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Abstract

Developing computational models of spatial
prepositions (such as on, in, above, etc.) is
crucial for such tasks as human-machine col-
laboration, story understanding, and 3D model
generation from descriptions. However, these
prepositions are notoriously vague and am-
biguous, with meanings depending on the
types, shapes and sizes of entities in the ar-
gument positions, the physical and task con-
text, and other factors. As a result truth value
judgments for prepositional relations are of-
ten uncertain and variable. In this paper we
treat the modeling task as calling for assign-
ment of probabilities to such relations as a
function of multiple factors, where such prob-
abilities can be viewed as estimates of whether
humans would judge the relations to hold in
given circumstances. We implemented our
models in a 3D blocks world and a room world
in a computer graphics setting, and found that
true/false judgments based on these models
do not differ much more from human judg-
ments that the latter differ from one another.
However, what really matters pragmatically
is not the accuracy of truth value judgments
but whether, for instance, the computer mod-
els suffice for identifying objects described in
terms of prepositional relations, (e.g., the box
to the left of the table, where there are multiple
boxes). For such tasks, our models achieved
accuracies above 90% for most relations.

1 Introduction

Spatial prepositions are pervasive in natural lan-
guages and, therefore, interpretation and under-
standing of their meaning is critical to tasks in-
volving NLP. The computational challenges are
aggravated by the versatility and vagueness of
these prepositions, and their sensitivity to miscel-
laneous factors such as shapes, sizes and salience
of the relata, part-of relations, typicality, etc. On
provides a good example of such semantically rich

prepositions. When we say that one object is on
another one, we strongly imply the relation of
physical support between them. But support rela-
tions can be quite subtle, and can occur in diverse
physical configurations:

Example 1

a. a book on a shelf,
b. a picture on a wall,
c. a shirt on a person,
d. a lamp on a post,
e. a paragraph on a printed page,
f. a fish on a hook,
g. a sail on a ship,
h. a fly on the ceiling.

In and over provide additional examples of se-
mantically subtle, versatile prepositions. While
it is conceivable that the diverse meanings of
these prepositions are unrelated and arose from
disparate communicative and historical pressures,
there are strong arguments that this is not the case
(Tyler and Evans, 2003). In fact, it is very likely
that all or most of the different meanings asso-
ciated with a preposition are based on some un-
derlying primary meaning from which they all
originated. In the case of on, it seems plausi-
ble that the initial meaning was essentially sup-
port by a more or less horizontal surface, which
was then extended to further support relations, and
metaphorized to nonspatial relations during the
evolution of language. Because of this richness,
it seems that no single criterion can capture all the
instances where relations such as on, in, over, etc.,
hold.

However, there are three considerations that
prompted us to proceed with the design of intu-
itive computational models of some of the most
prevalent spatial prepositions: First, while no sim-
ple mathematical criterion can characterize any
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one of these relations, we can identify prototyp-
ical cases where the relations hold, and by con-
sidering such cases one by one, we can also zero
in on non-geometrical factors that affect “truth”
judgments in these cases. Second, people’s judg-
ments about whether a prepositional relation holds
in a given case can be quite variable; therefore
it should suffice to provide models that estimate
the probability that arbitrary judges would con-
sider the relation to hold. This approach is aligned
with a view of predicate vagueness as variabil-
ity in applicability judgments (Kyburg, 2000; Las-
siter and Goodman, 2017), enabling Bayesian in-
terpretation. And third, the ultimate success cri-
terion in assessing models of prepositional predi-
cates should be pragmatic; i.e, in physical settings
we often use such predicates to identify a referent
(the blue book in front of the laptop) or to specify
a goal (put the laptop on the table), so our models
should allow a natural language system to inter-
pret such usages as a human would. Our results
for referent identification suggest that our current
models are nearly good enough for such purposes
in various “blocks world” and “room world” con-
figurations.

In developing a conceptual framework for mod-
eling several common prepositional relations, we
tried to achieve a trade-off: On one hand, we tried
to avoid overcomplicating the model, keeping the
number of primitive concepts used in the frame-
work to a minimum. On the other, we strove to
make the framework general enough to cover a
wide range of objects and configurations.

