W

1

; S

1

);:next-to(R;W

2

; S

0

); and :next-to(R;Door;

S

0

) are visible, essential uents. (next-to(W

1

;W

2

; S

0

) is not essential as we

have supplied no explanation losure axioms that apply; W

1

6= R by the

unique-names assumption.) The �rst is not in V (see step (4) of proedure)
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sine it is a urrent uent (i = k): :next-to(R;W

2

; S

0

) leads to onurrent

proof attempts for next-to(R;W

2

; S

1

) and :next-to(R;W

2

; S

1

), the former

via e�et axiom (A25) (whih fails), and the latter via explanation axiom

(A23). One way the proof strategy might proeed is by assuming next-

to(R;W

2

; S1) and attempting to derive a ontradition from (A23). This

yields

(9y)[Go-next-to(R;W

1

) = Go-next-to(R; y) ^ :remote(W

2

; y; S

0

)℄:

By inequality shemas (A3), W

1

= y; so

:remote(W

2

;W

1

; S

0

).

This does not lead to ontradition; so sine both proof attempts failed, the

questioned uent ?next-to(R;W

2

; S

1

) is posted.

Similarly :next-to(R;Door; S

0

) leads to onurrent proof attempts for

next-to(R;Door; S

1

) and :next-to(R;Door; S

1

). The former fails. The latter

may again be attempted by assuming next-to(R;Door; S

1

) and trying to

derive a ontradition from (A23). This yields

(9y)[Go-next-to(R;W

1

) = Go-next-to(R; y) ^ :remote(Door; y; S

0

)℄.

By shemas (A3), W

1

= y, so

:remote(Door;W

1

; S

0

),

ontrary to a given fat. Sine persistene of the robot's not being next to the

door has thus been on�rmed, nothing further is done: :next-to(R;Door; S

0

)

will stay visible in world desription D

1

and will thus be available for default

inferene of :next-to(R;Door; S

1

).

Of ourse, sine the example only reognizes one type of essential u-

ent, and this is the one a�eted by the assumed ation, it annot serve to

illustrate the laim that only a small fration of the visible essential uents

will typially fall into subset V . What it does illustrate is the distintion

the approah makes between warranted and unwarranted persistene infer-

enes { it orretly reognizes the persistene of :next-to(R;Door; S

0

), and

orretly \questions" the persistene of :next-to(R;W

2

; S

0

). STRIPS-like,

irumsriptive, and nonmonotoni approahes would fail to make this dis-

tintion.

This still leaves the question of whether the Plan Traking Proedure,

with its reliane on default inferene, provides signi�ant gains over proofs

in the goal-direted style of Proposition 1.

Here the answer appears to be \not neessarily" { only in speial ases.
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Consider how one might try to argue the aÆrmative. One might, for instane,

point to tasks suh as letter arrying. Repetitive tasks of this type may well

be of onsiderable interest in roboti domains. Now one might argue that a

nondefault approah would have to prove after eah delivery that the mail bag

is still at hand, and the undelivered letters still in it. But suh an argument

would be erroneous. A goal-direted approah that performs inferenes as

needed would ignore the question of where the letters are until it was time to

deliver the letter x to address y. At this point the reasoner would note that

x was in the bag at the outset, that only \delivering x" an hange this fat,

that this ation did not our, and hene that x is still in the bag. If ations

are suitably indexed (e.g., via keys like (Deliver, Letter41)), this inferene

proess is a onstant-time one, and hene annot be signi�antly worse (in

terms of order of omplexity) than the default method.

Still, the default method has the advantage that in ases like the above

even less work (viz., a look-up) is needed; in other words, the onstant is

smaller. Also, the greater expliitness of world desriptions in the default-

based approah may failitate \mental pereption" proesses, suh as reog-

nition of opportunities and threats. For instane, a robot planning to hange

a lightbulb and to hang up a alendar might \observe himself" passing lose

to the tool shelf in imagining his exursion to the basement to feth a bulb.

This might prompt him to obtain a hammer and nail on the same trip.

