
1

Digital Circuits

Athanasios E. Papathanasiou
Computer Science Department

University of Rochester

CSC-173 Lecture
Tuesday, 11/27/2001

Circuit Design

! Gate:
"Basic electronic device.

"Computes a Boolean function.

"AND, OR, NOT, NAND:
#Easy to implement.

#Any number of inputs.

#Used in practice.

AND ORNAND NORNOT

Circuit Design

! Circuit:
"A combination of gates

#Output of some gates are the input of others.

"Has one or more inputs:
#These are inputs to the gates in the circuit.

"May have one or more outputs.

3-input NAND:
•Two 2-input AND.
•One Inverter.

Combinational & Sequential
Circuits

! Combinational:
"Output is a Boolean function of input values.

"Are Acyclic:
#No cycles between inputs of a gate and its outputs.

"No memory:
#Cannot remember previous inputs or outputs.

"Example of use:
#Decode instructions and perform arithmetic.

Combinational & Sequential
Circuits (2)

! Sequential:
"Output depends on the current input values and

the previous sequence of input values.

"Are Cyclic:
#Output of a gate feeds its input at some future time.

"Memory:
#Remember results of previous operations

#Use them as inputs.

"Example of use:
#Build registers and memory units.

Combinational Circuit:
Encoder for a 7-Segment Display

! Goal: Design a circuit…
"With 10 inputs: i0, i1, i2, …, i9.

#Each one corresponds to the
decimal digits (0-9).

"Lights up the display
segments A, B, C, …, G.
#As needed to display the digit

specified by the input.

#Total: 7 outputs.

A

B

C

G

D
E

F

Number 2:
•Input i2==1.
•i0, i1, i3, …, i9 == 0.
•Outputs:
•A=B=D=E=G=1
•C=F=0

2

Encoder for a 7-Segment
Display (2)

! Boolean expression for the outputs:

9865432

986540

8620

865320

987654310

98743210

9875320

iiiiiiiG

iiiiiiF

iiiiE

iiiiiiD

iiiiiiiiiC

iiiiiiiiB

iiiiiiiA

++++++=

+++++=

+++=

+++++=

++++++++=

+++++++=

++++++=

! Build the circuit with 7 OR gates:
" One for each segment of the display

Encoder for a 7-Segment
Display (3)

i0

i1

i2

i3

i4

i6

i5

i7

i9

i8

Encoder for a 7-Segment
Display (3)

A

B

and so on…

Constraints on Circuit Design

! Numerous constraints impact:
"The speed and cost of a circuit.

! Speed:
"Every gate in a circuit introduces a small delay.

"Circuit delay depends on the number of gates
between inputs and outputs.

Constraints on Circuit Design

! Size limitations:
"More gates lead to larger circuits.
"Large circuits are more expensive

#Higher failure rate.

"And slower.
#Signals must propagate from one end to the other.

! Fan-in and Fan-out:
"Number of inputs and outputs of a gate.
"Large fan-in makes a gate slower.

Divide and Conquer Adder

! Already seen Ripple-Carry adder
! Need:

"Adder with a smaller delay for larger words.

! Solution:
"Use a divide and conquer strategy.

"Use two N/2-bit adders and combine results.

"Left and right halves added in parallel.

Divide and Conquer Adder (2)

! Carry: Not known in advance:
"How can the adders operate in parallel?

"Compute to sums for the upper half.
#One assuming there is a carry.

#One assuming there is NO carry.

"Use additional circuit to select the correct sum.

x1 y1 xn/2 yn/2
carry

xn/2+1 yn/2+1 xn yn

z1 zn/2 zn/2+1 zn

3

Design of an N-adder

! Assume two N-bit operands: x1…xN & y1…yN.
! Design N-adder that computes:

"Sum without carry-in: s1…sN.
"Sum with carry-in: t1…tN.
"The carry-propagate bit, p:

It is 1 if there is a carry-out assuming there is carry-in.

"The carry-generate bit, g:
It is 1 if there is a carry-out even if there is NO carry-in.

#NOTE: if g is one then p will be one too (g implies p).

! First, build an 1-bit adder.

A 1-bit Adder

x y s t p g
0 0 0 1 0 0
0 1 1 0 1 0
1 0 1 0 1 0
1 1 0 1 1 1 xyg

yxp

xyyxt

yxyxs

=

+=

+=

+=

Boolean Functions Logical Expressions

A 2-bit Adder from 1-bit Adders

High Order
1-bit Adder

sHtHgHpH

Low Order
1-bit Adder

sLtLgLpL

FIX

s1t1s2t2gp

x2 y2 x1 y1

``FIX’’ Circuit

! Carry-propagate bit: p= pHpL +gH
"If there is a carry-in p is 1 if:

#Both the low and high order part propagate a carry
(pHpL).

#Or: The high order part generates a carry (gH).

! Carry-generate bit: g= gH+ gLpH
"If there is NO carry-in g is 1 if:

#If the high order part generates a carry (gH).
#Or if there is a carry from the low part and the high

part propagate that carry (gLpH).

``FIX’’ Circuit (2)

! High order sum, NO carry-in:
"It is:

#sH if there is no carry from low order part (~gL).

#tH if there is carry from low order part (gL).

! High order sum, with carry-in:
"It is:

#tH if there is a carry from the low order part.

#sH otherwise.

LHLH gtgss +=2

LHLH ptpst +=2

Sequential Circuits for Memory
Elements.
! Memory element:

"A collection of gates capable of producing its
last input as output.

"They are sequential circuits.
#Their behavior depends on current and past inputs.

! Flip-flop:
"A 1-bit memory element.
"Typical flip-flop:

#Takes two inputs (load and data-in).
#Produces one output (data-out).

4

Flip-Flops

! Load==0:
"The circuit produces the stored value as output.

! Load==1:
"The circuit stores the value data-in and

"Produces it as output.

Flip-Flop Circuit

! Load=1⇒A1=0 ⇒data-out=A2=data-in.
! Load=0 ⇒A2=0 ⇒data-out=A1

"Which is the previously stored value.

load

data-in

data-out
A1

A2