In the following sections, we discuss related
work, and then outline our modeling framework
by examining the primitive concepts that are used
as building blocks, and showing how these con-
cepts come together in modeling a specific prepo-
sition. We then evaluate our approach in two
test domains, a blocks world and a “room world”,
making use of Blender graphics software. We
show that our computational models judge the
chosen prepositional relations accurately enough
in both worlds to enable rather good referent iden-
tification in relation to independent human judg-
ments. We summarize our contributions, and di-
rections for future work, in the concluding section.

2 Related work

Understanding the essence of the spatial prepo-
sitions is a major, long-standing task from NLP,

linguistic and cognitive science perspectives. At-
tempts to develop a computational model for spa-
tial prepositions date back to the late 60s. The
earliest attempts followed mainly geometric intu-
itions, relying on the concepts of contiguity, sur-
face, etc. (Cooper, 1968). However, an impres-
sively thorough study emerged in the 80s (Her-
skovits, 1985). Herskovits’ analysis identified a
variety of important factors that influence correct-
ness judgments in the application of spatial prepo-
sitions, illustrating these factors with many strik-
ing examples (e.g., the role of object types and
typicality in contrasts such as the house on the
lake vs. *the truck on the lake, or the role of
the Figure/Ground distinction and object size and
type in contrasts like The bicycle is near Mary’s
house vs. *Mary’s house is near the bicycle). Her-
skovits also proposed various abstract principles
constraining the meaning and use of spatial prepo-
sitions. Compared to her study, our work is more
narrowly focused on a few prepositions and two
kinds of “worlds”, but is distinguished by our em-
phasis on developing a computational model capa-
ble of actually evaluating the truth of prepositional
relations in the chosen worlds.

A quite distinctive approach based on topology
arose in 90s. A number of methodologies rooted
in this idea were aimed at spatial reasoning using
abstract qualitative primitives to encode relations
between objects (Cohn and Renz, 2008; Cohn,
1997). One example of such an approach is the
Region Connection Calculus (RCC) and its modi-
fications (Chen et al., 2015; Li and Ying, 2004). At
the heart of RCC lies the notion of connectedness.
Two nonempty regions are connected if and only
if their topological closures have a nonempty inter-
section. Starting with this primitive, one may pro-
ceed to define more useful spatial relations such as
part-of (x is a part of y if every object that is con-
nected to x is also connected to y) and overlapping
(x and y overlap if there is a z that is a part of both
x and y). Continuing in the same fashion one can
define several other topological notions and then
use them to describe spatial configurations objects.
While mathematically appealing and facilitating
rigorous inference, these qualitative methods are
too strict and unable to capture the semantic rich-
ness of natural language descriptions of spatial
configurations of objects, since they neglect as-
pects such as orientation, size, shape, and argu-
ment types.
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It is no surprise that a significant amount of re-
search on locative expressions and spatial relations
has been conducted in modern robotics. Using
natural language is the most efficient way to issue
a command to robots, and since they have to op-
erate in the physical world, understanding the way
humans describe space is crucial. Current state-of-
the-art approaches to grounding natural language
commands in general, and spatial commands in
particular, are based on probabilistic graphical
models (PGM) such as Generalized Grounding
Graphs (G3) (Tellex et al., 2011) and Distributed
Correspondence Graphs (DCG) (Howard et al.,
2014) and their modifications (Broad et al., 2016;
Paul et al., 2016; Boteanu et al., 2016; Chung
et al., 2015).

Conceptually, the way we define the spatial re-
lations in our model is similar to the spatial tem-
plate approach, discussed in Logan and Sadler
(1996). This approach is based on the idea of
defining a region of acceptability around the ref-
erence object that captures the typical locations of
the relatum for this relation and determining how
well the actual relatum fits this region. Our work
is also similar in spirit and goals to the work by
Bigelow et al. (2015), which combined the imag-
istic space representations with spatial templates
and applied it to a story understanding task. In
their approach, the authors used explicit graphics
modeling of a scene using Blender to represent
the objects in question and their relative configu-
rations. In their model, each region of acceptabil-
ity is a three dimensional rectangular region (more
precisely, a prism with a rectangular base) repre-
senting the set of points for which the given spa-
tial relation holds. For example if one has a pair
of two objects, A and B, and wants to determine
whether A is on top of B, A is checked to deter-
mine whether it is in the region of acceptability
located directly above B. Probabilistic reasoning
is supported by using values from 0 to 1 to rep-
resent the portion of the relatum that falls into a
particular region of acceptability.