\Observing" his proximity to the tool shelf requires maintenane of an up-

to-date world model, one whih reets both hange (his own loation) and

persistene (the tool shelf loation). The STRIPS-inspired Plan Traking

Proedure seems well-suited to this kind of mental pereption; for instane,

one an imagine using \demons" whih wath for opportune irumstanes

(relative to urrent goals). It would be harder to trigger suh demons if the

irumstanes of interest ould only be brought to light through persistene

inferene, however eÆiently.

5 Possible extensions and probable limitations

Its supposed impotene vis-�a-vis the frame problem is not the only de�ieny

ommonly attributed to the Situation Calulus. It is also alleged to rule

out onurrent ations, an independently hanging world (external events),

ontinuous hange, nonprimitive and hierarhially strutured ations, and
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other omplex ations suh as onditional and iterative ones.

While this range of topis is too broad for detailed onsideration here, I

will attempt a brief exulpation, with emphasis on the issue of onurreny.

However, an interesting weakness that does emerge is that there is a kind

of tension between the prediative language of propositional uents, and the

funtional language of ations and Result. The former provides a simple

means for desribing hange in any desired aspet of the world. The latter

is in priniple ompatible with a broadly hanging world, but is useful only

to the extent that one adopts a loalized view entered around one or a few

agents. In partiular, the rest of the world poses a hazard to the onsisteny

of the funtional view. So the overall piture is that the Situation Calulus is

in priniple muh more expressive than generally assumed, but is hampered

in pratise by the \parohialism" of the Result funtion.

To see that the Situation Calulus does not rule out external events and

agenies, think of the situations S

0

= Result(A; S) as being the result of A

and situation S (rather than just the result of A in situation S). In other

words, S may be a dynami situation, whih is headed for hange no matter

what ations are initiated in it. This view allows for any sort of deterministi

external hange we are to desribe, suh as that the sun will have risen by

8:00 o'lok on any day, no matter what:

(8a; d; s; s

0

)[[day(d) ^ ontains(d; s) ^ ontains(d; s

0

)^

:risen(Sun; s) ^ Clok-time(s

0

) > 8 ^ s

0

= Result(a; s)℄

! risen(Sun; s

0

)℄

We an even aommodate animate agenies of hange, as in the arrival of

buses at a bus stop. Here we might use a Wait-for-bus ation whose \result"

{ thanks to the transit ageny and drivers { is the presene of a bus.

However, external agenies of hange do beome a problem if they alter

riterial uents (those on whih planned ations and goals depend) unpre-

ditably. In suh a ase both e�et axioms and explanation losure axioms

may be invalidated. For example, if traÆ on the bus route may jam, or the

drivers may strike, then being at the bus stop with the fare at hand is no

longer a suÆient ondition for suess of Wait-for-bus. (In other words, we

enounter the quali�ation problem.) Similarly, if the money in my poket

may be arbitrarily lost or stolen, I annot assert an axiom that its depletion

requires an expenditure. Thus, I will be unable to prove the �nanial pre-
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onditions for boarding the bus. It would not help to inlude loss and theft

among the possible explanations for depletion of funds, sine the ourrene

of these events annot be ruled out on the grounds that some other event

ourred, suh as Wait-for-bus (or to put it di�erently, they weren't part of

the plan).

This inability to deal e�etively with a larger, more apriious world

was impliit even in the earlier, sharply delimited robot's world: the losure

axioms used there have highly implausible onsequenes if applied to the

world at large. For instane, (A20), the losure axiom for essation of at,

together with a simple ation like S

1

= Result(Pikup(R;B); S

0

) and the

inequality shemas (A3), entails that

:(9x; y) [at(x; y; S

0

) ^ :at(x; y; S

1

)℄,

i.e., nothing moved (horizontally) between S

0

and S

1

. While this is a rea-

sonable onlusion within a restrited robot's world, it is not reasonable in

a world where numerous external agenies are ative onurrently with the

agent of interest. One way of ahieving greater realism would be to plae

restritions on the variables of the losure axioms. For instane, we might

say that when any one of a ertain set of objets (nondiminutive ones within

the setting of interest) eases to be at a loation, then the robot walked, and

is that objet or arried it. However, it is unlear in general how to formu-

late suh variable restritions in a prinipled, uniform manner. Even agents

physially remote from an objet may be able to a�et it (f. George� 1987).

Despite these limitations, the fat remains that the Situation Calulus in

priniple admits external events.

Before moving on the the next supposed de�ieny of the Situation Cal-

ulus, let us reall that it subsumes �rst-order logi. As suh it allows the

formation of omplex ation terms from simpler ones. This ompositional

potential has generally been overlooked (but see Kowalski 1986, Kowalski

and Sergot 1986, and Morgenstern 1987). All of my remaining suggestions

hinge on modifying or ombining ations by means of funtions.

In the standard \robot's world" examples (inluding the ones herein)

hange ours in quantum jumps. However, in formalizations based on the

Situation Calulus, this is not due to a limitation of the formalism (in ontrast

with STRIPS, for instane), but only to tradition. We an readily attain a

ontinuous view of what goes on during an ation, using a funtion suh as

Trun(a; t) for \utting short" ation a after t seonds, if it would otherwise
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have taken longer. The properties of trunated ations an be axiomatized

using a Time funtion on situations whih is real-valued and one-to-one on

any set of situations onstituting a \possible history of the universe" (f.,

MDermott 1982, Allen 1984). Trun allows us to say, for example, that

at all situations s

00

during Walk(R; x; y) starting in situation s and ending

in s

0

, the uent formula moving-toward(R; y; s

00

) holds. Moreover, a slight

generalization of explanation losure axioms allows us to extend persistene

reasoning to ongoing ations. For example, we an modify (A2) appropriately

by stating that the only primitive ations whose initial segments an lead to

essation of holding are Putdown and Drop.

Another simple use to whih funtions on ations an be put is to form

sequenes of ations. (MCarthy and Hayes modelled sequening and other

ontrol regimes by inserting expressions of the Situation Calulus into Algol

programs, rather than attempting omposition within the Situation Calu-

lus). In partiular, we an employ a binary Seq funtion with the obvious

de�nition

(8a; b; s) Result(Seq(a; b); s) = Result(b; Result(a; s)):

Axioms to distinguish primitive from omposite ations are easily formulated,

using prediates prim and omp. Another slight amendment of explanation

losure axioms will then preserve their utility: in axioms like (A16) - (A24),

we inlude the quali�ation prim(a) in the anteedent.

Now what makes sequenes of ations interesting is the possibility of

using them as \maros" (larger-sale ations) in plan reasoning. For this to

be pro�table, however, both e�et axioms and explanation losure axioms

need to be formulated at the level of omposite ations. Both turn out to

be possible, at least within limits. For e�et axioms, we an use \lemmas"

about their net e�et based on e�ets of onstituent primitive ations. For

explanation losure, where there are just two levels (prim and omp) of

strati�ation, we an use entirely separate losure axioms at the omp level,

with ations quali�ed as omp(a) in the anteedent. For instane, suppose

we have de�ned Move-objet as a 3-step maro (involving Pikup, Walk,

and Putdown), along with \stationary" maros like Empty-into, Open-blind,

Unlok, and so on. Then we an state that if an objet hanges loation via

a omp ation, the ation must be a Move-objet (and the reloated objet

must be the argument, or arried by it, or is the robot, or something the
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robot was already arrying at the start).

Generalizing beyond two levels of strati�ation is ertainly desirable but

at this point an open problem. We need to move from the two prediates

prim and omp toward a general taxonomy of ations, allowing for both

omposition (onstruting larger-sale ations out of smaller-sale ones) and

abstration (lassifying a given set of ations as being of the same abstrat

type). As an example of abstration, running, walking, rawling and hop-

ping (by humans) an all be lassi�ed as types of unmehanized travel, where

the latter is in turn subsumed under (mehanized and unmehanized) travel.