In recent years, attempts have been made to use
statistical learning models, especially deep neural
networks, to learn spatial relations. Noteworthy
examples are Bisk et al. (2017) and Chang et al.
(2014). The first study was dedicated to learning
spatial prepositions from images with accompany-
ing textual annotation data within a blocks world
domain. The experimental task was based on a se-

ries of images showing step-by-step construction
of various structures on a table. Any two consec-
utive images differed in one block movement, and
each image was paired with a textual description
of that change. A deep neural architecture was
used to pair the spatial descriptions with move-
ments and positions of blocks in the images. The
second study in a sense inverted the learning prob-
lem; the task was not to learn how to describe ob-
ject relationships, but rather to automatically gen-
erate a scene based on a textual description. As
such the work revisits well-studied terrain (Coyne
and Sproat, 2001). Another recent study in this
area is Yu and Siskind (2017), wherein spatial re-
lation models are used to locate and identify sim-
ilar objects in several video streams. We should
separately mention the spatial modelling studies
by Malinowski and Fritz (2014) and, especially,
Collell et al. (2017), which apply deep neural net-
works to learning spatial templates for triplets of
form (relatum, relation, referent). The latter work
does this in an implicit setting, that is, it uses rela-
tions that indirectly suggests certain spatial config-
urations, e.g., (person, rides, horse). Their model
is capable not only of learning a spatial template
for specific arguments but also of generalizing that
template to previously unseen objects; e.g., it can
infer the template for (person, rides, elephant).
These approaches, however, rely on the analysis
of 2D images rather than attempting to model re-
lations in an explicitly represented 3D world.

3 Proposed Model1

Here we describe an example of our models for
spatial prepositions as well as some of the under-
lying concepts and intuitions. The factors that con-
tribute to the semantics of the prepositions can be
divided into geometric and non-geometric ones.
Geometric factors are relatively straightforward;
they include locations, sizes and distances. Non-
geometric factors include background knowledge
about the relata—their physical properties, roles,
the way we interact with them—as well as the per-
ceived “frame” and the presence and characteris-
tics of other objects within that frame.

We use a 3D modeling approach in our work.
Thus geometric factors can be directly inferred
from the coordinates of the polygonal meshes

1The implementation and all the ac-
companying data can be found at
https://github.com/gplatono/SRP/tree/master/blender project
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comprising the object’s model. We add additional
geometric and non-geometric knowledge about
the objects by manually attaching labels or tags
to the meshes. Our approach is a rule-based one.
Each spatial relation takes two (or three, in case
of between) arguments and applies a sequence of
metrics evaluating various criteria, such as dis-
tance, whether the objects are in contact, whether
they possess certain properties, etc. Each metric
returns a real number from [0, 1]. Where these
metrics represent contributing factors to a relation,
they are usually combined linearly into a normal-
ized compound metric, with weights representing
the importance of the factors. In some cases two
factors are multiplied together, so that each scales
the other. For relations with multiple prototypes,
the final metric is just the maximum, i.e., we pick
the best match.

Whenever possible we rely on approximations
to the real 3D meshes of objects, using centroids
and bounding boxes (smallest rectangular regions
encompassing the objects). There are two main
reasons for that. First, we are trying to achieve
near real-time performance. Second, in many cir-
cumstances, given the object shapes and distances
between them, the approximations yield accept-
able results. Among the basic geometric prim-
itives used in our models are various distances,
scaled by object dimensions, e.g., scaled centroid
distance (SCD):

SCD(A,B) = d(Centroid(A),Centroid(B))
Radius(A)+Radius(B) .

Here d is just the Euclidean distance and
Radius gives the radius of the sphere, circum-
scribed around the object. Given two ideally-
shaped objects (cubes or spheres) the scaled dis-
tance between them will be equal to 1 exactly
when they are touching each other. This is a useful
measure if the objects are convex or located rela-
tively far apart.