Preliminary researh suggests that persistene reasoning based on explana-

tion losure axioms arries over to this setting, with the requirement that

\ation inequality reasoning" based on shemas (A3) be replaed by \ation

exlusion reasoning" (e.g., the inompatibility of running and walking).

One possible weakness of the Situation Calulus that emerges from a

onsideration of ation abstration is its somewhat ounterintuitive distin-

tion between \deterministi ations" { those (rei�ed) ations whih lead to

a unique suessor state via Result { and abstrat ations { those desrib-

able only by prediates over (rei�ed) ations. This aw apparently annot

be remedied without substantial reformulation of the alulus (e.g., in terms

of a result-relation over ations and pairs of situations) or without losing

the advantage of having plans expressed as terms, allowing their dedutive

extration in the manner of Green.

Conditional ations and iteration an also be introdued with the aid

of omposition funtions suh as If (test; ation) and While(test; ation).

The details would take us too far a�eld, but three things are worth pointing

out. First, preonditions for onditional ations must take aount of the

agent's knowledge about the truth of test, to avoid an assumption of omni-

siene and the risk of paradox; onsider, for instane, If(Goldbah-onjeture,

Say-yes(R)) or If(Committed-to-saying-yes(R), Say-no(R)) (f., Manna and

Waldinger 1987, Morgenstern 1987). Seond, tests are rei�ed propositions

about situations and as suh appear to all for dupliating the entire logi

within its funtional notation, inluding quanti�ers and onnetives (e.g.,

onsider \test whether there is a blue up in every box"). This is feasible

(MCarthy 1979), but to my mind not very attrative. The third point is

that at least if we limit ourselves to \tests" whih �t into our taxonomy of a-

tions (e.g., prim and omp in simple ases), explanation losure an be used
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to prove persistene through onditionals and loops { though naturally both

hange and nonhange inferene an beome quite ompliated in proofs by

ases or by indution.

Finally, I will onsider onurreny at somewhat greater length. As be-

fore, the key is ation omposition, in this ase by parallel ombinators. I

will restrit myself to one for the moment, Costart(a

1

; a

2

) whih is the ation

onsisting of simultaneously started ations a

1

, a

2

, and whih terminates as

soon as both are done (not neessarily at the same time). a

1

and a

2

need

not be independent of eah other, i.e., the e�et of eah may depend upon

the o-ourrene of the other (as, for example, in ooperative lifting and

arrying of a sofa). However, I will not onern myself with reasoning about

interdependent ations here.

It is important to understand the intuitive interpretation of the expression

Result(Costart(a

1

; a

2

); s).

Just as in the ase of Result(a; s), this is the resultant situation when only

the ation spei�ed by the �rst argument (in this ase, Costart(a

1

; a

2

)) takes

plae. This inidently does not prelude external hange any more than in

the serial ase. The notation simply says that the onurrent ations a

1

and

a

2

are the only ones arried out by the agents of interest { those who from

our hosen perspetive generate the spae of possible future histories (while

any other soures of hange an only be aommodated preditively).

The following example will serve to illustrate reasoning about persistene

(and hange) in a world with onurrent ations. In a room ontaining a

man, a robot and a at as the only potential agents, the only ations are

that the man walks from one plae to another, while the robot piks up a

box ontaining the (inative) at and walks to another plae. So the initial

onditions (in part) and the plan are as follows:

at(R;L

1

; S

0

); next-to(R;B; S

0

); in

0

(C;B; S

0

); liftable(B),

olor(C;Ginger; S

0

); at(H;L

0

; S

0

); :(9z)holding(R; z; S

0

)

Hplan =Walk(H;L

0

; L

3

)

Rplan = Seq(Pikup(R;B); Walk(R;L

1

; L

2

))

P lan = Costart(Hplan;Rplan)

S

3

= Result(P lan; S

0

)

Our goal is to show that the at retains its ginger olor:
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(a) olor(C;Ginger; S

3

)

Sine we will need to reason about the primitive parts of omposite ations,

we will use the following postulates.