We also introduce similar metrics for certain
types of objects that are not compact, i.e., poorly
approximated by a sphere. For example, “the
chair is near the wall” doesn’t mean that the chair
is close to the geometric center of the wall. In
this case it makes more sense to measure the
distance between the center of the chair and the
plane of the wall. We use the labels “planar” and
“rod” to mark regularly shaped non-compact ob-
jects such as walls and pencils, and introduce spe-
cial distance metrics for these categories. In cer-

tain cases, when an object is very irregular or if
high precision is required (e.g., when determining
if two objects are touching each other) we com-
pute pairwise vertex-to-vertex distances between
two meshes.

Another important geometric primitive is an
infinite conic region, defined at a vertex by an
orientation vector and the angular width of the
cone. This primitive is used in computing so-
called projective prepositions, such as above, etc.
This is similar to the idea of an acceptance area
in (Bigelow et al., 2015). Also, for prepositions
like to the left/right of, whose value depends on
the observer’s vantage point, we project the ar-
guments’ meshes onto the observer’s visual plane
(orthogonal to its frontal or “view” vector) and
then work with 2D data, either bounding boxes or
entire mesh projections.

One example of non-geometric knowledge that
we use is meronymy (part-whole relationships).
This knowledge is crucial for dealing with synech-
doche, as in “the book is on a bookshelf”. In such
a case we don’t usually mean that the book is di-
rectly on the bookshelf (however, this might be the
case in certain contexts), but rather that it is lo-
cated on one the shelves of the bookshelf. Also,
knowing about parts is not enough since many
real-life objects have multiple parts but we usu-
ally interact with just some of them. For example
“a magnet on the frigde” will probably be used
to designate a situation where the magnet is at-
tached to the fridge’s door rather than stuck on the
fridge’s top surface. Thus, typical interactions af-
fect the salience of different parts and aspects of
objects. In our models we mark such salient parts
of an object with a special tag.

As noted earlier, the semantics of spatial prepo-
sitions does not just depend on their arguments;
the perceived frame or scale and the statistics
of objects in the vicinity are additional impor-
tant factors. For some prepositions we first com-
pute the raw value (between 0 and 1) represent-
ing the context-independent value of that prepo-
sition’s metric. That metric is then modified by
scaling it up or down depending on the values of
this same metric for other objects in the scene.
For example, suppose that the raw nearness met-
ric near raw(A,B) for two objects A and B is
0.55 out of 1.0. This reflects the fact that with-
out further context, this is an ambiguous situa-
tion. However, if B is the closest object to A, i.e.,
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near raw(C,A) < 0.55,∀C(C 6= B), we can
say that B is relatively near A. In this case the fi-
nal score near(A,B) will be boosted by a small
amount (depending on the distribution of the ob-
jects in the scene), which will make a more defi-
nite judgment possible.

Finally, let’s consider the relation on as an ex-
ample, where multiple simple metrics come to-
gether. As noted in Example 1, there are many
possible configurations that can be described using
on. Based on these configurations we can discern
several stereotypical scenarios, or prototypes, and
introduce special rules, each covering one such
prototype. For on such prototypes include cases
where one object is in contact with the upper sur-
face of another; where it is attached to the salient
surface of another; where it is part of a group of
objects (i.e., stack), such that this whole group is
on the second object; etc. We can describe on as
(partially) depicted in algorithm 1 below.

Algorithm 1 On (The notation <3D-vector>.z
refers to the vertical component)

1: procedure ON(A,B)
2: on← 0.5 * ((Above(A, B) + Touching(A, B))
3: if Planar(B) and Larger(B,A) and

centroid(A).z > 0.5 ∗ dimensions(A).z
then

4: on← max(on, Touching(A,B))

5: . . .
6: for C in B do
7: if WorkingPart(C) then
8: on← max(on, On(A, C))
9: for C in Scene \ {A,B} do

10: if On(C,B) > 0.5 and ¬Salient(C)
then

11: on← max(on, 0.95∗On(A,C)∗
On(C,B))