A25. Walk, Pikup, et. are primitive: for � an n-plae funtion 2

fWalk, Pikup, Paint, ...g,

(8x

1

; � � � ; x

n

) prim(�(x

1

; � � � ; x

n

))

A26. A primitive part of two onurrent ations is a primitive part of one

or the other.

(8x; y; z)[prim-part(x; Costart(y; z))

! [prim-part(x; y) _ prim-part(x; z)℄℄

A27. Similarly for sequenes of ations

(8x; y; z)[prim-part(x; Seq(y; z))

! [prim-part(x; y) _ prim-part(x; z)℄℄

A28. A primitive part of a primitive ation is idential with it.

(8x; y)[[prim-part(x; y) ^ prim(y)℄! x = y℄

To prove olor persistene, we will use the following variant of losure

axiom (A16):

A29. If an objet eases to be of olor v in the ourse of a plan, that plan

ontains a primitive part whih is the ation of painting or dyeing the

objet some olor w.

(8p; y; v; s; s

0

)[[olor(y; v; s) ^ :olor(y; v; s

0

) ^ s

0

= Result(p; s)℄

! (9x; a; w)[a 2 fPaint(x; y; w); Dye(x; y; w)g^

prim-part(a; p)℄℄

We an now prove our goal (a) by assuming it is false and applying (A29)

with s

0

and p instantiated to S

3

and P lan respetively. We infer that for some

agent x, x painted or dyed the at and this ation is a primitive part of P lan.

Then this ation is also a primitive part of Hplan or Rplan by (A26). Hene

it is a primitive part of Walk(H;L

0

; L

3

), Pikup(R;B), or Walk(R;L

1

; L

2

)

by (A27). By (A25) and (A28) the painting or dyeing ation is idential with

one of these three ations, ontrary to the inequality shemas.
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This proof (and its axiomati basis) is very simple, and that is the primary

point of the illustration. However, we would also like to on�rm that hange

an be inferred in suh a setting, based on reasonable suess riteria for the

onurrent ations involved. As in the ase of serial worlds, this is a little

harder than inferring persistene.

For ations whih have their usual preonditions satis�ed, I will take spa-

tiotemporal disjointness of their \projeted paths" as a suÆient ondition

for their suessful onurrent exeution.

11

Path(a; s) an be thought of as

a time-varying spatial region, namely the region whih the agent of ation a

and all the objets it \arries" is expeted to oupy from T ime(s) onward,

if a is the only ation initiated in situation s or beyond. Projeted paths

are assumed to be adhered to in the performane of an ation as long as any

ations onurrent with it are independent of it.

To state these assumptions formally, we need to think of situations (and

time) as hanging ontinuously throughout ations, and to provide a way

of referring to portions of plans preeding or following some intermediate

situation at whih a omponent ation ends. For the preeding portion, we

de�ne Costart

1

(p; q) as the ation whih onsists of running p to ompletion

while running q onurrently, utting it o� if it has not yet �nished when p

is done. (As in the ase of Trun, this does not neessarily entail an atual

uto�, but just that Result applied to this ation will return the situation

at the point where p �nishes.) We will later de�ne Remainder(p; q; s) as the

\left-over" portion of p.

12

Let us prove that the at ends up in the same �nal loation as the robot;

i.e.,

(b) at(C;L

2

; S

3

)

introduing further axioms as needed. We begin by showing that R's Pikup

sueeds. The modi�ed e�et axiom for Pikup is

A30. (8a; x; y; p; s; s

0

)[[next-to(x; y; s) ^ liftable(y) ^ :(9z)holding(x; z; s)

^ a = Pikup(x; y) ^ ompatible(a; p) ^

11

Spatiotemporal disjointness is a speial ase of disjoint \resoure" use, if one oneives

of resoures broadly as inluding oupiable regions of spae. Disjoint resoure use is often

a suÆient ondition for ompatibility of onurrent ations, though not a neessary one.

12

In the same vein, one an delay, vauously extend, and trunate ations, using

a vauous ation Passtime(t) in Seq(Passtime(t); p), Costart(Passtime(t); p), and

Costart

1

(Passtime(t); p).
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s

0

= Result(Costart

1

(a; p); s)℄

! holding(x; y; s

0

)℄

This illustrates the generalization of e�et axioms to worlds with onurrent

ations. Note that the result of the ation is onsidered in the ontext of an

arbitrary onurrent plan p.

To apply this axiom to the robot's Pikup ation in the ontext of the

man's Walk, we need to establish the ompatibility of the two ations. To

minimize geometrial omplexities, let us assume that we are able to alulate

\ation orridors" for Pikup(R;B) and Walk(H;L

1

; L

2

) independently of

the situation in whih they are attempted, exept for being given the loation

of R in the Pikup (i.e., L

1

). This is plausible if orridors are \generously"

de�ned so as to allow for \elbow room" and as large a olletion of objets

as R or H are apable of arrying. (In pratie the orridors might be

generalized ylinders based on the geometry of the room and the agents,

plus learane.) By de�nition the projeted path of any Pikup feasible in

isolation will be on�ned to the Corridor for that Pikup, and similarly for

the projeted path of a Walk:

A31. (8a; u; x; y; s)[[at(x; u; s) ^ next-to(x; y; s) ^ liftable(y) ^

:(9z)holding(x; z; s) ^ a = Pikup(x; y)℄

! onfined-to(Path(a; s); Corridor(a; u))℄

(8a; x; y; z; s)[[at(x; y; s) ^ a = Walk(x; y; z)℄

! onfined-to(Path(a; s); Corridor(a; y)℄

Call the relevant ation orridors Corridor-R-Pikup and Corridor-H-Walk,

and assume they are disjoint regions of spae:

A32. Corridor(Pikup(R;B); L

0

) = Corridor-R-Pikup

Corridor(Walk(H;L

0

; L

3

); L

0

) = Corridor-H-Walk

disjoint(Corridor-R-Pikup; Corridor-H-Walk)

Clearly the anteedents in (A31) are satis�ed by a = Pikup(R;B) and a =

Walk(H;L

0

; L

3

) respetively, and so we an onlude with the aid of (A32)

that their projeted paths are on�ned to the above-mentioned orridors.

This �nally puts us in a position to infer their ompatibility, using

A33. (8a

1

; a

2

; 

1

; 

2

; s)[[onfined-to(Path(a

1

; s); 

1

) ^
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onfined-to(Path(a

2

; s); 

2

) ^ disjoint(

1

; 

2

)℄

! ompatible(a

1

; a

2

; s)℄

The onlusion is ompatible(Pikup(R;B); Walk(H;L

0

; L

3

); S

0

), and so

we an instantiate (A30) and onlude that the Pikup sueeds, i.e., holding (

R; B; S

1

), where S

1

= Result(Costart

1

(Pikup(R;B); Walk(H;L

0

; L

3

)); S

0

).

To show that the robot's Walk, initiated right after the Pikup, sueeds,

we begin by de�ning Remainder(p; q; s) as a funtion whih returns the part

of p \left over" if Costart

1

(q; p) is exeuted in situation s; i.e.,

A34. (8p; q; s) Result(Costart(p; q); s) =

Result(Seq(Costart

1

(q; p); Remainder(p; q; s)); s)

(A suitable null element an be used when nothing is left over.) The reason for

having a situation argument in the Remainder funtion is that the part of p

left over when q �nishes in general depends on initial onditions. In addition,

a Tail funtion will serve to return the remainder of a path, starting at a

spei�ed time. Then a required axiom about onformity between atual and

projeted paths, in the ase of ompatible onurrent ations, an be stated

as follows:

A35. (8p; q; r; s

0

; s)[[ompatible(p; q; s

0

) ^ r = Remainder(p; q; s

0

) ^

s = Result(Costart

1

(q; p); s

0

)℄

! [Path(r; s) = Tail(Path(p; s); T ime(s))℄℄

This says that if a plan p has been partially exeuted onurrently with

another ompatible plan till the latter was done, then the projeted path for

the remainder of p is unhanged from the original projetion (apart from the

absene of the initial path segment already ompleted). Thus we an use the

previously inferred ompatibility of R's Pikup and H's Walk to alulate

the projeted remainder of H's Walk, namely,

Tail(Path(Walk(H;L

0

; L

3

); S

0

); T ime(S

1

)):

We assume that a situation reahed from another via an ation is temporally

later, so this \tail" path will be a part of the omplete Walk-path. Sine the

latter is on�ned to Corridor-H-Walk, it is lear (without going into further

detail) that the former is also. So, assuming

A36. Corridor(Walk(R;L

1

; L

2

); L

1

) = Corridor-R-Walk

disjoint(Corridor-R-Walk; Corridor-H-Walk),

41



we an on�rm the preonditions for R's Walk, in

A37. (8a; x; y; z; p; s; s

0

)[[at(x; y; s) ^ a = Walk(x; y; z) ^

ompatible(a; p) ^ s

0

= Result(Costart

1

(a; p); s)℄

! at(x; z; s

0

)℄

At least, we will be able to on�rm those preonditions if we an derive the

persistene of the robot's loation during the Pikup, i.e., at(R;L

1

; S

1

). But

this follows easily from a losure axiom for hange in at similar to (A29) and

the primitive-part axioms (A26) and (A28).

It then remains to trak the loation of the at as it gets piked up and

moved along with the box. This need not detain us, sine it is ompletely

analogous to the proof of Proposition 1(). (Of ourse, all additional e�et

axioms and explanation axioms need to allow for onurrent plans in the

manner of (A29), (A30) and (A37). Also, some axioms are needed for re-

lating alternative ways of deomposing omposite plans in terms of Costart,

Costart

1

, Seq, and Remainder.) 2

Clearly, the main ompliation in traking hange has been the estab-

lishment of ompatibility between onurrent ations. This was done by the

rather rude devie of assuming that ation paths are on�ned to disjoint

\orridors". Even that was a little tedious, suggesting (unsurprisingly) that

the Situation Calulus is not well-suited to reasoning about detailed geomet-

rial and kinemati relationships { at least not without supplementation by

speialized data strutures and algorithms.

My main objetive, however, has been to demonstrate the ease of proving

non-hange, using explanation losure in a world with onurrent ations.

Generalization of STRIPS-like plan traking methods to worlds with onur-

rent ations remains an open problem. However, I see no serious obstale to

doing so at least in ases where the hronologial ordering of the start and

end points of the set of onurrent ations an be inferred, and onurrent

ations are independent of eah other.

Finally, a few words are in order on MCarthy and Hayes' telephone

problem, with whih I started. In a sense, this is simpler than my robot-

and-the-at problem, sine it involves no onurreny (look up the number

and then dial it) and hene requires no ation-ompatibility reasoning. If

we are prepared to posit suh \primitive" ations as Lookup-number (x; y),

42



Dial-number (x; y), Carry-o� (x; y), and Leave-home (x), providing e�et

and losure axioms in terms of these ations for uents like know-number

(x; y; s), has (x; y; s), at-home (x; s), and in-onversation (x; y; s), we will

have no trouble with the problem.

However, the same aveats apply as in the disussion of external agen-

ies of hange at the beginning of this setion. If we are not areful about

the way we qualify suess onditions for ations, or variable restritions in

explanation losure axioms, our axioms will be patently false in the world at

large. This is ertainly something to be avoided in a general \ommonsense

reasoner," yet we do not at this point have a general, prinipled method of

doing so.