As can be seen, we compute on by consecu-
tively applying different rules, corresponding to
the aforementioned prototypes, and taking the best
fit, i.e., the one whose metric has the maximum
value. The first rule captures the canonical sce-
nario where an object is directly above another
and in contact with it. The next rule applies to
situations where an object is in contact with an-
other, bigger, planar object, such as a wall. In ad-
dition, the object should be well above the ground,
so we require its centroid to be located higher
than half of the object’s height (centroid(A).z >

0.5 ∗ dimensions(A).z). We next apply a few
more rules covering such standard scenarios. We
also check for the possibility of synechdoche by
iterating through an object’s interactive parts and
checking if the relatum can be said to be on one
of them. Finally, we check for transitivity: if A is
on B and B is on C, then A is likely to be on C.
However, the transitivity of on is limited. Salient
objects break transitivity; e.g., if a book is on the
table and the table on the floor, the book cannot be
said to be on the floor. (Salience, as used here, is a
static, context-independent property of an object.)
Also, if there are too many intermediaries between
two objects (a book on top of the stack of books,
which is, in turn, on the table), the applicability of
on decreases. This is probably due to the fact that
a pile of objects becomes an increasingly salient,
composite object the bigger it grows.

4 Testing domains and the annotation
effort for spatial prepositions

We now describe the domains in which we tested
our models as well as the experimental setup for
annotating spatial configurations of objects. The
annotated data serve two purposes. First, in order
to measure the performance of our rule-based sys-
tem, in terms of how well it captures the range of
meanings of several spatial prepositions, we need
to collect actual instances of human spatial judg-
ments. Second, the collected dataset can be used
in the future to teach a machine learning model
the spatial relations.2 We chose to study the spa-
tial relations in two domains: a blocks world and
a “room world”. The first domain consists of a
square plane with multiple colored cubical blocks
on it, while the second domain represents a typical
room interior, containing various everyday items,
e.g., furniture, books, food, appliances, etc. The
relatively simple blocks world allows us to iso-
late and investigate the geometric components of
the meaning of a particular preposition, while the
more complex room domain adds pragmatic con-
siderations to the mix. Both domains are repre-
sented as a set of 3D scenes modeled in Blender
(Blender Online Community, 2018). 3D models
for the scenes were mostly created ad hoc, di-
rectly in Blender, using its standard visual model-
ing tools. The reason behind this is that most pub-

2However, while our dataset suffices for evaluating our
rule-based model, it will require expansion, perhaps via
crowdsourcing, for ML purposes
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licly available models are designed with different
purposes in mind and their part structure in incom-
patible with our needs. However, several models
were borrowed from the public collection of mod-
els on Blend Swap (BlendSwap.com, 2018), avail-
able under the Creative Commons licence.

(a)

(b)

Figure 1: An example configuration for the the
blocks world domain (a) and the room world do-
main (b)

We set up two different annotation tasks – a
truth-judgment task and a description task. In
the truth-judgment task, the annotator is presented
with a screenshot of a scene from either do-
main and asked whether the particular relation
holds between the given objects (“Is block 1 to
the right of block 2?”). The possible qualitative
response options form a Likert scale, with five
items: “YES”, “RATHER YES”, “UNCERTAIN”,
“RATHER NO”, “NO”. In the description task, the
annotator is given a screenshot of a scene from ei-
ther domain and an object from that scene. The
annotator is then asked to describe the object’s lo-
cation, in terms of a single prepositional relation
to another object in the scene (or two objects, in
exceptional cases like between or straddling two
objects), so as to identify it uniquely. The annota-
tor is encouraged to provide multiple descriptions,
if there are several natural ways to pick out the ob-
ject uniquely. The list of acceptable prepositions
includes the following: above, below, to the right,

to the left, in front of, behind, near, at, in, over,
under, between, on, and touching.3

The objects present in the scenes were selected
so as to allow for sufficiently varied configura-
tions, combining large immovable items of fur-
niture with multiple portable items. There was
no specific plan behind the object placement in
any scene, except to ensure that the target object
can be uniquely described, and the overall con-
figuration does not look unnatural or anomalous.
To make unique descriptive identification of ob-
jects nontrivial, some of the objects, such as chairs
or books, were presented in the scenes in several
identical copies. Annotators were not allowed to
directly refer to the objects by their name (every
object in the scene was accompanied by a unique
identifier to make it easier for the participant to lo-
cate it), but, instead, the participants were asked
to use only the type and/or color of the objects
when referring to them. Examples of acceptable
descriptions include “to the left of another black
block”, “between a table and a bookshelf”, “at the
bed”, and “on two blue blocks”. In order to au-
tomate the process and facilitate gathering of the
dataset, an annotation tool was deployed online
and about a dozen volunteers (grad and undergrad
students from the computer science department)
were asked to participate in the preliminary data
collection (Fig. 2). Since the task is straightfor-
ward they received minimal training; only the re-
strictions on the response format (only one prepo-
sition, unique identifiability, etc.) were made clear
to them.

A number of scenes were created for the pro-
posed annotation tasks. For the description task,
151 scenes were created. For the blocks world,
each scene was designed to allow three questions
(identification of three different blocks), while the
more context-rich room world scenes supported 7-
8 questions on average. For the truth-judgment
task, 192 scenes were designed, with one ques-
tion per scene. These 192 scenes are comprised
of four variations of 48 basic scenes. The vari-
ations are: basic scene (with just the relation ar-
gument objects present in the scene), basic scene
with bigger frame size (zoomed out), basic scene

3These particular prepositions were chosen in part be-
cause of their naturalness for describing configurations of
objects in the original domain (the blocks world) – unlike
across, around, throughout, with, etc., and in part by the prac-
tical need to limit the number of prepositions to be modeled
while still including the most widely used ones.
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Figure 2: The annotation website. The instructions
say ”Where is Blue Chair 1 in the presented scene?
Please describe its location relative to other ob-
jects.” The instructions are followed by the list of
the fourteen admissible prepositions.

with context (additional objects added), and basic
scene with context and bigger frame size. The col-
lected dataset contains approximately 3500 anno-
tations in total, with about 1500 annotations for the
truth-judgment task and 2000 for the description
task. It was split into a parameter tuning part and
a disjoint test set with the latter containing about
800 annotations, split approximately equally be-
tween the description and truth-judgment tasks.

5 Evaluation

The model was evaluated as follows. For the truth-
judgment task, the model was used to evaluate the
given relation and its arguments. Both the numeri-
cal answer provided by the model and the annota-
tor’s answer were then transformed to the ordinal
scale to compute the agreement coefficient. The
human responses were converted from the Likert
scale “YES”, “RATHER YES”, “UNCERTAIN”,
“RATHER NO”, “NO” into integers 5 to 1, respec-
tively. The metric value generated by the model
was transformed as follows: Values in [0, 0.2) cor-
respond to 1, those in [0.2, 0.4) to 2, ..., those in
[0.8, 1] to 5. For the description task, given a hu-
man description of a target object in relation to a
reference object, the model was given the refer-
ence object and relation, and was required to iden-
tify the object being described.

We used both standard and weighted versions
of Cohen’s Kappa as an inter-annotator agreement
metric with the weighting penalty w(i, j) = ‖i −
j‖, where i and j are the ordinal conversions of
the responses of human annotators and our system.

The agreement values were computed as follows.
First, all pairwise agreement values between an-
notators and between each annotator and the sys-
tem were computed. Next, the corresponding av-
erages (of human-human and human-system pairs,
respectively) were found.

For the initial data set (the part used to some
extent to tune the model parameters), the accu-
racy breakdown was as follows. For weighed
Kappa, the average pairwise human-human inter-
annotator agreement value was 0.717, whereas the
average pairwise system-human agreement metric
was 0.682. For standard Kappa, the respective val-
ues were 0.536 and 0.479.

For an independent data set used for final evalu-
ation, the values were: human-human agreement,
weighted Kappa - 0.76, human-system agreement,
weighted Kappa - 0.71, human-human agreement,
standard Kappa - 0.52, human-system agreement,
standard Kappa - 0.49. Again, all these num-
bers are pairwise averages. As expected, inter-
annotator agreement was not very high.4 The
somewhat lower system-human agreement is still
close enough to human-human agreement to indi-
cate the plausibility of our models. Since humans
manage to identify referents perfectly well using
spatial relations, despite the vagueness of these re-
lations, the key question then was how well our
models would do for such usages.

relation total occurrences accuracy
to the right of 210 89%
to the left of 212 94%
in front of 118 92%

behind 104 96%
above 81 99%
below 43 98%
over 29 96%

under 135 95%
between 168 93%

at 17 94%
touching 71 93%

near 196 82%
in 31 100%
on 166 90%

Table 1: Fourteen relations, together with the to-
tal occurrences within the dataset used for tuning
(different annotation) and accuracy per relation.