I believe that the most promising researh avenue in dealing with this

diÆulty lies in the appliation of probabilisti methods suh as those of

Pearl(1988), Bahus(1988), Kyburg(1988), Dean & Kanazawa(1988), and

Weber(1989). These methods allow one to give expression to the \statistial"

aspet of our experiene and knowledge of the world. For instane, people

know that a penny left on the sidewalk is muh more likely to stay put for

a day than a dollar bill, that a ar parked at night on a residential street

will stay in plae muh longer on average than one parked on a weekday

at a supermarket, and so on. In part, this knowledge is due to diret or

linguistially transmitted observation, and in part it derives from related

knowledge about why, and how often, people or other agents do the things

whih aount for hange. The dollar bill illustrates both aspets: we have

a pretty good idea from diret observation about the density of pedestrian

traÆ on various kinds of streets at various times, and we also know that few

people would fail to notie a dollar bill on the sidewalk, and having notied

it, fail to retrieve it. As well, we know about winds and their e�ets. Suh

\statistial" knowledge is absolutely indispensable in oping with a omplex

and more or less apriious world. It may even onstitute the bulk of our

general knowledge.

The role of this knowledge with respet to the frame problem is that it

provides a stable, yet pliable base on whih we an superimpose our episodi

knowledge. Sine this base merely supplies statistial priors, it yields to the

pressure of event reports that run against the odds, replaing probable per-

sistene with known hange. E�et axioms and explanation losure axioms

would be reast probabilistially in suh a representation, and supplemented
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with diret empirial probabilities for various kinds of hange (or onversely,

persistene). If we regard the suess of an ation as a mere likelihood, given

that the major preonditions are met, we avoid a futile quest for perfetly re-

liable preonditions. If we regard ertain ations apable of e�eting hange

as merely improbable, rather than as assuredly absent, we avoid unfounded

beliefs about the lak of hange in the world at large, and about the inevitable

suess of our plans.

Of ourse, the nonmonotoni theorists an reasonably laim to be striving

toward just this kind of resilient, yet amendable knowledge base. There is,

however, a fundamental di�erene between probabilisti and nonmonotoni

methods of inferring persistene. Aording to the former, MCarthy and

Hayes' phone stays put, in the absene of information to the ontrary, beause

we know perfetly well that phones very rarely get moved (and indeed, we

know why they don't). Aording to the latter, it stays put in the absene

of information to the ontrary simply beause there is no information to the

ontrary. The former is sensitive to the statistial fats of the world (suh as

that the phone is muh less likely to depart than the intended party at the

other end), while the latter is turned entirely inwards.

6 Conlusions

I have provided evidene that explanation losure axioms provide a suint

enoding of nonhange in serial worlds with fully spei�ed ations, and a basis

for STRIPS-like, but monotoni inferene of hange and nonhange in suh

worlds. As suh, they are ertainly preferable to frame axioms; they also o�er

advantages over irumsriptive and nonmonotoni approahes, in that they

relate nonhange to intuitively transparent explanations for hange, retain

an e�etive proof theory, and avoid unwarranted persistene inferenes.

Furthermore, unlike frame axioms, explanation losure axioms generalize

to worlds with onurrent ations. I led up to an illustration of this laim by

enumerating some generally unknown apabilities of the Situation Calulus

with respet to external events, ontinuous hange, and omposite ations, all

of whih seem ompatible with explanation losure. Throughout, I adhered

to the original Result-formalism, so as to retain the treatment of plans as

terms, and hene the possibility of extrating plans from proofs.
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Limitations of the Situation Calulus I noted along the way were the

tediousness of reasoning about simple spatiotemporal relationships (without

speial methods), an unequal treatment of primitive (onrete) and abstrat

ations, and most importantly, the parohial view of the world enfored by

the Result-formalism. It works well only for domains in whih the ations

apable of e�eting salient hange are fully and reliably known. I suggested

that probabilisti methods o�er the best hope of overoming this limitation.

Diretions for further researh are generalizations of the results (espe-

ially the \sleeping dog" strategy) to more omplex theories of the world

(with external events, ontinuous hange, higher-level ations, and onur-

reny), investigation of planning (as opposed to mere \plan traking") using

dedutive or other methods, and the study of all of these issues within a

probabilisti framework.
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