4This is not a flaw to be remedied, but simply a reflection
of the vagueness of the prepositional relations.

27



For the description task we computed the accu-
racy in terms of the percentage of tests with cor-
rectly identified objects. The overall system ac-
curacy on the testing data was about 93%; while
imperfect, this is an encouraging result. The de-
tailed breakdown for separate relations is provided
in Table 1.

relation total occurrences accuracy
to the right of 33 88%
to the left of 30 87%
in front of 24 96%

behind 25 92%
above 12 100%
below 11 100%
over 0 0%

under 33 97%
between 37 86%

at 4 100%
touching 30 93%

near 55 93%
in 7 100%
on 75 89%

Table 2: Fourteen relations, together with the total
occurrences within the dataset used for final test-
ing (different annotation) and accuracy per rela-
tion.

6 Discussion and Conclusion

We considered the problem of designing intuitive
computational models of spatial prepositions that
combine geometrical information as well as some
pieces of commonsense knowledge and contex-
tual information about the arguments. In our ex-
periments in a blocks world and a room world,
we achieved reasonable agreement with human
“truth” judgments and quite good agreement in a
referential description task. We are not aware of
other models that achieved this level of success in
comparably diverse environments.

All of the existing methods we mentioned have
significant limitations; typically they deal ade-
quately with some aspects but fall short on oth-
ers. The lexical semantics models in linguistics
provide the most comprehensive theory of spa-
tial relations as they are used in language. As
such they are particularly relevant to natural lan-
guage processing applications. However, their
biggest drawbacks (at least when they attempt to

address the polysemy of the prepositions) is that
they are hardly formalizable and make reference
to large amounts of background knowledge about
how people interact with the world. Neither hand-
crafting that background knowledge nor learning it
automatically from data seems feasible at present.
On the other hand, research aimed at precise qual-
itative spatial models typically puts the emphasis
on providing formal frameworks that enable rig-
orous inference, rather than on approximating hu-
man spatial representations and judgments. Un-
surprisingly, this bias results in models that are
suitable for certain applications, such as naviga-
tion and autonomous problem solving, but not for
human-machine interaction. A separate problem
is that of reconciling qualitative and quantitative
spatial models.

Computational approaches popular today
mostly rely on learning the meaning of preposi-
tions from data. While they are closer to capturing
their natural usage patterns, such models are
trained on limited datasets in toy tasks. The
generalization capabilities of such models are
questionable. In our opinion the path towards
comprehensive models of spatial prepositions lies
at the intersection of these two major paradigms.
The core meanings can be captured by meticulous
analysis of the behaviour of the prepositions,
while machine learning methods can be applied to
adjust the weights of various a priori significant
factors and ultimately to learn diverse additional
pragmatic factors that influence human judgments
in context, but are very hard to describe explicitly.

A couple of further insights we gained are worth
noting. First, as indicated by the disparity we ob-
served between judgments of truth and identifica-
tion of referents, experimental design is of utmost
importance in this area. Special attention needs to
be paid to ensure that the experimental task is nat-
ural and sufficiently varied; at the same time, the
task should enable isolating the specific meaning
aspects of particular prepositions, so that they can
be modeled individually. These desiderata are not
easily achieved.

Second, physics plays an important role in our
understanding of spatial relations. For example,
as noted at the outset, on is closely connected with
the support relation; thus, a cable or a rope hang-
ing from the ceiling and touching the table under it
will probably not be considered to be on the table.
This example breaks the rule-based definition of
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on that we presented above. We did not address the
physical aspects of the meaning of spatial preposi-
tions in our work. This deficiency will have to be
rectified if our models of spatial prepositions are to
correspond more fully to our everyday intuition.
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